1. Design an unrestricted grammar for the following language: $\left\{a^{n^{2}} \mid n \geq 0\right\}$
2. Design an unrestricted grammar for the following language.
$\left\{w w \mid w \in\{a, b\}^{*}\right\}$
3. A shuffle of two strings α and β is a string γ of length $|\alpha|+|\beta|$, in which α and β are non-overlapping subsequences (not necessarily substrings). For example, all shuffles of ab and cd are abcd, cabd, cdab, acbd, acdb, and cadb. For two languages A and B, we define shuffle(A, B) as the language consisting of all shuffles of all $\alpha \in \mathrm{A}$ and all $\beta \in \mathrm{B}$. Prove that recursively enumerable languages are closed under the shuffle operation, that is, if A and B are r.e. languages, then so also is the language
shuffle $(A, B)=\{\gamma \mid \gamma$ is a shuffle of some $\alpha \in A$ and $\beta \in B\}$.
Is shuffle(A, B) recursive if A and B are recursive? Justify.
4. Prove that the problem whether a Turing machine M on a given input x reenters its start state is undecidable.
5. Consider the language
$\mathrm{AL}_{2022}=\{\mathrm{M} \mid \mathrm{M}$ is a Turing machine which accepts at least 2022 input strings $\}$.
(a) Prove that AL_{2022} is recursively enumerable.
(b) Prove that AL_{2022} is not recursive.
6. Let A be a language over Σ, and B a language over Λ. Suppose that $\mathrm{A} \leqslant \mathrm{m} \mathrm{B}$ under a reduction map $\Sigma^{*} \rightarrow \Lambda^{*}$ which is onto (surjective). Prove that $\mathrm{B} \leqslant \mathrm{m} A$.
