1. Design an unrestricted grammar for the following language: $\left\{a^{n^2} | n \ge 0\right\}$

2. Design an unrestricted grammar for the following language.

 $\{ ww | w \in \{a,b\}^* \}$

3. A shuffle of two strings α and β is a string γ of length $|\alpha| + |\beta|$, in which α and β are non-overlapping subsequences (not necessarily substrings). For example, all shuffles of ab and cd are abcd, cabd, cdab, acbd, acdb, and cadb. For two languages A and B, we define shuffle(A, B) as the language consisting of all shuffles of all $\alpha \in A$ and all $\beta \in B$. Prove that recursively enumerable languages are closed under the shuffle operation, that is, if A and B are r.e. languages, then so also is the language

shuffle(A, B) = { $\gamma \mid \gamma$ is a shuffle of some $\alpha \in A$ and $\beta \in B$ }.

Is shuffle(A, B) recursive if A and B are recursive? Justify.

4. Prove that the problem whether a Turing machine M on a given input x reenters its start state is undecidable.

5. Consider the language

 $AL_{2022} = \{ M \mid M \text{ is a Turing machine which accepts at least 2022 input strings } \}.$

(a) Prove that AL₂₀₂₂ is recursively enumerable.(b) Prove that AL₂₀₂₂ is not recursive.

6. Let A be a language over Σ , and B a language over Λ . Suppose that $A \leq_m B$ under a reduction map $\Sigma^* \to \Lambda^*$ which is onto (surjective). Prove that $B \leq_m A$.