1. Consider the language $\mathrm{L}_{1}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \# \mathrm{a}(\mathrm{x})=2 \times \# \mathrm{~b}(\mathrm{x})\right\}$.
(a) Design a CFG for L_{1}.

$$
\begin{aligned}
& P / D^{\ell}: \quad S \rightarrow \in \mid \text { cabS } \mid \text { aaSb }|a S a b| \text { Saab| abaS }|\ldots| S S \\
& \text { acallbiaaa cannot he } \\
& S(x)=\# a(x)-2 x \# b(x) \\
& s \rightarrow\{x \mid s(x)=0\} \quad A \rightarrow\{x \mid s(x)=1\} \\
& B \rightarrow\{x \mid s(x)=-1\}
\end{aligned}
$$

Ruler for S

$$
S \rightarrow \in|a B| b A A
$$

Rulen for A

$$
A \rightarrow a S \mid b A A A
$$

Rulen for B

$$
B \rightarrow b A|a B B| a S b S
$$

(b) Convert the CFG of Part (a) to a PDA for L_{1}.

$$
\begin{aligned}
& a, a / \epsilon \\
& b, b / \epsilon \\
& \epsilon, S / \epsilon \quad \epsilon, S / a B \quad \epsilon, S / b A A \\
& \epsilon, A / a S \quad \epsilon, A / b A A A \\
& \epsilon, B / b A \\
& \epsilon, B / a B B \quad \epsilon, B / a S b S
\end{aligned}
$$

(c) Design a PDA for L_{1} from the scratch.

$$
\begin{aligned}
& \text { a, } 1 /+1 \\
& \text { a, }+1++ \\
& a,-/ \epsilon \\
& \text { b, } 1 /--1 \\
& \text { b, }-1--- \\
& \epsilon, \perp /-1 \\
& \epsilon, \perp / \epsilon \\
& \epsilon_{1}+/ \epsilon
\end{aligned}
$$

2. Design a PDA for the language $\left\{x \in\{a, b\}^{*} \mid \# b(x) \leqslant \# a(x) \leqslant 2 x \# b(x)\right\}$.

$$
\begin{aligned}
& k=\# b(x) \\
& k \leqslant a(x) \leqslant 2 k \\
& 11 \\
& k+l=l+(k-l)+l \\
& \\
& k \leqslant l \leqslant k \\
& 0 \leqslant 2 l+(k-1) \\
& 0 \leqslant k-l \leqslant k
\end{aligned}
$$

3. Design a PDA for the language

$$
\{a, b, c\} *-\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\} .
$$

(1) Stringe containing ba
(2) $-11+c b$
(3) -11 \qquad Ca
(4) $a^{i} b^{j} c^{k} \quad s t . i \neq$)
(5) $a^{i} \underbrace{j} c^{k} \quad s . t.) \neq k$
4. Let L be a CFL over some alphabet Γ. Prove that the language

$$
\operatorname{cyclicshift}(\mathrm{L})=\{\mathrm{yx} \mid \mathrm{xy} \in \mathrm{~L}\}
$$

$$
L=\mathcal{L}(M)
$$

is also a CFL.
\rightarrow accepts by empty

$$
(y x)^{r}=x^{r} y^{r}
$$

$$
(x y)^{\text {stack }}=y^{2} x^{r}
$$

HW: $S \rightarrow \epsilon \mid a S b$
$\frac{a a a b b b}{a b b b a a}$

$$
S \rightarrow \in\left|a S_{a}\right| b S b
$$

