1. Consider the language
$A_{k}=\{w \in\{0,1\} * \mid$ The last k positions in w have at least one 1$\}$.
(a) Prove that any DFA accepting A_{k} must have at least $\mathrm{k}+1$ states.
(b) Design a DFA with $\mathrm{k}+1$ states for Ak_{k}.
(a) Suptios the a DFA with $\leqslant k$ states accepts A_{k}.

$$
\begin{array}{cc}
1 & 1 \\
10 & 10 \\
10^{2} & 100 \\
10^{k-1} & 1000 \cdots 0 \\
& k-1+(i-j) \\
& k-1+1=k
\end{array}
$$

$\leqslant k-1$ final stater

$$
\hat{\delta}\left(s, 10^{i}\right)=\hat{\delta}\left(s, 10^{i}\right)
$$

$$
i>j \text { Append } 0^{k-1-j}
$$

$$
10^{k-1-j+i} \quad 10^{k-1}
$$

\rightarrow not in $A_{k} \rightarrow$ in A_{k}
(6) It suffices to vemembers when the last 1 was read.

State $i \rightarrow$ last read part 10^{i}
2. Let $E_{k}=\left\{w \in\{0,1\}^{*} \mid\right.$ the last k positions of w contain exactly one 1$\}$. Prove/Disprove: Any DFA for E_{k} contains at least 2^{k} states.

$$
\binom{k+1}{2}+1 \text { states }
$$

3. Prove that the minimal NFA for a regular language is not necessarily unique.

$$
a^{+} \geq a a^{*}
$$

G must have 2 notates

4. Consider the DFA with $\Sigma=\{0,1\}, Q=\{0,1,2,3,4\}, s=0, F=\{0\}$, and $\delta(q, a)=\left(q^{2}+a\right)$ mod 5 . Minimize the DFA using the algorithm disscussed in the class.

0
$\times 1$
$\times \times 2$
$x \cdot x 4$

$$
1,4 \text { eqvt }
$$

5. Consider the regular language $\mathrm{L}=\mathscr{L}\left(\mathrm{a}^{*} \mathrm{~b}^{*}+\mathrm{b}^{*} \mathrm{a}^{*}\right)$ over $\{\mathrm{a}, \mathrm{b}\}$. Design the minimal DFA for L . From this DFA, identify the equivalence classes of \equiv_{L}.

Partition in

$$
\begin{aligned}
& \{\in\} \\
& \mathcal{L}\left(a^{+}\right) \\
& \mathcal{L}\left(a^{+} b^{+}\right) \\
& \mathcal{L}\left(b^{+}\right) \\
& \mathcal{L}\left(b^{+} a\right)
\end{aligned}
$$

6. Use the Myhill-Nerode theorem to prove that the language

$$
\mathrm{EQ}=\{\mathrm{w} \in\{\mathrm{a}, \mathrm{~b}\} * \mid \# \mathrm{a}(\mathrm{w})=\# \mathrm{~b}(\mathrm{w})\}
$$

$T S T=E_{E Q}$ is not of is not regular.
finite index
$a^{0}, a^{1}, a^{2}, \ldots$ all belong to distinct equivalence

$$
i, a i \quad i \neq j
$$

classes

$$
a^{i} b^{i} \in E Q, \quad a^{i} b^{i} \notin E Q
$$

Identify the equivalence classes

$$
s(x)=\# a(x)-\# b(x) \quad 0, \pm 1, \pm 2, \pm 3, \ldots
$$

Each equivalence class. consists of all string of the name surplus
7. Use the Myhill-Nerode theorem to prove that the language $\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \# \mathrm{a}(\mathrm{w})-\# \mathrm{~b}(\mathrm{w})\right.$ is a multiple of 5$\}=L$

ST is regular.

三 L has a finite
Equivalence classes index

$$
x \longrightarrow s(x) \bmod 5 \in\{0,1,2,3,4\}
$$

$x, y \rightarrow$ with the name surplus

$$
\begin{aligned}
& \quad s(x)=s(y) \\
& \text { For all } z, \quad s(x z)=s(x)+s(z)=s(y)+s(z) \\
& s(x) \neq s(y) \Rightarrow x \neq y=s(y z)
\end{aligned}
$$

