1. Consider the language

 $A_k = \{w \in \{0,1\}^* \mid \text{The last } k \text{ positions in } w \text{ have at least one } 1\}.$

(a) Prove that any DFA accepting A_k must have at least k + 1 states.
(b) Design a DFA with k + 1 states for A_k.

(a) suppose that a DFA with
$$\leq k$$
 states accepts A_k .
1 1 $\leq k-1$ final states
10 10 $\leq (s, 10^i) = \delta(s, 10^j)$
100 $\delta(s, 10^i) = \delta(s, 10^j)$
100 $(k-1)$
100 $(s - 1)$
100 $(s - 1)$
10 $(k-1-j)$
10 $(k-1-j)$
10 $(k-1-j)$
10 $(k-1-j)$
10 $(k-1)$
10 $(k-1)$

2. Let $E_k = \{ w \in \{0,1\}^* | \text{ the last } k \text{ positions of } w \text{ contain exactly one } 1 \}$. Prove/Disprove: Any DFA for E_k contains at least 2^k states.

$$\begin{pmatrix} k+1\\ 2 \end{pmatrix} + 1$$
 state

3. Prove that the minimal NFA for a regular language is not necessarily unique.

ax G

+ × C = CC 1 must have 2 states

4. Consider the DFA with $\Sigma = \{0,1\}$, $Q = \{0, 1, 2, 3, 4\}$, s = 0, $F = \{0\}$, and $\delta(q,a) = (q^2+a) \mod 5$. Minimize the DFA using the algorithm disscussed in the class.

()2 \times \times \bigvee_{a} \times · 4 1, h equt.

5. Consider the regular language $L = \mathcal{L}(a^*b^*+b^*a^*)$ over $\{a,b\}$. Design the minimal DFA for L. From this DFA, identify the equivalence classes of \equiv_L .

6. Use the Myhill–Nerode theorem to prove that the language

$$EQ = \{ w \in \{a,b\}^* \mid \#a(w) = \#b(w) \} \qquad T S T$$

is not regular.

Identify the equivalence classes

$$S(x) = \# \alpha(x) - \# b(x)$$
 $0, \pm 1, \pm 2, \pm 3, \dots$
Each equivalence class, consists of all strings of the
name surplus

7. Use the Myhill–Nerode theorem to prove that the language

TST $\{ w \in \{a,b\}^* \mid #a(w) - #b(w) \text{ is a multiple of 5 } \}$ E has a finite index is regular. Equivalence classes $E \{0, 1, 2, 3, 5\}$ $\chi \longrightarrow S(\chi) \mod 5$ -, with the name nurphus \mathcal{K}, \mathcal{Y} S(x) = S(y)S(xZ) = S(x) + S(Z) = S(y) + S(Z)For all Z, $= S(yz) \quad (5 - S(x)) \mod 5$ Take $7 = \alpha$ $S(x) \neq S(y)$ $\Rightarrow \chi \neq \Im$

