1. One of the following sets is regular, the other is not. Justify.

$$
A=\left\{x \$ y \mid x, y \text { in }\{a, b\}^{*} \text { and } \# a(x)=\# b(y)\right\} \subseteq\{a, b, \$\}^{*} .
$$ $B=\{x y \mid \# a(x)=\# b(y)\} \subseteq\{a, b\}^{*}$.

$A$ u not regular. - Sululose A in regular. $k$ a PLC for Al

$$
u=\epsilon, v=a^{k}, w=\$ b^{k}
$$

$$
\begin{aligned}
& B \text { in regular } \quad u=\epsilon, v=a^{k}, \omega=b^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant a^{k}(0,1,2, \ldots, k \\
& u=\epsilon, v=a^{k}, \omega=b^{k} \\
& a^{k+\ell} b^{k}=a^{k}\left(a^{l} e^{k}\right)
\end{aligned}
$$

Take $z \in\{a, b\}^{*}$. TST $z \in P . \quad|z|=0 \quad z=\epsilon=\epsilon \epsilon$ luduction on $|z|$

2. Let L be a regular language. Define $\operatorname{dup}(\mathrm{L})=\{\mathrm{ww} \mid \mathrm{w} \in \mathrm{L}\}$. Which of the following statements is true?
(a) dup (L) must be regular.
(b) dup (L) must be non-regular.
(c) dup (L) may or may not be regular.

$$
\downarrow \quad L=\mathcal{L}\left((a+b)^{*}\right)
$$

$L$ finite

$$
L=\mathcal{L}\left(a^{*}\right)
$$

$$
\operatorname{dup}(L)=\alpha\left((a a)^{*}\right)
$$

PL proof
Tale

$$
\frac{a^{k} b^{k} a^{k} b^{k}}{w} \frac{w}{v}
$$

3. Regular or not? Justify.
$A=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains an equal number of occurrences of the substrings ab and ba $\}$
$B=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains an equal number of occurrences of the substrings abb and mba $\}$
$A$ is regwar

$B$ is not regular

$$
\begin{aligned}
& u=(a a b)^{k+1} b b a \\
& \frac{\text { Gabaab...aab baa bba...bba }}{u} \frac{b}{v} \\
& v=(b b a)^{k} \quad \omega=\epsilon \\
& x=E, y=b
\end{aligned}
$$

$$
u=(a a b)^{k} v=(b l a)^{k} \omega=\epsilon
$$

4. Let $\mathrm{A} \subseteq \mathrm{N}$ be a set of positive integers. Define

$$
\begin{aligned}
& \operatorname{binary}(A)=\{\text { binary representations of elements of } A\} \subseteq\{0,1\}^{*}, \text { and } \\
& \text { unary }(A)=\left\{0^{n} \mid n \in A\right\} \subseteq\{0\}^{*} .
\end{aligned}
$$

Prove/Disprove:
(a) If unary $(A)$ is regular, then binary $(A)$ is regular.

$$
A=\{2,3,5,7, \ldots\}
$$

(b) If binary $(A)$ is regular, then unary $(A)$ is regular.

$$
(6) \quad A=\left\{2^{n}-1 \mid n \geqslant 1\right\}
$$

Fuse

$$
\operatorname{Ginary}(A)=\{1,11,111,1111, \ldots\}
$$

lengths(unavy (A)) is not up.

$$
=A
$$

(a) True $A$ is u. $p$.

$$
\begin{gathered}
A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \cup \\
\left\{n \equiv b_{1}, b_{2}, \ldots, b_{l}(\bmod (0),\right. \\
\left.n \geqslant n_{0}\right\}
\end{gathered}
$$


5. Prove that no infinite subset of $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is regular.

$$
\begin{aligned}
& \sum_{u=a^{k}}^{a^{k}} \frac{b^{k}}{\omega} \quad \int^{a^{\prime}} \frac{k^{\prime}}{w} \quad \text { for } k^{\prime} \geqslant k \\
& u=\epsilon
\end{aligned}
$$

6. Prove/Disprove: There exists a language $L$ such that no infinite subset of $L$ or its complement is regular.

$$
L=\left\{a^{n} b^{n} \mid n \geqslant 0\right\}
$$

$$
\bar{v}-
$$

$\sim L$ contain $\mathcal{L}\left(a^{t}\right), \mathcal{L}\left(b^{+} a^{+}\right)$
$L \sim L \quad \mathcal{L}\left((a b)(a b)^{+}\right)$
0

$$
1
$$

$2-3$
$8-15$
$16-31$
$32-63$
$64-127$
7. Let D be a DFA with exactly k states and with $\mathrm{L}=\mathscr{L}(\mathrm{D})$ infinite. Prove that L must contain a string of length in the range $[\mathrm{k}, 2 \mathrm{k}$ ). Give an example of D such that the shortest string in L of length $\geq \mathrm{k}$ is of length $2 \mathrm{k}-1$.

See Q4 of http://cse.iitkgp.ac.in/~abhij/course/theory/FLAT/Spring20/ct1.pdf
8. Let D be a DFA with exactly k states and with $\mathrm{L}=\mathscr{L}(\mathrm{D})$ finite. Prove that the longest string in L must be of length $\leq \mathrm{k}-2$. Give an example of D where the longest string in L is of length equal to $\mathrm{k}-2$.

