

2. Let L be a regular language. Define dup(L) = { ww | $w \in L$ }. Which of the following statements is true?

3. Regular or not? Justify.

A = { $w \in \{a,b\}^* | w \text{ contains an equal number of occurrences of the substrings ab and ba } B = { <math>w \in \{a,b\}^* | w \text{ contains an equal number of occurrences of the substrings aab and bba }$

A in regular

$$\Rightarrow 0$$
 $\downarrow 0$ \downarrow

4. Let $A \subseteq N$ be a set of positive integers. Define

binary(A) = {binary representations of elements of A} \subseteq {0,1}*, and unary(A) = $\{0^n \mid n \in A\} \subseteq \{0\}^*$.

Prove/Disprove:

If unary(A) is regular, then binary(A) is regular.
If binary(A) is regular, then unary(A) is regular.
(a)
$$A = \begin{cases} 2 - 1 \\ 2 - 1 \\ 2 - 1 \\ 3$$

 $A = \{2, 3, 5, 7, \dots\}$

2

5. Prove that no infinite subset of $\{a^nb^n \mid n \ge 0\}$ is regular.

6. Prove/Disprove: There exists a language L such that no infinite subset of L or its complement is regular.

 $L = \left\{ a^{2}b^{2} \mid n \geq 0 \right\}$? $\sim L$ contain $\lambda(a^+)$, $\lambda(ba^+)$ $\left((ab) (ab)^{\dagger} \right)$ 0 1 2 - 3 4 - 7 8 - 1516 - 3132-63 (h- 127

7. Let D be a DFA with exactly k states and with $L = \mathscr{L}(D)$ infinite. Prove that L must contain a string of length in the range [k, 2k). Give an example of D such that the shortest string in L of length $\ge k$ is of length 2k - 1.

See Q4 of http://cse.iitkgp.ac.in/~abhij/course/theory/FLAT/Spring20/ct1.pdf

8. Let D be a DFA with exactly k states and with $L = \mathscr{L}(D)$ finite. Prove that the longest string in L must be of length $\leq k - 2$. Give an example of D where the longest string in L is of length equal to k - 2.