Tutorial 2-3

1. Start with the obvious NFA to accept all strings w over $\{0,1\}$ such that the second last symbol of w is 1 . Use the subset construction procedure to convert this NFA to an equivalent DFA. Mark all the unreachable states (if any) in the converted DFA.

$$
Q=\left\{\begin{array}{l}
\{\phi,\{p,\{\{q\},\{q\},\{p, q\}, \\
\{q, r\},\{p, r\},\{p q, *\} .
\end{array}\right.
$$

$$
s=\{p\}
$$

$$
\begin{aligned}
& s=\{p\} \\
& F=\{\{r\},\{p, r\},\{q, r\},\{p p, r\}\}
\end{aligned}
$$

2. Consider the following NFA with ε transition for the language

$$
L=\left\{a^{i} b^{j} \mid i, j \geqslant 0\right\}
$$

Convert to a DFA accepting the same language.

$$
\Delta(p, q)=\{p, q\}
$$

$$
\left.\Sigma^{\prime}=\Sigma v\{ \}\right\}
$$

$$
L=\{\varepsilon\} \cup\left\{a^{i} \mid i \geqslant 1\right\} \cup\left\{b^{j} \mid j \geqslant 1\right\}
$$

$\cup\left\{a^{i} b^{j} \mid i, j \geqslant 1\right\}$
3. Let k be a positive integer constant, and $\mathrm{L}=\left\{\mathrm{w}\{0,1\}^{*} \mid\right.$ the k -th last symbol of w is 1$\}$
(a) Prove that no DFA with less than 2_{2}^{k} states can accept L.
(b) Prove that no NFA with less than $\mathrm{k}+1$ states can accept L .
(a) $|Q|<2^{k}$. Consider all k-length strings in $\{0,1\}^{*}$.
$[q u P \rightarrow$ There are 2 strings x, y ending at the

$\delta(s, x)=\delta(s, y)=p$.

$$
\begin{aligned}
& \hat{\delta}\left(s, x \cdot \theta^{k-i-1}\right) \\
& =\hat{\delta}\left(s, y \cdot 0^{k-i-1}\right)=9
\end{aligned}
$$

(b) Assume $|Q| \leqslant k \rightarrow 2^{k}$ subsets of Q. ${ }_{2} \in\left\{k\right.$ length strings in $\{0,1\}^{*}$.\}
Assume Suppose $\quad \hat{\Delta}(S, x)=\phi$

$$
\begin{aligned}
& \hat{\Delta}(S, x)=\phi \\
& \rightarrow \sqrt{\left.x\right|^{k}} \hat{S}\left(5,\left.x\right|^{k}\right)=\phi(\rightarrow \infty)
\end{aligned}
$$

ϕ is an unreachable state.
$\leq 2^{k}-1$ reachable subsets of Q.
Consider the DFA with subset construction

$$
\left.\begin{array}{ll}
x & \hat{\Delta}(s, x)=\hat{\Delta}(s, y)=\hat{s} \\
y & \forall z \\
& \hat{\Delta}(s, x z)=\hat{\Delta}(s, y z)
\end{array}\right]
$$

4. Let A and B be regular languages. Prove that the following language is also regular.

$$
\begin{gathered}
A \Delta B=(A-B) \cup(B-A) \\
A-B=A \cap \neg B \quad B-A=B \cap\urcorner A . \\
A \Delta B=(A \cap \cap B) \cup(B \cap \neg A)
\end{gathered}
$$

$\Sigma A=A^{\prime} \subseteq \Sigma^{*}$ sit $\operatorname{ng}_{\text {for }} A^{\prime} A$ exists 5. Let A be a regular language over $\{0,1\}, D^{*}$ (a) Prove that the language $B=\left\{x y \in\{0,\}^{*} \mid x\{y \in A\}\right.$ is regular.
$A \cup B$ regular
A regular B^{A} regular A^{\prime} B regular? Σ^{*}

$\|\| \in A$
$\| \in B$
$(A \cup B) \triangle B K$

$$
\begin{aligned}
& =((A \cup B)-A) \\
& \cup(A-(A \cup B)) \\
& =(B-A) \\
& =B-A
\end{aligned}
$$

$$
M_{2}=(B-A)
$$

$$
\begin{aligned}
\Rightarrow 2 \in B \quad & x y \in B \\
& \exists x I y \in A
\end{aligned}
$$

$\exists s_{1} s_{i} s_{i+1} s_{n}$ in M s.t $s_{n} \in F$
Consider $s, s_{1} \ldots s_{i}, s_{i t 1}^{\prime} \cdots s_{n}^{\prime} \quad s_{n}^{\prime} A^{F} M^{\prime}$
$E z$ is accepted
\exists an ε-transition from $M_{1} \rightarrow M_{2}$

$$
p \rightarrow q^{\prime} \quad \delta_{M}(p, 1)=q
$$

Acceptance: $s s_{1} \ldots p_{1} q_{1}^{\prime} \ldots \int^{\prime} \rightarrow x y$
$S S_{1} \cdots p, q \cdots f \rightarrow \underset{x d y \text { in } y}{ }$ $x 3 y$ in M.
(b) Prove that $C=\left\{x\left\{y \in\{0,1\}^{*} \mid x y \in A\right\}\right.$

$$
\begin{aligned}
& \exists z \in A \\
& z=x y \\
& Z^{\prime} \in C=x \beth y
\end{aligned}
$$

$M_{1}(\Rightarrow)$ If $x y \in A$ then $x \neq y \in L(N)$: DFA M has a unique path labelled ry: $s, s_{1}, \ldots p, s_{n}^{\epsilon F}$ $\hat{\delta}(s, x)=p, \hat{\delta}(p, y)=s_{n}$.

$$
\ln N, \exists x] y \text {-path } s \cdots p \rightarrow p^{\prime} \cdots s_{n}^{\prime} \text {. }
$$

- (\Leftrightarrow) Consider $z \in L(N)$. From $s \rightarrow$ some s_{n}^{\prime} I exactly 1 new 1 -transition from $M_{1} \rightarrow M_{2}$ of the form $p^{\prime} \in \Delta(p, 1)$
\Rightarrow Path will be of form $s-P_{1} \rightarrow p^{\prime} \ldots P_{2}^{\prime} S_{n}^{\prime}$ Consider $P_{1} \cdot P_{2} \rightarrow$ Path labelled by ry in M_{1} $\therefore x y \in A$.

6. Let L be a regular language over Σ.
(a) Prove that the following language is also regular.
$a b a b \in L$

$$
L^{\prime}=\left\{x \in \Sigma^{*} \mid x x \in L\right\}
$$ $a b \in L^{\prime}$

$\hat{\delta}(s, x)=P$
$\hat{\delta}(p, x)=f \in F$
? shortest
Algorthim

1. For each state p, let $\hat{\delta}\left(s, \frac{\uparrow}{\overline{3}}\right)=p$
2. Consider $q=\hat{\delta}(p, x)$.

$$
\begin{aligned}
& \rightarrow L^{p}=\left\{x \in \Sigma^{*} \mid x x \in L, \hat{\delta}(s, x)=p\right\} \\
& L^{\prime}=V_{p \in Q} L^{p}, ~\{(p, q) \mid q \in F \\
& G M^{\prime}=\left(Q \times Q, \Sigma, \delta^{\prime},(s, p), F^{\prime}\right) \\
& \delta^{\prime}((p, q), a)=(\delta(p, a), \delta(q, a))
\end{aligned}
$$

$$
\text { 2. If } q \in F \text { then include } p \in F \text {. }
$$

(b) Prove that the following language is also regular

$$
L^{\prime}=\left\{x \in \Sigma^{*} \left\lvert\, \begin{array}{cc}
x y \in L \text { for some } y \in \Sigma^{*} & \text { with }|x|=|y|\} \\
M=(Q, Z, \delta, 5, F) & \hat{\delta}(5, x)=P
\end{array}\right.\right.
$$

For all $p \in Q$,
Claim: $L^{P}=\left\{x \in \Sigma^{*} \mid x \in L^{\prime}\right.$ and mid-pt. is $\left.p\right\}$. is regular. Implication. $l^{\prime}=\bigcup_{P \in Q^{P}}$ is regular.

$$
\begin{aligned}
\text { Implication: } L^{\prime} & \left.=p \in Q^{\prime}, \Delta^{\prime}, S^{\prime}, F^{\prime}\right) \\
\text { pf of: NFA } & \left.:\left(Q \times Q^{\prime}, \Sigma,\left(Q^{\prime}\right) \delta\left(q, a_{i}\right)\right)\right] \\
& \rightarrow \Delta^{\prime}\left(\left(q^{\prime}, q\right),(a)\right)=\text { Vaanmitions } a_{i} \\
& \rightarrow S^{\prime}=\{(s, p)\} \\
& \rightarrow F^{\prime}=\{(p, q) \mid q \in F\}
\end{aligned}
$$

(c) Prove that the following language is also regular. $\quad L=L(M)$
$L^{\prime}:\left\{x \in \sum^{*} \mid x^{n} \in L\right.$ for some $\left.n \geqslant 1\right\}$

$L^{c}=\left\{x \in \Sigma^{*} \mid x^{c} \in L\right\}$ is regular $\rightarrow \mid$ Similar an $6(a)$. c-fold construction

CL: If $x \in L^{\prime}, \exists x \leqslant k$ sit $x^{n} \in L$.
pf: If $x \in L^{\prime}, \exists t$ sot $x^{t} \in L$. If $t \leq k$ done.

$$
\begin{gathered}
\hat{\delta}(s, x)=p_{1} \quad, \hat{\delta}\left(s, x^{i}\right)=p_{i} . \\
\exists \dot{-}\left\langle j \text { sot } \hat{\delta}\left(s, x^{i}\right)=\hat{\delta}\left(s, x^{j}\right) .\right. \\
\hat{\delta}\left(s, x^{t j+i}\right)=\hat{\delta}\left(s, x^{t}\right)
\end{gathered}
$$

$t-j+i<t$ contradicling minimality of t.
7. Prove or disprove:
(a) $(0+1)^{*} \equiv 0^{*}+1^{*}$
(b) $\left(0^{*} 1\right)^{*} \equiv\left(0^{*} 1^{*}\right)^{*}$

False. 010 on LHS but not RHS. Any string of the form $0^{*} 1^{*} O$

Fable 010 will not be in LHS but not RMS.
8. $\alpha=(a+b)^{*} a b(a+b)^{*}$

Give regular expressions for $\sim \alpha$ if
$\rightarrow(a) \quad \sum=\{a, b\}$
(b) $\Sigma=\{a, b, c\}$

$$
L(\alpha)=
$$

$$
\begin{array}{r}
\left.=L\left(a^{*}\right)+4 b^{*}\right) \cdot\left\{2 \in\{a, b\}^{*} \text { | all } b^{\prime}\right. \text { 's appel } \\
\text { before a's }\}
\end{array}
$$

(a)

$$
\begin{array}{rlrl}
L(\sim \alpha) & \sim L(\alpha) & =b^{*} a^{*} . & b^{*} a^{k} . \\
a^{*}+b^{*}+b^{*} a^{*} \equiv b^{*} a^{*} . &
\end{array}
$$

(b)

$$
\begin{aligned}
& L(\sim \alpha)=\text { Anything containing } c-@ c @=(a+b+c)^{*} c(a+b+c)^{*} \\
& U L\left(b^{*} a^{*}\right)
\end{aligned}
$$

$$
\sim \alpha \equiv(a+b+c)^{*} c(a+b+c)^{*}+b^{*} a^{*}
$$

