1. Consider the language

 $\mathbf{L} = \{\mathbf{a}^{\mathbf{n}}\mathbf{b}^{\mathbf{n}}\mathbf{c}^{\mathbf{n}} \mid \mathbf{n} \ge 0\}$

over the alphabet {a,b,c}. Characterize all the strings in the complement ~L.

2. Give an example of two infinite languages A and B over the alphabet $\{a,b\}$ such that $A \cap B = \emptyset$ and AB = BA, or prove that no such languages exist.

$$A = \left\{ x \in \left\{ a, b \right\}^{*} \mid |x| \text{ is even } \right\}$$
$$B = \left\{ x \in \left\{ a, b \right\}^{*} \mid |x| \text{ is odd } \right\}$$
$$AB = BA = B$$

3. Give an example of a language L (over any alphabet of your choice) such that

 \sim (L*) = (~L)*, or prove that ho such language can exist. For any L_j $L = \{ \in \}$ True even for L=Ø Contains E $\varphi^{\star} = \{ \in \}$ Contains E g doer not contain E False (No nuch L can exist)

4. Let B be a language over some alphabet. We call B transitive if $BB \subseteq B$. We call B reflexive if $\varepsilon \in B$. Prove that for any language A, the smallest transitive and reflexive language containing A is A*.

 \mathbf{N}

5. Design DFA for the following languages over the alphabet {a, b}.

- (b) { x | x ends with baab }
- (c) { x | x contains the substring baab }
- (d) { x | x contains the subsequence baab }

baabaab

 $A = \{a^{i} (i > 0\}\}$ 6. For two languages A and B over the same alphabet, define the language (b) $B = \left\{ \left| \frac{1}{2} \right| \right\} > 0 \right\}$ A / B = { $x \mid xy \in A \text{ for some } y \in B$ }. $A(B = \phi, A \neq \phi)$ Give examples of infinite languages A and B over the alphabet {a,b} such that: P/D = (A/B)B = A.(a) A / B = A(b) $A / B \neq A$ $A = \left\{ \begin{array}{c} c \\ c \end{array} \right\} \quad i \ge 0 \left\}$ $B = \{a^{l}b^{j} \mid i,j \geq 0\}$ A/B C A Consists of brefixen A/B = Aof strings from A $(A/B)B = AB \neq A$ $A \subseteq A/B$ $x \in A$, take Y = E

7. Let A be a language over the alphabet {a,b}. Define the language

 $\mathbf{B} = \{ xy \mid xay \in \mathbf{A} \}.$

Assume that A is non-empty and not contained in $\{a\}^*$. Prove/disprove: We must have $B \neq A$.

$$A = \left\{ \begin{array}{c} la^{n} \mid n \geq 0 \end{array} \right\}$$

$$B = A$$