1. Consider the language

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}
$$

over the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Characterize all the strings in the complement $\sim \mathrm{L}$.

- Strings containing $b a, c a$ or $c b$
- stringers $a_{b}^{i} j c^{k}$ with $i \neq j$ or $j \neq k$

2. Give an example of two infinite languages A and B over the alphabet $\{a, b\}$ such that $A \cap B=\varnothing$ and $\mathrm{AB}=\mathrm{BA}$, or prove that no such languages exist.

$$
\begin{aligned}
& A=\left\{x \in\{a, b\}^{*}| | x \mid \text { is even }\right\} \\
& B=\left\{x \in\{a, b\}^{*}| | x \mid \text { is odd }\right\} \\
& A B=B A=B
\end{aligned}
$$

3. Give an example of a language L (over any alphabet of your choice) such that

$$
\sim\left(\underline{L^{*}}\right)=(\sim L)^{*},
$$

of prove that ho such language can exist.

$$
\text { For any } L, L^{0}=\{\epsilon\}
$$

contains \in

$$
\text { True even for } L=\varnothing
$$

contains \in

$$
\rho^{*}=\{\epsilon\}
$$

does not contain \in

$$
\text { False (No ouch } L \text { can exist })
$$

4. Let B be a language over some alphabet. We call B transitive if $\mathrm{BB} \subseteq \mathrm{B}$. We call B reflexive if $\varepsilon \in \mathrm{B}$. Prove that for any language A , the smallest transitive and reflexive language containing A is A^{*}.

- A^{*} is transitive and reflexive

$$
A^{*} A^{*}=A^{*}
$$

ϵ is in A^{*}

- Suppose B ir a transitive and reflexive langrage containing A
We now that $A^{*} \subseteq B$.

$$
\begin{aligned}
& A \subseteq B \\
& A^{0}=B^{0}=\{\epsilon\} \subseteq B \\
& A A \subseteq B B \subseteq B \quad A^{2} \subseteq B \quad A^{n} \subseteq B \\
& A^{3}=A^{2} A \subseteq B B \subseteq B \\
& \text { for all } n \geqslant 0 \text {. }
\end{aligned}
$$

5. Design DFA for the following languages over the alphabet $\{\mathrm{a}, \mathrm{b}\}$.
(a) $\{\mathrm{x} \mid \mathrm{x}$ starts with dab $\}$
a,b
(b) $\{\mathrm{x} \mid \mathrm{x}$ ends with dab $\}$
(c) $\{\mathrm{x} \mid \mathrm{x}$ contains the substring dab $\}$

(a)

baabaab
(c)

(d)

6. For two languages A and B over the same alphabet, define the language
(b) $A=\left\{a^{i}(i \geqslant 0\}\right.$

$$
A / B=\{x \mid x y \in A \text { for some } y \in B\} .
$$

$$
B=\left\{b^{j} \mid j>0\right\}
$$

Give examples of infinite languages A and B over the alphabet $\{\mathrm{a}, \mathrm{b}\}$ such that:
$A / B=\phi, A \neq \phi$
(a) $\mathrm{A} / \mathrm{B}=\mathrm{A}$
(b) $\mathrm{A} / \mathrm{B} \neq \mathrm{A}$
$A / B \subseteq A$
\rightarrow consists of prefixes

$$
A / B=A
$$ of string from A

$A \subseteq A / B$

$$
\begin{aligned}
& P / D=(A / B) B=A \\
& \left.A=\left\{\begin{array}{l}
i \\
a
\end{array}\right) \quad i \geqslant 0\right\} \\
& B=\left\{a^{i} b^{j} \mid i, j \geqslant 0\right\}
\end{aligned}
$$

$x \in A$, take $y=\epsilon$

$$
(A / B) B=A B \neq A
$$

7. Let A be a language over the alphabet $\{\mathrm{a}, \mathrm{b}\}$. Define the language

$$
B=\{x y \mid \text { way } \in A\} .
$$

Assume that A is non-empty and not contained in $\{\mathrm{a}\}^{*}$. Prove/disprove: We must have $\mathrm{B} \neq \mathrm{A}$.

$$
\begin{aligned}
& A=\left\{l a^{n} \mid n \geqslant 0\right\} \\
& B=A
\end{aligned}
$$

