REDUCTIONS AND UNDECIDABILITY

Abhijit Das Sudeshna Kolay

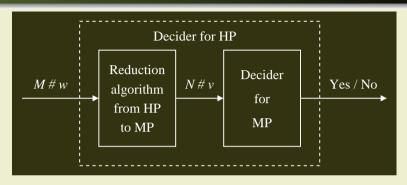
Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

March 29, 2022

Diagonalization

- Any Turing machine M can be encoded as a string over $\{0,1\}$.
- Any input w for M can also be encoded as a binary string.
- Two important problems (languages)
 - MP = $\{M \# w \mid M \text{ accepts input } w\}$.
 - $HP = \{M \# w \mid M \text{ halts on input } w\}.$
- A total TM (or decider) halts on all inputs.
- Both these problems are Turing-recognizable (r.e.).
- By a diagonalization argument, we have proved HP to be non-recursive.
- No decider can exist for HP, no matter how intelligent Turing machines are.
- A similar diagonalization argument can be made for MP.

Reduction



- We want to prove the undecidability of the MP.
- A reduction algorithm converts an input M # w for HP to an input N # v for MP.
- The reduction algorithm is a total Turing machine (halts after each conversion).
- *N* accepts *v* if and only if *M* halts on *w*.
- If MP has a decider D, then the reduction algorithm followed by D decides HP.
- Contradiction. So a decider of MP cannot exist.

The Reduction Algorithm

- **Input:** *M* and *w*.
- Output: N and v.
- Steps:
 - Add a new accept state t' and a new reject state r' to M.
 - Mark the old accept and reject states t and r of M as non-halting.
 - Add transitions $\delta(t,*) = (t',*,R)$ and $\delta(r,*) = (t',*,R)$.
 - Take v = w.
 - Convince yourself that a total TM can transform (M, w) to (N, v).
 - N always rejects by looping (no transition to r' added).
 - If M halts after accepting (in state t) or rejecting (in state r), N runs one more step to jump to t' and accepts.
 - If *M* loops on *w*, *N* also loops.
 - M halts on $w \iff N$ accepts v.

Direction of Reduction

From a problem already known to be undecidableto a problem which we want to prove to be undecidable.

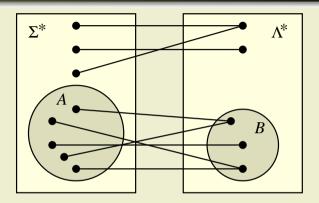
A valid reduction from MP to HP

Input: *M* # *w* for the membership problem

Output: N # v for the halting problem

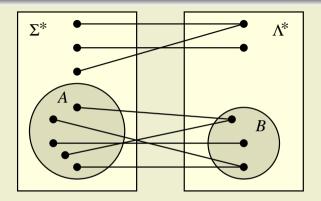
- Keep the accept state t of M the same in N.
- Create a new reject state r' for N, and transitions $\delta(r,*) = (r,*,R)$ (loop in state r).
- Take v = w.
- M accepts $w \iff N$ halts on v (no transition lets N enter r').
- This is not an undecidability proof for MP. A decider for MP may not be forced to use a (hypothetical) decider for HP.
- If MP was proved to be undecidable, this reduction proves the undecidability of HP.

Formal Definition of Reduction



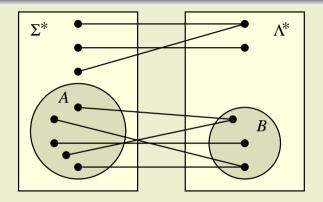
- Let $A \subseteq \Sigma^*$ and $B \subseteq \Lambda^*$ be languages.
- Consider a map $\sigma: \Sigma^* \to \Lambda^*$.
- If $w \in A$, then $\sigma(w) \in B$.
- If $w \in \Sigma^* \setminus A$, then $\sigma(w) \in \Lambda^* \setminus B$.

Formal Definition of Reduction



- σ need not be injective.
- A **total** Turing machine *R* implements σ .
- On every input w, the TM R halts after correctly computing $\sigma(w)$.
- We call *R* a reduction algorithm.

Formal Definition of Reduction



- σ is a reduction from A to B.
- Notation: $A \leq_m B$ (many-to-one reduction).
- The membership problem for A is no more difficult than the membership problem for B.
- Example: $HP \leq_m MP$ and $MP \leq_m HP$.

Notes on Reduction

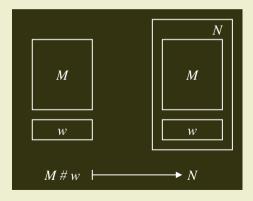
• A language *L* can be rephrased as the membership problem:

Given
$$w \in \Sigma^*$$
, is $w \in L$?

- We talk about reduction of one problem to another.
- For problems P, Q, we can write $P \leq_m Q$.
- A reduction algorithm is supposed to convert an instance of P to an instance of Q.
- A reduction algorithm makes no effort to solve either P or Q.
- Two uses of reduction $P \leq_m Q$:
 - Given a solver for Q, use this solver as a subroutine to solve P.
 This is one way of solving P, not the only or the most efficient way.
 - If no solver for *P* exists, then no solver for *Q* can exist.

Proposition: The problem whether a given Turing machine M accepts the null string ε is undecidable.

Proof Use reduction *from* HP.



- **Input:** *M* and *w* (an instance of HP).
- Output: A Turing machine N that accepts ε if and only if M halts on w.
- N can use M and w in any manner it likes.
 - These may be embedded by the reduction algorithm in the finite control of N.
 - Alternatively, the reduction algorithm may copy these to some tapes/tracks of N.
- Behavior of *N* on input *v*:
 - Erase input v.
 - Write the string w on the tape.
 - Simulate M on w.
 - If the simulation halts, accept v.
- N accepts its input $v \iff M$ halts on w.
- $\mathcal{L}(N) = \begin{cases} \Sigma^* & \text{if } M \text{ halts on } w, \\ \emptyset & \text{if } M \text{ does not halt on } w. \end{cases}$
- In particular, N accepts $\varepsilon \iff M$ halts on w.

The same proof can be used to prove that the following problems are also undecidable.

Proposition: Let w be a fixed string over Σ . The problem whether a given Turing machine M accepts w is undecidable.

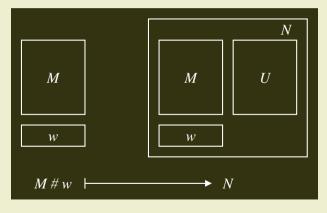
Proposition: The problem whether a given Turing machine M accepts any string at all is undecidable.

Proposition: The problem whether a given Turing machine M accepts all the strings over Σ is undecidable.

Proposition: The problem whether a given Turing machine M accepts only finitely many strings is undecidable.

Proposition: The problem whether the language of a given Turing machine M is regular is undecidable.

Proof Again use reduction from HP.



- **Input:** An instance for HP (*M* and *w*)
- Output: A Turing machine N whose language is regular if and only if M halts on w.
- *N* has the information of *M* and *w* embedded in its finite control.
- N embeds the information of another **fixed** Turing machine U in its finite control.
- Take any language L that is recursively enumerable but not recursive.
- Take any TM *U* whose language is *L*.
- For example, if L = MP, then U is the Universal Turing Machine.

N, upon the input of v, does the following.

- Store *v* on a separate tape/track.
- Write w on the tape, and simulate M on w.
- If the simulation halts, do:
 - Simulate *U* on *v*.
 - If *U* accepts *v*, accept *v*.
- N accepts v if and only if both the following conditions hold.
 - M halts on w.
 - *U* accepts (and halts) on *v*.
- $\mathcal{L}(N) = \begin{cases} L & \text{if } M \text{ halts on } w, \\ \emptyset & \text{if } M \text{ does not halt on } w. \end{cases}$
- Ø is regular, but L is not regular.

- Let $L_2 = \{N \mid \mathcal{L}(N) \text{ is regular}\}.$
- We have a reduction from HP to the complement $\overline{L_2}$.
- This proves that $\overline{L_2}$ is not recursive.
- But recursive languages are closed under complementation, so L_2 is not recursive too.
- Alternative argument:
 - Let $\overline{L_2}$ have a decider \overline{D} .
 - Then L_2 has a decider D that simulates \overline{D} and flips the decision of \overline{D} .
 - The above reduction followed by *D* decides HP.

The same reduction can be used to prove the following undecidability results.

Proposition: The problem whether the language of a given Turing machine M is finite is undecidable.

Proposition: The problem whether the language of a given Turing machine M is context-free is undecidable.

Proposition: The problem whether the language of a given Turing machine M is context-sensitive is undecidable.

Proposition: The problem whether the language of a given Turing machine M is recursive is undecidable.

Note: The problem whether the language of a given Turing machine M is recursively enumerable is trivially decidable.

A Theorem about Reduction

Theorem: Let A, B be languages along with a reduction $A \leq_m B$. If B is r.e., then A is also r.e. Contrapositively, if A is not r.e., then B is also not r.e.

Proof

- Let σ be the reduction map from A to B.
- Let $B = \mathcal{L}(N)$ for a Turing machine N.
- A recognizer *M* for *A* can be designed as follows.
- On an input w, M does the following:
 - Compute $\sigma(w)$ from w.
 - Run *N* on $\sigma(w)$.
 - Accept if and only if *N* accepts $\sigma(w)$.

Another Theorem about Reduction

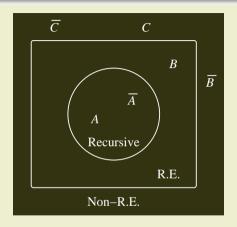
Theorem: Let A, B be languages along with a reduction $A \leq_m B$. If B is recursive, then A is also recursive.

Contrapositively, if A is not recursive, then B is also not recursive.

Proof

- Let *B* be recursive.
- Let σ be the reduction map $A \leq_m B$.
- Since *B* is r.e., *A* is r.e. too (by the previous theorem).
- σ is also a reduction map for $\overline{A} \leq_m \overline{B}$.
- \overline{B} is recursive and so r.e.
- By the previous theorem, \overline{A} is r.e. too.
- Since A and \overline{A} are both r.e., A is recursive.

Three Possibilities



- If A and \overline{A} are r.e., then both are recursive.
- If B is r.e. but not recursive, then \overline{B} must be non-r.e. Examples: \overline{HP} , \overline{MP} are non-r.e.
- Both C and \overline{C} can be non-r.e.

An Example of the Third Type

Proposition: Neither the language

$$FIN = \{M \mid \mathcal{L}(M) \text{ is finite}\}\$$

nor its complement FIN is r.e.

- We have proved that FIN is not recursive by reduction from HP.
- This proof cannot establish that FIN is non-r.e.
- We need reduction from a non-r.e. language.
- $\overline{HP} = \{M \# w \mid M \text{ does not halt on } w\}$ is non-r.e.
- We now show

$$\overline{\text{HP}} \leqslant_m \text{FIN}$$

and

$$\overline{\text{HP}} \leqslant_m \overline{\text{FIN}}$$
.

$\overline{\mathbf{HP}} \leqslant_m \mathbf{FIN}$

Input: A TM M and an input w for M.

Output: A TM N such that $\mathcal{L}(N)$ is finite if and only if M does not halt on w.

Note: *N* has the information of *M* and *w* in its finite control.

Behavior of N on input v

- Erase the input *v*.
- Write w on the tape, and simulate M on w.
- If the simulation halts, accept v.
- If M does not halt on w, $\mathcal{L}(N) = \emptyset$ which is finite.
- If *M* halts on w, $\mathcal{L}(N) = \Sigma^*$ which is infinite.

Note: The reduction algorithm is not supposed to run N. It only creates a description of N.

$\overline{\mathbf{HP}} \leqslant_m \overline{\mathbf{FIN}}$

Input: A TM *M* and an input *w* for *M*.

Output: A TM N such that $\mathcal{L}(N)$ is infinite if and only if M does not halt on w.

Note: N has the information of M and w in its finite control.

Behavior of N on input v

- Store *v* on a separate tape/track.
- Write w on the tape, and simulate M on w for at most |v| steps.
- Accept if the simulation does **not** halt in these many steps, else reject.
- If M does not halt on w, it does not halt in |v| steps. So $\mathcal{L}(N) = \Sigma^*$ is infinite.
- *M* halts on *w* after *s* steps. Let n = |v|.
 - If $n \ge s$, the simulation of M on w halts within n steps, so N rejects v.
 - If n < s, the simulation of M on w does not halt in n steps, so N accepts v.

So $\mathcal{L}(N) = \{v \in \Sigma^* \mid |v| < s\}$ which is finite (although dependent on M and w).

Tutorial Exercises

- 1. Prove that the following languages are not recursive.
 - (a) $\{M \# w \mid M \text{ writes the blank symbol at some point of time on input } w\}$.
 - (b) $\{M \# w \# \$ \mid M \text{ writes the symbol } \$ \in \Gamma \text{ at some point of time on input } w\}$.
- **2.** (a) Prove that the language $\{M \mid M \text{ halts on exactly 2022 inputs}\}$ is not r.e.
 - (b) Prove that the language $\{M \mid M \text{ halts on at least } 2022 \text{ inputs}\}$ is r.e. but not recursive.
- 3. Let nsteps(M, w) denote the number of steps of M on w. If M loops on w, take $nsteps(M, w) = \infty$. If N also loops on v, take nsteps(M, w) = nsteps(N, v).

 Recursive / r.e. but not recursive / non-r.e.? Prove.
 - (a) $\{M \# N \mid nsteps(M, \varepsilon) < nsteps(N, \varepsilon)\}.$
 - (b) $\{M \# N \mid nsteps(M, \varepsilon) \leqslant nsteps(N, \varepsilon)\}.$
 - (c) $\{M \# N \mid nsteps(M, w) < nsteps(N, v) \text{ for some } w, v\}.$
 - (d) $\{M \# N \mid nsteps(M, w) < nsteps(N, v) \text{ for all } w, v\}.$

Tutorial Exercises

- 4. Prove that the following languages are not recursive.
 - (a) $\{M \# N \mid \mathcal{L}(M) = \mathcal{L}(N)\}.$
 - (b) $\{M \# N \mid \mathcal{L}(M) \subseteq \mathcal{L}(N)\}.$
 - (c) $\{M \# N \mid \mathcal{L}(M) \cap \mathcal{L}(N) = \emptyset\}.$
 - (d) $\{M \# N \mid \mathcal{L}(M) \cap \mathcal{L}(N) \text{ is finite}\}.$
 - (e) $\{M \# N \mid \mathcal{L}(M) \cap \mathcal{L}(N) \text{ is regular}\}.$
 - (f) $\{M \# N \mid \mathcal{L}(M) \cap \mathcal{L}(N) \text{ is context-free}\}.$
 - (g) $\{M \# N \mid \mathcal{L}(M) \cap \mathcal{L}(N) \text{ is recursive}\}.$
 - (h) $\{M \# N \# P \mid \mathcal{L}(M) \cap \mathcal{L}(N) = \mathcal{L}(P)\}.$
- **5.** Prove that neither the language REG = $\{M \mid \mathcal{L}(M) \text{ is regular}\}\$ nor its complement is r.e.
- **6.** R.E. or not? Prove.
 - (a) $\{M \mid M \text{ accepts at most } 2022 \text{ inputs}\}.$
 - (b) $\{M \mid M \text{ accepts at least 2022 inputs}\}.$
 - (c) $\{M \mid M \text{ accepts all strings of length } \leq 2022\}$.
 - (d) $\{M \mid M \text{ does not accept some string of length } \leq 2022\}$.