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One machine for all problems

e So far, we have built several machines, each solving a single problem.

e We have also embedded the finite control of a machine in the finite control of a
simulating machine.

e Modern (stored-program) computers appear to be more flexible.
e An executable file solves one problem.
e The computer can run any executable file.

o The executable file must be presented in a format understood by the CPU.

e Can we present the working of a Turing machine M as an executable file, and supply
that executable file to the tape (not the finite control) of a Turing machine?

e The Universal Turing machine (UTM) U can do that.

e M must be encoded as a string that U can decode easily.

e U should also be supplied the input x for M.

e U simulates M on x by looking at the description (encoding) of M and x.

e U does not need to store the finite control of M in its own finite control.



Binary encoding of Turing machines and input strings

e LetM=(Q,5,T',,.,0,s,t,r) be a TM.
o Letn=|Q|,m=|T], and k = |X|.
o Take 0 =1{0,1,2,....n—1},2=1{0,1,2,....k—1},and T = {0,1,2,...,m—1}.

e Then, - and _ are two different integers e and b in the range [k,m — 1].

e s,1,r are integers in the range [0,n — 1].
e All the components of M except § can be specified by the string
0"10%10"10°10°10°10710" 1.
e This is followed by the transitions of M listed one after another.
e 8(p,a) = (¢,b,L) is encoded as 0° 10910710 10.
e §(p,a) = (gq,b,R) is encoded as 0°10%10710°11.

o Letx=ajay...aq; € X*.
e Each g; is an integer in the range [0,k — 1].
e We encode x as 0410921 ...10%1.



All binary strings are encodings

o We are able to encode each TM M and each input x for M as binary strings.
e Any string w over {0, 1} can be treated it as a binary encoding of a TM M.

o If w does not correspond to a valid encoding of a TM, we assume that M is a Turing
machine that, on any input, immediately rejects and halts.

e This machine is represented by all invalid strings.

e Valid encodings are also not unique (rename states/symbols, rearrange transitions).
e Any string w € {0, 1}* can be treated as a binary encoding of some x € £*.

e If wis invalid, we take x = €.

e Multiple encodings (valid or invalid) may represent the same string x.

e Multiple encodings for a machine/string do not pose a problem.

e We can write the encoding of M and x as (M) and (x).

e By an abuse of notation, (M) and (x) are usually written as M and x.



The Universal Turing Machine U

U is designed as a 3-tape (or 3-track) TM.

M and x are both binary strings, so we supply both as M # x on the first tape of U.
Without loss of generality, we may assume that M is a DTM.

U uses its second tape to simulate the tape of M.

U uses its third tape to store the state of M and the head position of M.

U checks whether M given on the first tape is a valid encoding of a Turing machine.
If not, it rejects and halts.

U then checks whether x is a valid encoding of an input for M.
If not, it erases x on its first tape, so x becomes €.

U copies x to its second tape, and s and O to its third tape.

U is now ready to start the simulation of M on x.



The simulation of M on x by U

U reads the state p of M from the third tape.

U also knows the head position / from the third tape.

U aligns its head to point to the /i-th cell of the tape of M on its second tape.
M reads the symbol a scanned by the head of M at position A.

Since M is a valid encoding of a DTM, U locates the unique transition entry
6(p,a) = (q,b,d) from its first tape.

U replaces a by b on its second tape, relocating the contents to the right if a # b.
U replaces p by ¢ on its third tape.

Finally, depending upon the direction d (L or R), U changes the head position of M on
its third tape.

This completes the simulation by U of one step of M.



The language of U

If M ever enters its accept state ¢, U accepts (and halts).

If M ever enters its reject state r, U rejects (and halts).

If M loops on x, U continues simulating the steps of M for ever.

U is designed to detect whether M accepts x, that is, whether x is a member of .2 (M).

U solves the membership problem for every TM M and for every input x for M.
MP =_.2(U) = {M#x |x € ,,sf(M)} - {(M,x) |x € Z(M)}.

U may be slightly modified to U’ as follows.
If M ever enters ¢ or r, U’ accepts (and halts).

U’ solves the halting problem for every TM M and for every input x for M.
HP =2 (U') = {M#x | M halts on x} = {(M,x) | M halts onx}.



An immediate question

e The UTM solves the membership (or halting) problem by blindly simulating M on x.
e In particular, if M does not halt x, the simulation by U also does not halt.

e U is arecognizer, not a decider.

o [s there a more intelligent way to solve the problem(s)?

e In special cases, the problem can be solved without a simulation.

e The encoding of M is invalid, so no simulation is necessary.
e M has no transitions of the form 6(p,a) = (¢,b,d).

e M never writes a symbol A (not in XU {F, _.}) on its tape, but the only transitions that
allow M to accept are of the form 6(p,A) = (¢,b,d).

o In general, there is no better way of solving the membership (or halting) problem than
doing blind simulation.

o Theorem: MP and HP are (recursively enumerable but) not recursive.



HP is not recursive: Preparation for the proof

o A similar proof works for MP as well.

{0,1}* is countably infinite.

o Let a1, , 03, ... be an exhaustive enumeration of all the binary strings.

e Example: ¢,0,1,00,01,10,11,000,001,010,011,100, 101,110, 111,0000, ...
e Every a € {0,1}* (even if invalid) is the encoding of a Turing machine M.
e Every @ € {0, 1}* (even if invalid) is the encoding of an input x4 for any TM.
e (,0p,03,...1s an exhaustive list of all Turing machines.

e There are repetitions in the list, but there are no other Turing machines.

® (,0p,03,...1s an exhaustive list of all inputs.

e There are repetitions in the list, but there are no other inputs.



A diagonalization proof

e Suppose that HP is recursive. Let D be a decider for HP.

e Given any two binary strings o;, o;, the hypothetical TM D decides (in finite time)
whether M, halts on Xog-

e Consider a two-dimensional table of all machines on all inputs.

Xay Xop Xy X,

My, |H H H H
Mg, | H L L H
My, | L L H L
My, | L H H H
E|L H L - L

e Given any o; and o, D can compute the (i,/)-th entry of the table in finite time.



Converting D to a Turing machine E

e F takes a single binary string o as input.

e F generates the input o # o for D.

e FE simulates D on this input.

e D is a decider, so a finite-time simulation gives the answer H (accept) or L (reject).

o If D outputs H, then E forcibly enters an infinite loop (like always move right in a
looping state).

e If D outputs L, then E immediately accepts and halts.

e FE is a Turing machine, so can be found (at least once) in the exhaustive list of TM
encodings. Let E have an encoding o,.

e The rows marked M, and E must be identical.
e But the rows must differ in the n-th column, a contradiction.

e So E cannot exist, and so D cannot exist too.



Tutorial exercises

1. Modify the diagonalization proof for HP to prove that MP is not recursive.

2. Use a diagonalization argument to prove that the following language is not recursive.

{M # x | M reenters its start state on input x}

3. For two languages A and B over the same alphabet X, define the language
A/B= {aEZ* | ap € A for some 8 GB}.

Prove that if A and B are recursively enumerable, then so also is A/B.
Prove/disprove: If A and B are recursive, then so also is A/B.

4. A shuffle of two strings o and B is a string ¥ of length |o¢| + |3, in which ¢ and 8 are non-overlapping
subsequences (not necessarily substrings). For example, all shuffles of ab and cd are abcd, cabd, cdab,
acbd, acdb, and cadb. For two languages A and B, we define shuffle(A, B) as the language consisting of
all shuffles of all @ € A and all B € B. Prove that recursively enumerable languages are closed under the
shuffle operation, that is, if A and B are r.e. languages, then so also is the language

shuffle(A,B) = {y| v is a shuffle of some o € A and 8 € B}.

Is shuffie(A, B) recursive if A and B are recursive? Justify.



