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One machine for all problems

• So far, we have built several machines, each solving a single problem.

• We have also embedded the finite control of a machine in the finite control of a

simulating machine.

• Modern (stored-program) computers appear to be more flexible.

• An executable file solves one problem.

• The computer can run any executable file.

• The executable file must be presented in a format understood by the CPU.

• Can we present the working of a Turing machine M as an executable file, and supply

that executable file to the tape (not the finite control) of a Turing machine?

• The Universal Turing machine (UTM) U can do that.

• M must be encoded as a string that U can decode easily.

• U should also be supplied the input x for M.

• U simulates M on x by looking at the description (encoding) of M and x.

• U does not need to store the finite control of M in its own finite control.



Binary encoding of Turing machines and input strings

• Let M = (Q,Σ,Γ,⊢, ,δ ,s, t,r) be a TM.

• Let n = |Q|, m = |Γ|, and k = |Σ|.

• Take Q = {0,1,2, . . . ,n−1}, Σ = {0,1,2, . . . ,k−1}, and Γ = {0,1,2, . . . ,m−1}.

• Then, ⊢ and are two different integers e and b in the range [k,m−1].

• s, t,r are integers in the range [0,n−1].

• All the components of M except δ can be specified by the string

0n10k10m10e10b10s10t10r1.

• This is followed by the transitions of M listed one after another.

• δ (p,a) = (q,b,L) is encoded as 0p10a10q10b10.

• δ (p,a) = (q,b,R) is encoded as 0p10a10q10b11.

• Let x = a1a2 . . .al ∈ Σ∗.

• Each ai is an integer in the range [0,k−1].

• We encode x as 0a110a21 . . .10al1.



All binary strings are encodings

• We are able to encode each TM M and each input x for M as binary strings.

• Any string w over {0,1} can be treated it as a binary encoding of a TM M.

• If w does not correspond to a valid encoding of a TM, we assume that M is a Turing

machine that, on any input, immediately rejects and halts.

• This machine is represented by all invalid strings.

• Valid encodings are also not unique (rename states/symbols, rearrange transitions).

• Any string w ∈ {0,1}∗ can be treated as a binary encoding of some x ∈ Σ∗.

• If w is invalid, we take x = ε .

• Multiple encodings (valid or invalid) may represent the same string x.

• Multiple encodings for a machine/string do not pose a problem.

• We can write the encoding of M and x as 〈M〉 and 〈x〉.

• By an abuse of notation, 〈M〉 and 〈x〉 are usually written as M and x.



The Universal Turing Machine U

• U is designed as a 3-tape (or 3-track) TM.

• M and x are both binary strings, so we supply both as M # x on the first tape of U.

• Without loss of generality, we may assume that M is a DTM.

• U uses its second tape to simulate the tape of M.

• U uses its third tape to store the state of M and the head position of M.

• U checks whether M given on the first tape is a valid encoding of a Turing machine.

If not, it rejects and halts.

• U then checks whether x is a valid encoding of an input for M.

If not, it erases x on its first tape, so x becomes ε .

• U copies x to its second tape, and s and 0 to its third tape.

• U is now ready to start the simulation of M on x.



The simulation of M on x by U

• U reads the state p of M from the third tape.

• U also knows the head position h from the third tape.

• U aligns its head to point to the h-th cell of the tape of M on its second tape.

• M reads the symbol a scanned by the head of M at position h.

• Since M is a valid encoding of a DTM, U locates the unique transition entry

δ (p,a) = (q,b,d) from its first tape.

• U replaces a by b on its second tape, relocating the contents to the right if a 6= b.

• U replaces p by q on its third tape.

• Finally, depending upon the direction d (L or R), U changes the head position of M on

its third tape.

• This completes the simulation by U of one step of M.



The language of U

• If M ever enters its accept state t, U accepts (and halts).

• If M ever enters its reject state r, U rejects (and halts).

• If M loops on x, U continues simulating the steps of M for ever.

• U is designed to detect whether M accepts x, that is, whether x is a member of L (M).

• U solves the membership problem for every TM M and for every input x for M.

• MP = L (U) =
{

M # x | x ∈ L (M)
}

=
{

(M,x) | x ∈ L (M)
}

.

• U may be slightly modified to U′ as follows.

• If M ever enters t or r, U′ accepts (and halts).

• U′ solves the halting problem for every TM M and for every input x for M.

• HP = L (U′) =
{

M # x | M halts on x
}

=
{

(M,x) | M halts on x
}

.



An immediate question

• The UTM solves the membership (or halting) problem by blindly simulating M on x.

• In particular, if M does not halt x, the simulation by U also does not halt.

• U is a recognizer, not a decider.

• Is there a more intelligent way to solve the problem(s)?

• In special cases, the problem can be solved without a simulation.

• The encoding of M is invalid, so no simulation is necessary.

• M has no transitions of the form δ (p,a) = (t,b,d).

• M never writes a symbol A (not in Σ∪{⊢, }) on its tape, but the only transitions that

allow M to accept are of the form δ (p,A) = (t,b,d).

• . . .

• In general, there is no better way of solving the membership (or halting) problem than

doing blind simulation.

• Theorem: MP and HP are (recursively enumerable but) not recursive.



HP is not recursive: Preparation for the proof

• A similar proof works for MP as well.

• {0,1}∗ is countably infinite.

• Let α1,α2,α3, . . . be an exhaustive enumeration of all the binary strings.

• Example: ε ,0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000, . . .

• Every α ∈ {0,1}∗ (even if invalid) is the encoding of a Turing machine Mα .

• Every α ∈ {0,1}∗ (even if invalid) is the encoding of an input xα for any TM.

• α1,α2,α3, . . . is an exhaustive list of all Turing machines.

• There are repetitions in the list, but there are no other Turing machines.

• α1,α2,α3, . . . is an exhaustive list of all inputs.

• There are repetitions in the list, but there are no other inputs.



A diagonalization proof

• Suppose that HP is recursive. Let D be a decider for HP.

• Given any two binary strings αi,αj, the hypothetical TM D decides (in finite time)

whether Mαi
halts on xαj

.

• Consider a two-dimensional table of all machines on all inputs.

xα1
xα2

xα3
· · · xαn

. . .

Mα1
H H H · · · H · · ·

Mα2
H L L · · · H · · ·

Mα3
L L H · · · L · · ·

...
...

...
... · · ·

...

Mαn
L H H · · · H · · ·

...
...

...
... · · ·

...

E L H L · · · L · · ·

• Given any αi and αj, D can compute the (i, j)-th entry of the table in finite time.



Converting D to a Turing machine E

• E takes a single binary string α as input.

• E generates the input α # α for D.

• E simulates D on this input.

• D is a decider, so a finite-time simulation gives the answer H (accept) or L (reject).

• If D outputs H, then E forcibly enters an infinite loop (like always move right in a

looping state).

• If D outputs L, then E immediately accepts and halts.

• E is a Turing machine, so can be found (at least once) in the exhaustive list of TM

encodings. Let E have an encoding αn.

• The rows marked Mαn
and E must be identical.

• But the rows must differ in the n-th column, a contradiction.

• So E cannot exist, and so D cannot exist too.



Tutorial exercises

1. Modify the diagonalization proof for HP to prove that MP is not recursive.

2. Use a diagonalization argument to prove that the following language is not recursive.
{

M # x | M reenters its start state on input x
}

3. For two languages A and B over the same alphabet Σ, define the language

A/B =
{

α ∈ Σ∗ | αβ ∈ A for some β ∈ B
}

.

Prove that if A and B are recursively enumerable, then so also is A/B.

Prove/disprove: If A and B are recursive, then so also is A/B.

4. A shuffle of two strings α and β is a string γ of length |α |+ |β |, in which α and β are non-overlapping

subsequences (not necessarily substrings). For example, all shuffles of ab and cd are abcd, cabd, cdab,

acbd, acdb, and cadb. For two languages A and B, we define shuffle(A,B) as the language consisting of

all shuffles of all α ∈ A and all β ∈ B. Prove that recursively enumerable languages are closed under the

shuffle operation, that is, if A and B are r.e. languages, then so also is the language

shuffle(A,B) =
{

γ | γ is a shuffle of some α ∈ A and β ∈ B
}

.

Is shuffle(A,B) recursive if A and B are recursive? Justify.


