THE UNIVERSAL TURING MACHINE AND DIAGONALIZATION PROOFS OF UNDECIDABILITY

Abhijit Das
Sudeshna Kolay

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

March 24, 2022

- So far, we have built several machines, each solving a single problem.
- We have also embedded the finite control of a machine in the finite control of a simulating machine.
- Modern (stored-program) computers appear to be more flexible.
- An executable file solves one problem.
- The computer can run any executable file.
- The executable file must be presented in a format understood by the CPU.
- Can we present the working of a Turing machine M as an executable file, and supply that executable file to the tape (not the finite control) of a Turing machine?
- The Universal Turing machine (UTM) U can do that.
- M must be encoded as a string that U can decode easily.
- U should also be supplied the input x for M.
- U simulates M on x by looking at the description (encoding) of M and x.
- U does not need to store the finite control of M in its own finite control.

Binary encoding of Turing machines and input strings

- Let $M=(Q, \Sigma, \Gamma, \vdash,\llcorner, \delta, s, t, r)$ be a TM.
- Let $n=|Q|, m=|\Gamma|$, and $k=|\Sigma|$.
- Take $Q=\{0,1,2, \ldots, n-1\}, \Sigma=\{0,1,2, \ldots, k-1\}$, and $\Gamma=\{0,1,2, \ldots, m-1\}$.
- Then, \vdash and \sqcup are two different integers e and b in the range $[k, m-1]$.
- s, t, r are integers in the range $[0, n-1]$.
- All the components of M except δ can be specified by the string $0^{n} 10^{k} 10^{m} 10^{e} 10^{b} 10^{s} 10^{t} 10^{r} 1$.
- This is followed by the transitions of M listed one after another.
- $\delta(p, a)=(q, b, L)$ is encoded as $0^{p} 10^{a} 10^{q} 10^{b} 10$.
- $\delta(p, a)=(q, b, R)$ is encoded as $0^{p} 10^{a} 10^{q} 10^{b} 11$.
- Let $x=a_{1} a_{2} \ldots a_{l} \in \Sigma^{*}$.
- Each a_{i} is an integer in the range $[0, k-1]$.
- We encode x as $0^{a_{1}} 10^{a_{2}} 1 \ldots 10^{a_{l}} 1$.

All binary strings are encodings

- We are able to encode each TM M and each input x for M as binary strings.
- Any string w over $\{0,1\}$ can be treated it as a binary encoding of a TM M.
- If w does not correspond to a valid encoding of a TM, we assume that M is a Turing machine that, on any input, immediately rejects and halts.
- This machine is represented by all invalid strings.
- Valid encodings are also not unique (rename states/symbols, rearrange transitions).
- Any string $w \in\{0,1\}^{*}$ can be treated as a binary encoding of some $x \in \Sigma^{*}$.
- If w is invalid, we take $x=\varepsilon$.
- Multiple encodings (valid or invalid) may represent the same string x.
- Multiple encodings for a machine/string do not pose a problem.
- We can write the encoding of M and x as $\langle M\rangle$ and $\langle x\rangle$.
- By an abuse of notation, $\langle M\rangle$ and $\langle x\rangle$ are usually written as M and x.
- U is designed as a 3-tape (or 3-track) TM.
- M and x are both binary strings, so we supply both as $M \# x$ on the first tape of U.
- Without loss of generality, we may assume that M is a DTM.
- U uses its second tape to simulate the tape of M.
- U uses its third tape to store the state of M and the head position of M.
- U checks whether M given on the first tape is a valid encoding of a Turing machine. If not, it rejects and halts.
- U then checks whether x is a valid encoding of an input for M. If not, it erases x on its first tape, so x becomes ε.
- U copies x to its second tape, and s and 0 to its third tape.
- U is now ready to start the simulation of M on x.
- U reads the state p of M from the third tape.
- U also knows the head position h from the third tape.
- U aligns its head to point to the h-th cell of the tape of M on its second tape.
- M reads the symbol a scanned by the head of M at position h.
- Since M is a valid encoding of a DTM, U locates the unique transition entry $\delta(p, a)=(q, b, d)$ from its first tape.
- U replaces a by b on its second tape, relocating the contents to the right if $a \neq b$.
- U replaces p by q on its third tape.
- Finally, depending upon the direction $d(L$ or $R), U$ changes the head position of M on its third tape.
- This completes the simulation by U of one step of M.

The language of \boldsymbol{U}

- If M ever enters its accept state t, U accepts (and halts).
- If M ever enters its reject state r, U rejects (and halts).
- If M loops on x, U continues simulating the steps of M for ever.
- U is designed to detect whether M accepts x, that is, whether x is a member of $\mathscr{L}(M)$.
- U solves the membership problem for every TM M and for every input x for M.
- MP $=\mathscr{L}(U)=\{M \# x \mid x \in \mathscr{L}(M)\}=\{(M, x) \mid x \in \mathscr{L}(M)\}$.
- U may be slightly modified to U^{\prime} as follows.
- If M ever enters t or r, U^{\prime} accepts (and halts).
- U^{\prime} solves the halting problem for every TM M and for every input x for M.
- $\mathrm{HP}=\mathscr{L}\left(U^{\prime}\right)=\{M \# x \mid M$ halts on $x\}=\{(M, x) \mid M$ halts on $x\}$.
- The UTM solves the membership (or halting) problem by blindly simulating M on x.
- In particular, if M does not halt x, the simulation by U also does not halt.
- U is a recognizer, not a decider.
- Is there a more intelligent way to solve the problem(s)?
- In special cases, the problem can be solved without a simulation.
- The encoding of M is invalid, so no simulation is necessary.
- M has no transitions of the form $\delta(p, a)=(t, b, d)$.
- M never writes a symbol A (not in $\Sigma \cup\{\vdash\lrcorner$,$\}) on its tape, but the only transitions that$ allow M to accept are of the form $\delta(p, A)=(t, b, d)$.
- ...
- In general, there is no better way of solving the membership (or halting) problem than doing blind simulation.
- Theorem: MP and HP are (recursively enumerable but) not recursive.

HP is not recursive: Preparation for the proof

- A similar proof works for MP as well.
- $\{0,1\}^{*}$ is countably infinite.
- Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ be an exhaustive enumeration of all the binary strings.
- Example: $\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000, \ldots$
- Every $\alpha \in\{0,1\}^{*}$ (even if invalid) is the encoding of a Turing machine M_{α}.
- Every $\alpha \in\{0,1\}^{*}$ (even if invalid) is the encoding of an input x_{α} for any TM.
- $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ is an exhaustive list of all Turing machines.
- There are repetitions in the list, but there are no other Turing machines.
- $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ is an exhaustive list of all inputs.
- There are repetitions in the list, but there are no other inputs.

A diagonalization proof

- Suppose that HP is recursive. Let D be a decider for HP.
- Given any two binary strings α_{i}, α_{j}, the hypothetical TM D decides (in finite time) whether $M_{\alpha_{i}}$ halts on $x_{\alpha_{j}}$.
- Consider a two-dimensional table of all machines on all inputs.

	$x_{\alpha_{1}}$	$x_{\alpha_{2}}$	$x_{\alpha_{3}}$	\cdots	$x_{\alpha_{n}}$	\cdots
$M_{\alpha_{1}}$	H	H	H	\cdots	H	\cdots
$M_{\alpha_{2}}$	H	L	L	\cdots	H	\cdots
$M_{\alpha_{3}}$	L	L	H	\cdots	L	\cdots
\vdots	\vdots	\vdots	\vdots	\cdots	\vdots	
$M_{\alpha_{n}}$	L	H	H	\cdots	H	\cdots
\vdots	\vdots	\vdots	\vdots	\cdots	\vdots	
E	L	H	L	\cdots	L	\cdots

- Given any α_{i} and α_{j}, D can compute the (i, j)-th entry of the table in finite time.
- E takes a single binary string α as input.
- E generates the input $\alpha \# \alpha$ for D.
- E simulates D on this input.
- D is a decider, so a finite-time simulation gives the answer H (accept) or L (reject).
- If D outputs H, then E forcibly enters an infinite loop (like always move right in a looping state).
- If D outputs L, then E immediately accepts and halts.
- E is a Turing machine, so can be found (at least once) in the exhaustive list of TM encodings. Let E have an encoding α_{n}.
- The rows marked $M_{\alpha_{n}}$ and E must be identical.
- But the rows must differ in the n-th column, a contradiction.
- So E cannot exist, and so D cannot exist too.

1. Modify the diagonalization proof for HP to prove that MP is not recursive.
2. Use a diagonalization argument to prove that the following language is not recursive.

$$
\{M \# x \mid M \text { reenters its start state on input } x\}
$$

3. For two languages A and B over the same alphabet Σ, define the language

$$
A / B=\left\{\alpha \in \Sigma^{*} \mid \alpha \beta \in A \text { for some } \beta \in B\right\}
$$

Prove that if A and B are recursively enumerable, then so also is A / B.
Prove/disprove: If A and B are recursive, then so also is A / B.
4. A shuffle of two strings α and β is a string γ of length $|\alpha|+|\beta|$, in which α and β are non-overlapping subsequences (not necessarily substrings). For example, all shuffles of $a b$ and $c d$ are $a b c d, c a b d, c d a b$, $a c b d, a c d b$, and $c a d b$. For two languages A and B, we define shuffle (A, B) as the language consisting of all shuffles of all $\alpha \in A$ and all $\beta \in B$. Prove that recursively enumerable languages are closed under the shuffle operation, that is, if A and B are r.e. languages, then so also is the language

$$
\operatorname{shuffle}(A, B)=\{\gamma \mid \gamma \text { is a shuffle of some } \alpha \in A \text { and } \beta \in B\} .
$$

Is shuffle (A, B) recursive if A and B are recursive? Justify.

