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The Chomsky Hierarchy

Grammar Languages Automata Rules

Type 3 / Right-linear Regular DFA / NFA A → aB, A → ε

Type 2 / CFG Context-free PDA A → α

Type 1 / CSG Context-sensitive LBA αAγ → αβγ , |β |> 0

Type 0 / Unrestricted Recursively enumerable Turing machines αAγ → β



Unrestricted Grammars

• G = (Σ,N,S,P), where

• Σ is the set of terminal symbols,

• N is the set of non-terminal symbols (N ∩Σ = /0),

• S ∈ N is the start symbol, and

• P is a finite set of rules or productions.

• Each production is of the form

α → β

for any α ,β ∈ (N ∪Σ)∗ with α containing at least one non-terminal symbol.

• Such a production can also be written as

γ Aδ → β

for any β ,γ ,δ ∈ (N ∪Σ)∗, and for any A ∈ N.

• L (G) = {w ∈ Σ∗ | S →∗
G w}.



Example 1

• L1 = {a2n

| n > 0}.

• Productions:

S → TaU

U → ε | AU

aA → Aaa

T A → T

T → ε

• Derivation of a8 using these productions:

S → TaU → TaAU → TaAAU → TaAAAU → TaAAA

→ TAaaAA → TaaAA

→ TaAaaA → TAaaaaA → TaaaaA

→ TaaaAaa → TaaAaaaa → TaAaaaaaa → TAaaaaaaaa → Taaaaaaaa

→ aaaaaaaa



Example 2

• L2 = {anbncn | n > 0}.

• Productions:

S → UT

U → ε | aUbC

Cb → bC

CT → Tc

T → ε

• Derivation of a3b3c3 using these productions:

S → UT → aUbCT → aaUbCbCT → aaaUbCbCbCT → aaabCbCbCT

→ aaabCbbCCT → aaabbCbCCT → aaabbbCCCT

→ aaabbbCCTc → aaabbbCTcc → aaabbbTccc

→ aaabbbccc



Unrestricted Grammars and Turing Machines

Theorem

Given an unrestricted grammar G, there exists a Turing machine M such that

L (M) = L (G).

Theorem

Given a Turing machine M, there exists an unrestricted grammar G such that

L (G) = L (M).



Unrestricted Grammar to Turing Machine

• To construct a TM M from an unrestricted grammar G.

• M is designed as a four-tape nondeterministic machine.

• The input is provided to the first tape. It is never changed.

• The second tape contains sentential forms in the derivation process. It is initialized by

the symbol S.

• M keeps on repeating:

• Nondeterministically choose a position on the second tape.

• Nondeterministically choose a production α → β of G.

• Copy α to Tape 3 and β to Tape 4.

• Compare Tape 2 with Tape 3 starting from the position chosen for Tape 2.

• If the comparison succeeds, replace α by β on Tape 2 after shifting the contents

following α on Tape 2 if |α| 6= |β |.

• Compare Tape 1 with Tape 2. If they have identical contents, accept.

• M is not necessarily a total TM.



Turing Machine to Unrestricted Grammar

• To construct an unrestricted grammar G from a TM M.

• Assume that M is a one-tape deterministic machine.

• First, make some changes to M.

• We want M to halt with an empty tape after accepting.

• Add a new accept state t ′.

• When M reaches the old accept state, it erases the entire tape, and after seeing the left

endmarker ⊢, jumps to t ′.

• M must know how much of the tape is used.

• So M uses a right endmarker ⊣.

• This marker is shifted right if M wants to extend the used portion of the tape.

• During erasing at state t, this marker is moved left until it touches the left endmarker.



Turing Machine to Unrestricted Grammar

• G simulates the working of M from end to beginning.

• The configurations of M are the sentential forms.

• On input w, the initial configuration of M is s ⊢ w ⊣.

• The accepting configuration is ⊢ t ′ ⊣.

• The non-terminal symbols of G consist of:

• Γ\Σ,

• Q (assume that Q∩Γ = /0).

• A new start symbol S not covered by the above two.

• Add the rule S → ⊢ t ′ ⊣.

• Add the rules s ⊢ → ε and ⊣ → ε .



Turing Machine to Unrestricted Grammar

• Simulation of a right movement of M: δ (p,a) = (q,b,R).

• · · · a c · · · → · · · b c · · ·

• Add the rule bq → pa.

• Simulation of a left movement of M: δ (p,a) = (q,b,L) (here a 6=⊢).

• · · · c a · · · → · · · c b · · ·

• For all c ∈ Γ, add the rule qcb → cpa.

• M accepts as s ⊢ w ⊣ →∗ ⊢ t ′ ⊣.

• G works as S → ⊢ t ′ ⊣ →∗ s ⊢ w ⊣ → w ⊣ → w.



Tutorial Exercises

1. Design unrestricted grammars for the following languages.

(a) {an2

| n > 0}.

(b) {anbncndn | n > 0}.

(c) {w ∈ {a,b,c}∗ | #a(w) = #b(w) = #c(w)}.

(d) {ww | w ∈ {a,b}∗}.

(e) {aibjckdl | i = k and j = l}.

2. Consider the unrestricted grammar over the singleton alphabet Σ = {a}, having the start symbol S, and

with the following productions.

S → AS | aT Aa → aaaA AT → T T → ε

What is the language generated by this unrestricted grammar? Justify.

3. Prove that any grammar can be converted to an equivalent grammar with rules of the form αAγ → αβγ

for A ∈ N and α ,β ,γ ∈ (Σ∪N)∗.

4. Write context-sensitive grammars for the following languages.

(a) {a2n

| n > 0}.

(b) {anbncn | n > 1}.


