UNRESTRICTED GRAMMARS

AND TURING MACHINES

Abhijit Das
Sudeshna Kolay

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

March 15, 2022

Grammar	Languages	Automata	Rules
Type 3 / Right-linear	Regular	DFA / NFA	$A \rightarrow a B, A \rightarrow \varepsilon$
Type 2 / CFG	Context-free	PDA	$A \rightarrow \alpha$
Type 1 / CSG	Context-sensitive	LBA	$\alpha A \gamma \rightarrow \alpha \beta \gamma,\|\beta\|>0$
Type 0 / Unrestricted	Recursively enumerable	Turing machines	$\alpha A \gamma \rightarrow \beta$

- $G=(\Sigma, N, S, P)$, where
- Σ is the set of terminal symbols,
- N is the set of non-terminal symbols $(N \cap \Sigma=\emptyset)$,
- $S \in N$ is the start symbol, and
- P is a finite set of rules or productions.
- Each production is of the form

$$
\alpha \rightarrow \beta
$$

for any $\alpha, \beta \in(N \cup \Sigma)^{*}$ with α containing at least one non-terminal symbol.

- Such a production can also be written as

$$
\gamma A \delta \rightarrow \beta
$$

for any $\beta, \gamma, \delta \in(N \cup \Sigma)^{*}$, and for any $A \in N$.

- $\mathscr{L}(G)=\left\{w \in \Sigma^{*} \mid S \rightarrow_{G}^{*} w\right\}$.
- $L_{1}=\left\{a^{2^{n}} \mid n \geqslant 0\right\}$.
- Productions:

$$
\begin{aligned}
& S \rightarrow T a U \\
& U \rightarrow \varepsilon \mid A U \\
& a A \rightarrow A a a \\
& T A \rightarrow T \\
& T \rightarrow \varepsilon
\end{aligned}
$$

- Derivation of a^{8} using these productions:

$$
\begin{aligned}
S & \rightarrow \text { TaU } \rightarrow \text { TaAU } \rightarrow \text { TaAAU } \rightarrow \text { TaAAAU } \rightarrow \text { TaAAA } \\
& \rightarrow \text { TAaaAA } \rightarrow \text { TaaAA } \\
& \rightarrow \text { TaAaaA } \rightarrow \text { TAaaaaA } \rightarrow \text { TaaaaA } \\
& \rightarrow \text { TaaaAaa } \rightarrow \text { TaaAaaaa } \rightarrow \text { TaAaaaaaa } \rightarrow \text { TAaaaaaaaa } \rightarrow \text { Taaaaaaaa } \\
& \rightarrow \text { aaaaaaaa }
\end{aligned}
$$

Example 2

- $L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$.
- Productions:

$$
\begin{aligned}
& S \rightarrow U T \\
& U \rightarrow \varepsilon \mid a U b C \\
& C b \rightarrow b C \\
& C T \rightarrow T c \\
& T \rightarrow \varepsilon
\end{aligned}
$$

- Derivation of $a^{3} b^{3} c^{3}$ using these productions:
$S \rightarrow U T \rightarrow a U b C T \rightarrow a a U b C b C T \rightarrow a a a U b C b C b C T \rightarrow a a a b C b C b C T$
\rightarrow aaabCbbCCT \rightarrow aaabbCbCCT \rightarrow aaabbbCCCT
\rightarrow aaabbbCCTc \rightarrow aaabbbCTcc \rightarrow aaabbbTccc
\rightarrow aaabbbccc

Unrestricted Grammars and Turing Machines

Theorem

Given an unrestricted grammar G, there exists a Turing machine M such that $\mathscr{L}(M)=\mathscr{L}(G)$.

Theorem

Given a Turing machine M, there exists an unrestricted grammar G such that $\mathscr{L}(G)=\mathscr{L}(M)$.

- To construct a TM M from an unrestricted grammar G.
- M is designed as a four-tape nondeterministic machine.
- The input is provided to the first tape. It is never changed.
- The second tape contains sentential forms in the derivation process. It is initialized by the symbol S.
- M keeps on repeating:
- Nondeterministically choose a position on the second tape.
- Nondeterministically choose a production $\alpha \rightarrow \beta$ of G.
- Copy α to Tape 3 and β to Tape 4.
- Compare Tape 2 with Tape 3 starting from the position chosen for Tape 2 .
- If the comparison succeeds, replace α by β on Tape 2 after shifting the contents following α on Tape 2 if $|\alpha| \neq|\beta|$.
- Compare Tape 1 with Tape 2. If they have identical contents, accept.
- M is not necessarily a total TM.
- To construct an unrestricted grammar G from a TM M.
- Assume that M is a one-tape deterministic machine.
- First, make some changes to M.
- We want M to halt with an empty tape after accepting.
- Add a new accept state t^{\prime}.
- When M reaches the old accept state, it erases the entire tape, and after seeing the left endmarker \vdash, jumps to t^{\prime}.
- M must know how much of the tape is used.
- So M uses a right endmarker \dashv.
- This marker is shifted right if M wants to extend the used portion of the tape.
- During erasing at state t, this marker is moved left until it touches the left endmarker.
- G simulates the working of M from end to beginning.
- The configurations of M are the sentential forms.
- On input w, the initial configuration of M is $s \vdash w \dashv$.
- The accepting configuration is $\vdash t^{\prime} \dashv$.
- The non-terminal symbols of G consist of:
- $\Gamma \backslash \Sigma$,
- Q (assume that $Q \cap \Gamma=\emptyset$).
- A new start symbol S not covered by the above two.
- Add the rule $S \rightarrow \vdash t^{\prime} \dashv$.
- Add the rules $s \vdash \rightarrow \varepsilon$ and $\dashv \rightarrow \varepsilon$.
- Simulation of a right movement of $M: \delta(p, a)=(q, b, R)$.
- ... $a|c \cdots \quad \rightarrow \quad \cdots b| c \ldots$
- Add the rule $b q \rightarrow p a$.
- Simulation of a left movement of $M: \delta(p, a)=(q, b, L)$ (here $a \neq \vdash)$.
- $\cdots \sqrt{c \mid a} \cdots \quad \rightarrow \quad \cdots$ $c \mid b \cdots$
- For all $c \in \Gamma$, add the rule $q c b \rightarrow c p a$.
- M accepts as $s \vdash w \dashv \rightarrow^{*} \vdash t^{\prime} \dashv$.
- G works as $S \rightarrow \vdash t^{\prime} \dashv \rightarrow^{*} s \vdash w \dashv \rightarrow w \dashv \rightarrow w$.

1. Design unrestricted grammars for the following languages.
(a) $\left\{a^{n^{2}} \mid n \geqslant 0\right\}$.
(b) $\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geqslant 0\right\}$.
(c) $\left\{w \in\{a, b, c\}^{*} \mid \# a(w)=\# b(w)=\# c(w)\right\}$.
(d) $\left\{w w \mid w \in\{a, b\}^{*}\right\}$.
(e) $\left\{a^{i} b^{j} c^{k} d^{l} \mid i=k\right.$ and $\left.j=l\right\}$.
2. Consider the unrestricted grammar over the singleton alphabet $\Sigma=\{a\}$, having the start symbol S, and with the following productions.

$$
S \rightarrow A S \mid a T \quad A a \rightarrow a a a A \quad A T \rightarrow T \quad T \rightarrow \varepsilon
$$

What is the language generated by this unrestricted grammar? Justify.
3. Prove that any grammar can be converted to an equivalent grammar with rules of the form $\alpha A \gamma \rightarrow \alpha \beta \gamma$ for $A \in N$ and $\alpha, \beta, \gamma \in(\Sigma \cup N)^{*}$.
4. Write context-sensitive grammars for the following languages.
(a) $\left\{a^{2^{n}} \mid n \geqslant 0\right\}$.
(b) $\left\{a^{n} b^{n} c^{n} \mid n \geqslant 1\right\}$.

