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Properties of RE Languages

• Class of all r.e. languages: RE =
{

L (M)
∣

∣ M is a Turing machine
}

.

• Each member of RE is specified by a Turing machine.

• Unrestricted grammars can also be used to specify r.e. languages.

• A property of r.e. sets is a map P : RE →{T,F}.

• Example: Emptiness is a property defined as PEMP(L) =

{

T if L = /0,

F if L 6= /0.

• Properties too are specified by Turing machines.

• Example: The emptiness property is specified by any member of

PEMP =
{

M
∣

∣ L (M) = /0
}

.



Examples of Properties

• Finiteness property: Any member of
{

M
∣

∣ L (M) is finite
}

.

• Regularity property: Any member of
{

M
∣

∣ L (M) is regular
}

.

• Context-free property: Any member of
{

M
∣

∣ L (M) is context free
}

.

• Acceptance of a string: Any member of
{

M
∣

∣ 01011000 ∈ L (M)
}

.

• Full-ness property: Any member of
{

M
∣

∣ L (M) = Σ
∗
}

.

• We specify a property by a single Turing machine, the language of which has that

property.

• Properties are properties of r.e. sets, not of Turing machines.

• A property must be independent of the representative machine.



Non-Examples

• Any member of
{

M
∣

∣ M has at least 2022 states
}

.

• We can design two TMs M1 and M2 both accepting /0.

• M1 has less than 2022 states.

• M2 has 2022 or more states.

• If /0 is represented by M1, the property is false for /0.

• If /0 is represented by M2, the property is true for /0.

• Any member of
{

M
∣

∣ M is a total TM
}

.

• Any member of
{

M
∣

∣ M rejects 01011000 and halts
}

.

• Any member of
{

M
∣

∣ M ever goes to the right of the input
}

.

• Any member of
{

M
∣

∣ M has the least number of states among all machines accepting L (M)
}

.



Types of Properties

• Trivial properties

• The constant map RE →{T,F} taking all L ∈ RE to T .

• The constant map RE →{T,F} taking all L ∈ RE to F.

• Any other property is called non-trivial.

• Example of trivial property: L (M) is recursively enumerable.

• Example of non-trivial property: L (M) is recursive.

• Monotone properties

• Assume F 6 T .

• Whenever A ⊆ B, we have P(A)6 P(B).

• Examples of monotone properties: L (M) is infinite, L (M) = Σ
∗.

• Examples of non-monotone properties: L (M) is finite, L (M) = /0.



Rice’s Theorem (Part 1)

Theorem

No non-trivial property P of r.e. languages is decidable. In other words, the set

Π =
{

N
∣

∣ P(L (N)) = T
}

is not recursive.

Proof

• Let P be a non-trivial property of r.e. languages.

• Suppose P( /0) = F.

• Since P is non-trivial, there exist L ∈ RE, L 6= /0, such that P(L) = T .

• Let K be a Turing machine with L (K) = L.

• We make a reduction from HP to Π.

• If P( /0) = T , we take K with L (K) = L 6= /0 and P(L) = F. This establishes HP 6m Π.



Rice’s Theorem: The Reduction HP 6m Π

• Input: M # w (an instance of HP)

• Output: A Turing machine N such that P(L (N)) = T if and only if M halts on w.

• Behavior of N on input v:

• Copy v to a separate tape.

• Write w to the first tape, and simulate M on w.

• If the simulation halts:

– Simulate K on v.

– Accept if and only if K accepts v.

• If M halts on w, L (N) = L (K) = L.

• If M does not halt on w, L (N) = /0.

• P(L) = T and P( /0) = F.



Rice’s Theorem: Part 2

Theorem

No non-monotone property P of r.e. languages is semidecidable. In other words, the set

Π =
{

N
∣

∣ P(L (N)) = T
}

is not recursively enumerable.

Proof

• P is non-monotone. So there exist r.e. languages L1 and L2 such that

L1 ⊆ L2, P(L1) = T , P(L2) = F.

• Take Turing machines K1,K2 such that L (K1) = L1 and L (K2) = L2.

• We supply a reduction from HP to Π.

• The reduction algorithm embeds the information of M, w, K1, and K2 in the finite

control of N.



Rice’s Theorem: Part 2: The Reduction HP 6m Π

• Input: M # w.

• Output: A Turing machine N such that P(L (N)) = T if and only if M does not halt on w.

• Behavior of N on input v:

• Copy v from the first tape to the second tape, and w from the finite control to the third tape.

• Run three simulations in parallel (one step of each in round-robin fashion)

K1 on v on the first tape,

K2 on v on the second tape,

M on w on the third tape.

• Accept if and only if one of the following conditions hold:

(1) K1 accepts v,

(2) M halts on w, and K2 accepts v.

• M does not halt on w ⇒ N accepts by (1) ⇒ L (N) = L (K1) = L1.

• If M halts on w, N accepts if either K1 or K2 accepts v. In this case,

L (N) = L (K1)∪L (K2) = L1 ∪L2 = L2 (since L1 ⊆ L2).



Tutorial Exercises

1. Prove/Disprove: No non-trivial property of r.e. languages is semidecidable.

2. Use Rice’s theorems to prove that neither the following languages nor their complements are r.e.

(a) REG = {M | L (M) is regular}.

(b) CFL = {M | L (M) is context-free}.

(c) REC = {M | L (M) is recursive}.

3. [Generalization of Rice’s theorem for pairs of r.e. langauges] Consider the set of pairs of

r.e. languages: RE2 = {(L1,L2) | L1,L2 ∈ RE}.

(a) Define a property of pairs of r.e. languages.

(b) How do you specify a property of a pair of r.e. languages?

(c) Which properties of pairs of r.e. languages should be called non-trivial?

(d) Prove that every non-trivial property of pairs of r.e. languages is undecidable.



Tutorial Exercises

4. Use the previous exercise to prove that the following problems about pairs of r.e. languages are

undecidable.

(a) L (M) = L (N).
(b) L (M)⊆ L (N).
(c) L (M)∩L (N) = /0.

(d) L (M)∩L (N) is finite.

(e) L (M)∩L (N) is regular.

(f) L (M)∩L (N) is context-free.

(g) L (M)∩L (N) is recursive.

(h) L (M)∪L (N) = Σ
∗.

(i) L (M)∪L (N) = /0.

(j) L (M)∪L (N) is finite.

(k) L (M)∪L (N) is recursive.

5. Generalize Rice’s theorem, Part 2, for pairs of RE sets.


