NONDETERMINISTIC

TURING MACHINES

Abhijit Das
Sudeshna Kolay

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

March 15, 2022

- By definition, Turing machines are deterministic.
- $\mathrm{TM}=\mathrm{DTM}=$ Deterministic Turing machine.
- $\mathrm{NTM}=$ Nondeterministic Turing machine.
- An NTM has $\boldsymbol{\delta}(p, a)=\left\{\left(q_{1}, b_{1}, d_{1}\right),\left(q_{2}, b_{2}, d_{2}\right), \ldots,\left(q_{k}, b_{k}, d_{k}\right)\right\}$ for some $k \geqslant 0$.
- If $k=0$, the machine gets stuck.
- If $k \geqslant 2$, the machine chooses one of the k moves nondeterministically.
- The maximum value of k over all combinations of p and a is called the (maximum) fanout. Denote the maximum fanout by f.
- The machine accepts if and only if some sequence of nondeterministic choices lets the machine reach the accept state.
- Other nondeterministic choices may lead to the stuck or a looping condition or even to the reject state.
- Each sequence of choices gives a computation history.
- A history may terminate in the accept/reject state or in any other state in the stuck condition.
- Looping leads to an infinite history.
- The NTM accepts an input if and only if there is a finite computation history ending in the accept state.
- Explicit reject: All computation histories are finite, and none ends in the accept state.
- Implicit reject: No accepting history along with one or more infinite histories.
- A specific reject state is not needed for an NTM (even if total).
- The language of an NTM is the set of all input strings it accepts.
- An NTM is called total if all histories on all inputs are finite.
- All histories start with the initial configuration, and form a (potentially infinite) computation tree of configurations.
- A two-tape NTM for $\left\{a^{n} \mid n\right.$ is composite $\}$.
- Input a^{n} is supplied to the first tape.
- Initial check: Try to copy two a 's from the first tape to the second. If the attempt fails $(n=0,1)$ or if no other symbol is left in the input $(n=2)$, reject and halt.
- If the machine is here, both the heads are pointing to the third cell (third a in the first tape and the first blank cell in the second tape).
- Non-deterministic copying stage: If there are more a 's left in the input, make a non-deterministic choice.
- Copy another a to the second tape, and move both the heads right.
- Go to the division stage.
- Division stage: Suppose d number of a 's are copied to the second tape.
- Check whether the first head points to a blank cell $(d=n)$. If so, reject and halt.
- Otherwise, repeatedly subtract d from n. If some subtraction run erases the entire first tape, accept and halt. If some subtraction run prematurely ends, reject and halt.

Encoding Configurations

- The future work of a Turing machine (DTM/NTM) depends on:
- State of the finite control.
- Content of the tape.
- The position of the head.
- A configuration is specified as the string ($p, u \underline{u} v$), where $p \in Q, u, v \in \Gamma^{*}$, and $a \in \Gamma$. The underline represents the position of the head.
- We assume that $Q \cap \Gamma=\emptyset$.
- Then the configuration can be encoded as the string upav $\in(Q \cup \Gamma)^{*}$.
- The initial configuration on input w is $s \vdash w$.
- An accepting configuration is utav for any u, a, v.

Simulation of an NTM by a DTM

Theorem

For every $N T M N$, there exists a DTM D with $\mathscr{L}(D)=\mathscr{L}(N)$.

Theorem

For every total $N T M$, there exists a total DTM D with $\mathscr{L}(D)=\mathscr{L}(N)$.

- D has the information of N in its finite control.
- D is a two-tape machine.
- The first tape is used to implement a queue of configurations of N.
- The second tape is used to compute next configurations of N.
- The configurations are separated by a separator \#.
- One of the configurations is active denoted by a marker on the preceding \#.
- The input w of N is given on the first tape of D.
- D uses the second tape to generate $C_{0}=s \vdash w$.
- D replaces w by $\hat{\#} C_{0} \#$ on the first tape.
- D then enters a loop.
- D locates the current active configuration C_{i}.
- If there is no active configuration, D rejects and halts.
- Otherwise, D finds from C_{i} the state p of N and the tape symbol a scanned by the head of N.
- If $p=t, D$ accepts and halts.
- D consults the transition table of N to identify

$$
\delta_{N}(p, a)=\left\{\left(q_{1}, b_{1}, d_{1}\right),\left(q_{2}, b_{2}, d_{2}\right), \ldots,\left(q_{k}, b_{k}, d_{k}\right)\right\} .
$$

- D makes k copies of C_{i} to the second tape.
- D converts each copy by a transition possibility.
- D then copies the new configurations at the end of the first tape.
- Finally, D moves the active marker from the current \# to the next \#.
- D makes a breadth-first traversal in the computation tree of N.
- If N is total, then D is total too.
- Let n be the number of steps in the longest computation history of N on some input.
- Let $f \geqslant 2$ be the maximum fanout of N.
- D needs to generate at most $1+f+f^{2}+\cdots+f^{n}=\frac{f^{n+1}-1}{f-1}$ configurations of N.
- The running time of N is taken as n.
- The running time of D is $\mathrm{O}\left(l f^{n}\right)$, where l is the longest configuration of N.
- It is not known whether the exponential slowdown of the simulation can be avoided in all cases.

1. Determine the (nondeterministic) running time of the compositeness test.
2. Why cannot the nondeterministic compositeness be used to accept the language $\left\{a^{p} \mid p\right.$ is a prime $\}$?
3. Design an NTM to accept each the following languages.
(a) $\left\{w w \mid w \in\{0,1\}^{*}\right\}$.
(b) $\left\{w x y x z\left|w, x, y, z \in\{0,1\}^{*},|x|=100\right\}\right.$.
(c) $\left\{w x y x z\left|w, x, y, z \in\{0,1\}^{*},|x| \geqslant 100\right\}\right.$.
4. Suppose that the simulator D uses its first tape as a stack of configurations of N. Will the simulation work? Justify.
5. A TM M has a two-way infinite tape. Initially, all cells on the tape are blank. Only one cell is storing the symbol \#. The head of M is pointing to a blank. The task of M is to locate the cell storing \#. Propose a strategy for doing this
(a) if M is an NTM, and
(b) if M is a DTM.
(c) Compare the nondeterministic and deterministic running times.
