Context Free Grammars and Languages

Grammar Rules

Consider the following set of rules:

@ < assg-stmt >::=< var >:=< arith-expr >

Grammar Rules

Consider the following set of rules:
@ < assg-stmt >::=< var >:=< arith-expr >

@ < arith-expr >::=< var > | < const > | < arith-expr ><
arith-op >< arith-expr >

Grammar Rules

Consider the following set of rules:
@ < assg-stmt >:=< var >:=< arith-expr >
@ < arith-expr >::=< var > | < const > | < arith-expr ><
arith-op >< arith-expr >
e < arith-op >u=+| — [x|/

Grammar Rules

Consider the following set of rules:
@ < assg-stmt >:=< var >:=< arith-expr >
@ < arith-expr >::=< var > | < const > | < arith-expr ><
arith-op >< arith-expr >
e < arith-op >u=+4| —|*|/
@ < const >::= 0[1]2|3|4/5|6|7|8|9

Grammar Rules

Consider the following set of rules:
@ < assg-stmt >::=< var >:=< arith-expr >
@ < arith-expr >::=< var > | < const > | < arith-expr ><
arith-op >< arith-expr >
< arith-op >u=+| — | x|/
< const >::= 0|1|2|3]4|5/6/7|8|9
< var >:u= alb|c|...|x|y|z

Grammar Rules

@ Objects of the form < x x x > are called nonterminal
symbols.

Grammar Rules

@ Objects of the form < x x x > are called nonterminal
symbols.

@ Each nonterminal symbol generates a set of strings over finite
alphabet ¥ = {0,1,...,9,a,b,...,z,+,—, %, /}.

Grammar Rules

@ Objects of the form < x x x > are called nonterminal
symbols.

@ Each nonterminal symbol generates a set of strings over finite
alphabet ¥ = {0,1,...,9,a,b,...,z,+,—, %, /}.

@ The language generated by the set of rules or the grammar.
Arithmetic expressions formed by using the 4 basic arithmetic
operators over the integers 0 — 9 and variables.

Infinitely many strings in this language represented in a finite
manner using the grammar.

Grammar Rules

Objects of the form < x x x > are called nonterminal
symbols.

Each nonterminal symbol generates a set of strings over finite
alphabet ¥ = {0,1,...,9,a,b,...,z,+,—, %, /}.

The language generated by the set of rules or the grammar:
Arithmetic expressions formed by using the 4 basic arithmetic
operators over the integers 0 — 9 and variables.

Infinitely many strings in this language represented in a finite
manner using the grammar.

These rules define a syntax for the language.

Derivation of Arithmetic Expressions from the Rules

@ Can you derive x = y 4+ z — 3 using the rules?

Derivation of Arithmetic Expressions from the Rules

@ Can you derive x = y 4+ z — 3 using the rules?
@ < asst — stmt >—< var >:=< arith — expr >

Derivation of Arithmetic Expressions from the Rules

@ Can you derive x = y 4+ z — 3 using the rules?
@ < asst — stmt >—< var >:=< arith — expr >
@ —< var >:=< arith — expr >< arith — op >< arith — expr >

Derivation of Arithmetic Expressions from the Rules

Can you derive x = y + z — 3 using the rules?
< asst — stmt >—< var >:=< arith — expr >
—< var >:=< arith — expr >< arith — op >< arith — expr >

—< var >:=< arith — expr >< arith — op ><
arith — expr >< arith — op >< arith — expr >

Derivation of Arithmetic Expressions from the Rules

@ Can you derive x = y 4+ z — 3 using the rules?
@ < asst — stmt >—< var >:=< arith — expr >
@ —< var >:=< arith — expr >< arith — op >< arith — expr >
@ —< var >:=< arith — expr >< arith — op ><
arith — expr >< arith — op >< arith — expr >
o - x =y+z-3.

Derivation of Arithmetic Expressions from the Rules

@ Can you derive x = y 4+ z — 3 using the rules?
@ < asst — stmt >—< var >:=< arith — expr >
@ —< var >:=< arith — expr >< arith — op >< arith — expr >
@ —< var >:=< arith — expr >< arith — op ><
arith — expr >< arith — op >< arith — expr >
o - x =y+z-3.

e Sentential forms: The expressions with non-terminal symbols
in the intermediary derivation steps.

Derivation of Arithmetic Expressions from the Rules

Can you derive x = y + z — 3 using the rules?

< asst — stmt >—< var >:=< arith — expr >

—< var >:=< arith — expr >< arith — op >< arith — expr >
—< var >:=< arith — expr >< arith — op ><

arith — expr >< arith — op >< arith — expr >
—x:=y+z-3.

Sentential forms: The expressions with non-terminal symbols
in the intermediary derivation steps.

Can you give two ways to derive x =y + z — 37
x=(y+z)-3, x=y+(z-3)

Context Free Grammar (CFG)

@ A CFGis denoted as G = (N, X, P, S).

Context Free Grammar (CFG)

@ A CFGis denoted as G = (N, X, P, S).

e NN is a finite set (the nonterminal symbols),

Context Free Grammar (CFG)

@ A CFGis denoted as G = (N, X, P, S).
e NN is a finite set (the nonterminal symbols),

@ X is a finite set (the terminal symbols) disjoint from N,

Context Free Grammar (CFG)

@ A CFGis denoted as G = (N, X, P, S).

e NN is a finite set (the nonterminal symbols),

@ X is a finite set (the terminal symbols) disjoint from N,
@ P is a finite subset of N x (N UX)* (the productions)

Context Free Grammar (CFG)

A CFG is denoted as G = (N, X, P, S).

N is a finite set (the nonterminal symbols),

Y is a finite set (the terminal symbols) disjoint from N,
P is a finite subset of N x (N UX)* (the productions)
S is the start symbol

Context Free Grammar (CFG)

A CFG is denoted as G = (N, X, P, S).

N is a finite set (the nonterminal symbols),

Y is a finite set (the terminal symbols) disjoint from N,
P is a finite subset of N x (N UX)* (the productions)
S is the start symbol

Finite representation for a set of possibly infinite strings.

Notational Conventions

@ Nonterminals usually denoted by capital letter A, B, .. .,

Notational Conventions

@ Nonterminals usually denoted by capital letter A, B, .. .,

@ Terminal symbols: a, b, ...

Notational Conventions

@ Nonterminals usually denoted by capital letter A, B, .. .,
@ Terminal symbols: a, b, ...
@ Strings in (NUX)*: o, 3,7, ...

Notational Conventions

Nonterminals usually denoted by capital letter A, B, .. .,
Terminal symbols: a, b, ...

Strings in (NUX)*: «, 3,7, ...

Productions: Usually written as A — « instead of (A, «).

Notational Conventions

@ Nonterminals usually denoted by capital letter A, B, .. .,
@ Terminal symbols: a, b, ...

@ Strings in (NUX)*: o, 3,7, ...

@ Productions: Usually written as A — « instead of (A, «).

@ Suppose there are several productions from the same
nonterminal: A — a3, A — a2, A — a3. Then shorten this as
A— 041|Oé2‘043.

Derivations

o If a,p € (NUZX)*, then [3 is derivable from « in 1 step
[=L B if
There exists a production A — ~ such that a = ajAap,
B = aryaz.

Derivations

If a, 8 € (NUX)*, then 3 is derivable from « in 1 step
[=L B if

There exists a production A — ~ such that a = ajAap,
B = aryas.

Define —7. to be the reflexive transitive closure of %};:
«Q —>% « for all o,

o) H’Erl /3 if there is a v such that « —7 v and v —& 8,
a —¢ [if thereis an n > 0 such that o —¢ f.

Sentential Forms and Sentences

@ A string derivable from start symbol S: sentential form;
A sentential form with no nonterminal symbols is a sentence.

Sentential Forms and Sentences

@ A string derivable from start symbol S: sentential form;
A sentential form with no nonterminal symbols is a sentence.

o L(G)={xeX¥S =% x}.

Sentential Forms and Sentences

@ A string derivable from start symbol S: sentential form;
A sentential form with no nonterminal symbols is a sentence.
o L(G)={xeX¥S =% x}.

@ B C ¥*is a Context Free Language (CFL) if B = L(G) for a
CFG G.

Example 1

Set {a"b"|n > 0} is a CFL (not regular!)
o Generated by the grammar G = (N, X, P, S) where
N={S},X ={a,b},P =5 — aSb|e.

Example 1

Set {a"b"|n > 0} is a CFL (not regular!)
o Generated by the grammar G = (N, X, P, S) where
N={S},X ={a,b},P =5 — aSb|e.

e Can you derive a®h3?

Example 1

Set {a"b"|n > 0} is a CFL (not regular!)
o Generated by the grammar G = (N, X, P, S) where
N={S},X ={a,b},P =5 — aSb|e.

e Can you derive a®h3?
@ S — aSb — aaSbb — aaaSbbb — aaabbb.

Example 1

Set {a"b"|n > 0} is a CFL (not regular!)
o Generated by the grammar G = (N, X, P, S) where
N={S},X ={a,b},P =5 — aSb|e.
e Can you derive a®h3?
@ S — aSb — aaSbb — aaaSbbb — aaabbb.

e Can you have multiple derivations of a>b3? Unambiguous
grammar - more on this later.

Example 2

Set of palindromes over {a, b}, or {x € {a,b}*|x = x""} is a CFL
(not regular!)

@ Generated by the grammar G = (N, X, P, S) where
N ={S},X ={a,b},P =S5 — aSa|bSb|a|b|e.

Example 2

Set of palindromes over {a, b}, or {x € {a,b}*|x = x""} is a CFL
(not regular!)

@ Generated by the grammar G = (N, X, P, S) where
N ={S},X ={a,b},P =S5 — aSa|bSb|a|b|e.

@ First 2 productions: for balancing the outer ends of the string

Example 2

Set of palindromes over {a, b}, or {x € {a, b}*|x = x"} is a CFL
(not regular!)
@ Generated by the grammar G = (N, X, P, S) where
N ={S},X ={a,b},P =S5 — aSa|bSb|a|b|e.
@ First 2 productions: for balancing the outer ends of the string
@ Last 3 productions: for finishing derivations.

S — a|b are used to finishing odd length strings,
S — € is used for finishing even length strings.

