Parse trees
Pumping Lemma for CFLs

Parse Trees

G=(N,X,P,S). A parse tree will be a tree with the following
properties:

o Every vertex is labelled by a symbol from N U X U {e}

Parse Trees

G=(N,X,P,S). A parse tree will be a tree with the following
properties:

o Every vertex is labelled by a symbol from N U X U {e}
@ The root is labelled S

Parse Trees

G=(N,X,P,S). A parse tree will be a tree with the following
properties:

o Every vertex is labelled by a symbol from N U X U {e}
@ The root is labelled S

@ An interior vertex is labelled from N

Parse Trees

G=(N,X,P,S). A parse tree will be a tree with the following
properties:

o Every vertex is labelled by a symbol from N U X U {e}
@ The root is labelled S
@ An interior vertex is labelled from N

o If vertex v is labelled with A and its children vq, v», ..., v, are
labelled X7, X5, ..., X, respectively, then
A— X1 X... X, € P.

Parse Trees

G=(N,X,P,S). A parse tree will be a tree with the following
properties:

o Every vertex is labelled by a symbol from N U X U {e}
@ The root is labelled S
@ An interior vertex is labelled from N

o If vertex v is labelled with A and its children vq, v», ..., v, are

labelled X7, X5, ..., X, respectively, then
A— X1 X... X, € P.

e If a vertex is labelled with € then it is a leaf and it is the only
child of its parent.

Parse Trees

G=(N,X,P,S). Take a parse tree T with root labelled S.

@ Order the leaves of the tree from left to right (order according
to inorder/preorder): gives a sentential form derived from S
(Can be proven by induction).

This is the sentential form represented by T.

Parse Trees

G=(N,X,P,S). Take a parse tree T with root labelled S.

@ Order the leaves of the tree from left to right (order according
to inorder/preorder): gives a sentential form derived from S
(Can be proven by induction).

This is the sentential form represented by T.

o If all leaves are labelled from 2 U ¢, then this tree corresponds
to a sentence of L(G).

Example 1: Parse Tree for a’b’
3= aSb|e

Example 2: Parse Tree for [|[[]]
S— [s1]55]¢ X

Leftmost and Rightmost derivations

@ Leftmost derivation: At each step of derivation, a A —wbu,C

production is applied to the leftmost nonterminal.

Leftmost and Rightmost derivations

@ Leftmost derivation: At each step of derivation, a
production is applied to the leftmost nonterminal.

@ Rightmost derivation: At each step of derivation, a

o . . . - w Bw,C
production is applied to the rightmost nonterminal. A B,z

Leftmost and Rightmost derivations

@ Leftmost derivation: At each step of derivation, a
production is applied to the leftmost nonterminal.

@ Rightmost derivation: At each step of derivation, a
production is applied to the rightmost nonterminal.

@ Note: pre-order traversal of a parse tree corresponds to a
leftmost derivation of the sentential form.

Leftmost and Rightmost derivations

Leftmost derivation: At each step of derivation, a
production is applied to the leftmost nonterminal.

Rightmost derivation: At each step of derivation, a
production is applied to the rightmost nonterminal.

Note: pre-order traversal of a parse tree corresponds to a
leftmost derivation of the sentential form.

This leftmost derivation of the sentential form is unique to the
parse tree. But the sentential form may have many
non-isomorphic parse trees.

Leftmost and Rightmost derivations

Leftmost derivation: At each step of derivation, a
production is applied to the leftmost nonterminal.

Rightmost derivation: At each step of derivation, a
production is applied to the rightmost nonterminal.

Note: pre-order traversal of a parse tree corresponds to a
leftmost derivation of the sentential form.

This leftmost derivation of the sentential form is unique to the
parse tree. But the sentential form may have many
non-isomorphic parse trees.

Ambiguous CFG: when a sentence has two leftmost or two
rightmost derivations in the grammar.

Leftmost and Rightmost derivations

Leftmost derivation: At each step of derivation, a
production is applied to the leftmost nonterminal.

Rightmost derivation: At each step of derivation, a
production is applied to the rightmost nonterminal.

Note: pre-order traversal of a parse tree corresponds to a
leftmost derivation of the sentential form.

This leftmost derivation of the sentential form is unique to the
parse tree. But the sentential form may have many
non-isomorphic parse trees.

Ambiguous CFG: when a sentence has two leftmost or two
rightmost derivations in the grammar.

Inherently ambiguous CFL: When every CFG is ambiguous.
Such CFLs exist.

Pumping Lemma for CFLs

For every CFL A, there exists kK > 0 such that every z € A of
length at least k can be broken up into five substrings z = uvwxy
such that vx # ¢, |vwx| < k, and for all i > 0, uv'wx'y € A.

Note the difference from Pumping Lemma for regular sets. Here
we are simultaneously pumping two substrings v, x, separated by a
substring w.

Proof of Pumping Lemma for CFLs

@ Intuitive proof: Consider the CNF for A — {€}. A parse tree
for any sufficiently long string z must have a "very long”
path, as each node can have at most 2 children.

@ Any "very long” path must have at least two occurrences of
some nonterminal symbol A, call them A, AZ.

@ Let T/}\ and Tf\ be the subtrees rooted at A, A? respectively.
We can throw out T3, in its place put in T and this will still
be a valid parse tree.

Proof of Pumping Lemma for CFLs

Let |N| = n. Take k = 27t1,
Suppose z € A and |z| > k.

Draw a parse tree for the derivation of z from the CNF
grammar of A. Each node has at most 2 children (subtree of
a binary tree).

Depth of the parse tree is at least n+ 1. Consider the longest
path in the parse tree.

Longest path has at least n + 1 nonterminals - by PHP there
must be some nonterminal that appears twice on the path.
Reading from the bottom, let A be the first non-terminal
appearing twice on the path.

Proof of Pumping Lemma for CFLs

Take the two occurrences of A that are farthest from the root.

Break z into uvwxy: w is generated by the lower occurrence
of A (A?) and vwx is generated by the upper occurrence of A

(AY).
By CNF, each node will have at least 1 child, so vx # e.
Tree rooted at A’ is Th, i € {1,2}.

If we replace T; by T3, then we get the string

uwy = uvOwxly.

If T% is replaced by T}, the string generated is uv?wx?y! We

can repeated replace the lowest Tﬁ by T},‘ k > 1 times to get
k+1
y.

lvwx| < k: By choice of A, Tj‘ can have height at most n+ 1,
and therefore have at most 2" = k leaves.

uvEtlx

Use of PL for CFL

Sufficient property that a language is not a CFL:

For all kK > 0, there exists z € A of length at least k such that for
all ways of breaking z up into substrings z = uvwxy with vx # €
and |vwx| < k, there exists an i > 0 such that uv'wx'y ¢ A.

Use of PL for CFL: Adversarial Game

@ The adversary picks kK > 0.

Use of PL for CFL: Adversarial Game

@ The adversary picks kK > 0.
@ You pick z € A of length at least k.

Use of PL for CFL: Adversarial Game

@ The adversary picks kK > 0.
@ You pick z € A of length at least k.

@ The adversary picks u, v, w, x, y such that
z = uvwxy, |vx| # €, lvwx| < k.

Use of PL for CFL: Adversarial Game

@ The adversary picks kK > 0.
@ You pick z € A of length at least k.

@ The adversary picks u, v, w, x, y such that
z = uvwxy, |vx| # €, lvwx| < k.

@ You pick 1 > 0.

Use of PL for CFL: Adversarial Game

The adversary picks kK > 0.
You pick z € A of length at least k.

The adversary picks u, v, w, x, y such that
z = uvwxy, |vx| # €, lvwx| < k.

You pick 1 > 0.
If uv'wx'y ¢ A, then you win.

Example 1

Set {a"b"a"|n > 0} is not a CFL.
o Given a k, pick z = a¥bka¥; |z| = 3k

Example 1

Set {a"b"a"|n > 0} is not a CFL.
e Given a k, pick z = a*b*a¥; |z| = 3k

@ The adversary picks u, v, w, x, y with vx # € and |vwx| < k.

Example 1

Set {a"b"a"|n > 0} is not a CFL.
e Given a k, pick z = a*b*a¥; |z| = 3k
@ The adversary picks u, v, w, x, y with vx # € and |vwx| < k.

@ You pick i =2 to win; Z/ = uv?wx?y ¢ A:

Example 1

Set {a"b"a"|n > 0} is not a CFL.
e Given a k, pick z = a*b*a¥; |z| = 3k
@ The adversary picks u, v, w, x, y with vx # € and |vwx| < k.
@ You pick i =2 to win; Z/ = uv?wx?y ¢ A:
@ Case 1: v or x has at least one a and at least one b: Z’ is not
of the form a*b*a".

Example 1

Set {a"b"a"|n > 0} is not a CFL.
e Given a k, pick z = a*b*a¥; |z| = 3k
@ The adversary picks u, v, w, x, y with vx # € and |vwx| < k.
@ You pick i =2 to win; Z/ = uv?wx?y ¢ A:
@ Case 1: v or x has at least one a and at least one b: Z’ is not
of the form a*b*a".

@ (Case 2: v and x have only a's. Then number of a's is more
than twice the number of b's in Z'. Similarly, if v, x have only

b's.

Example 1

Set {a"b"a"|n > 0} is not a CFL.

Given a k, pick z = a*b*a¥; |z| = 3k

The adversary picks u, v, w, x, y with vx # € and |vwx| < k.
You pick i = 2 to win; Z/ = uv?wx?y ¢ A:

Case 1: v or x has at least one a and at least one b: Z’' is not

of the form a*b*a™.

Case 2: v and x have only a’'s. Then number of a's is more
than twice the number of b's in Z'. Similarly, if v, x have only
b's.

Case 3: One of v, x has only a's and the other has only b's.
Then z' cannot be of the form a™b™a™.

Example 2

Set A= {ww|w € {a, b}*} is not a CFL.
@ |t suffices to show that set
A= {a"b"a"b™|m,n >0} = AN L(a*b*a*b*) is not a CFL:
L(a*b*a*b*) is a regular set.
Fact: Intersection of regular sets and CFLs are CFLs. [Try this
out when you learn about an equivalent machine model for

CFLs]
Thus if we show that A’ is not a CFL then A cannot be a CFL.

Example 2

Set A= {ww|w € {a, b}*} is not a CFL.
@ |t suffices to show that set
A= {a"b"a"b™|m,n >0} = AN L(a*b*a*b*) is not a CFL:
L(a*b*a*b*) is a regular set.
Fact: Intersection of regular sets and CFLs are CFLs. [Try this
out when you learn about an equivalent machine model for

CFLs]
Thus if we show that A’ is not a CFL then A cannot be a CFL.

e For a k, pick z = akbka*bk,

Example 2

Set A= {ww|w € {a, b}*} is not a CFL.
@ |t suffices to show that set
A= {a"b"a"b™|m,n >0} = AN L(a*b*a*b*) is not a CFL:
L(a*b*a*b*) is a regular set.
Fact: Intersection of regular sets and CFLs are CFLs. [Try this
out when you learn about an equivalent machine model for

CFLs]
Thus if we show that A’ is not a CFL then A cannot be a CFL.

e For a k, pick z = akbka*bk,
@ If you pick / = 2 then no matter what u, v, w, x, y are chosen
with vx # € and |vwx| < k, you will win.

Non-closure under complement

A= {a,b}* — {ww|w € {a, b}*} is a CFL:
@ Productions:
S — AB|BA|A|B
A — CAC|a
B — CBC|b
C — alb.

Non-closure under complement

A = {a, b}* — {ww|w € {a, b}*} is a CFL:
@ Productions:
S — AB|BA|A|B
A — CAC|a

B — CBC|b
C — alb.

@ S — A|B generate all the odd strings: A generates strings like
xay, |x| = |y|, B generates strings like ubv, |u| = |v|.

Non-closure under complement

A = {a, b}* — {ww|w € {a, b}*} is a CFL:

@ Productions:
S — AB|BA|A|B

A — CAC|a
B — CBC|b
C — alb.
@ S — A|B generate all the odd strings: A generates strings like
xay, |x| = |y|, B generates strings like ubv, |u| = |v|.

@ S — AB|BA generate strings of the form xayubv and ubvxay,
resp. where x,y,u,v € {a,b}*, |x| = |y|, |u| = |v|.
Occurrence of a, b at a distance of length/2 - cannot be of
the form ww.

Non-closure under complement

A = {a, b}* — {ww|w € {a, b}*} is a CFL:

@ Productions:

S — AB|BA|A|B
A — CAC|a
B — CBC|b
C — alb.
@ S — A|B generate all the odd strings: A generates strings like
xay, |x| = |y|, B generates strings like ubv, |u| = |v|.

@ S — AB|BA generate strings of the form xayubv and ubvxay,
resp. where x,y,u,v € {a,b}*, |x| = |y|, |u| = |v|.
Occurrence of a, b at a distance of length/2 - cannot be of
the form ww.

@ Any string in A must be in one of the above 2 forms.

Other Closure Properties

o Union: Gl — (Nl,Zl, P1,51), Gg — (NQ,ZQ, PQ,SQ).
GiUGy = (M UNU{S}, 21Uy, PLUPU{S — 515}, 5).

Other Closure Properties

o Union: Gl — (Nl,Zl, P1,51), Gg — (NQ,ZQ,, P2,52).

GiUGy = (M UNU{S}, 21Uy, PLUPU{S — 515}, 5).
@ Concatenation:

G1.Go=(MUMU{S}, LU, LUPU{S = 55,},9).

Other Closure Properties

o Union: Gl = (Nl, Zl, Pl,Sl), G2 — (Nz,ZQ, PQ,SQ).
GiUGy = (M UNU{S}, 21Uy, PLUPU{S — 515}, 5).

@ Concatenation:
G1.Gr = (Nl U N> U {S},Zl L1 2s, Py L s {S —3 5152}, S)
@ Intersection: CFLs not closed.
Eg:
{8"b"a" |\ n, > QY ria™h%8% n,m = O} ={a"6"4" |n = 0}
(Show that first 2 languages are CFLs and the last is not.)

