Nondeterminism and Subset Construction

 Nondeterminism: More than one state transitions may be available from any current state. The machine can choose the next transition from options.

- Nondeterminism: More than one state transitions may be available from any current state. The machine can choose the next transition from options.
- A transition function is no longer required, should be a map, since there are many possibilities.

- Nondeterminism: More than one state transitions may be available from any current state. The machine can choose the next transition from options.
- A transition function is no longer required, should be a map, since there are many possibilities.
- We could guess where to start from; so, many start states are possible. No longer a single start state.

 The idea is that the automaton guesses a path in it and verifies whether that guess leads to a final state. The other paths may lead to non-final states or may end even before you finish reading the input (terminated).

- The idea is that the automaton guesses a path in it and verifies whether that guess leads to a final state. The other paths may lead to non-final states or may end even before you finish reading the input (terminated).
- Note 1: You are allowed to put more than one arrows with the same label coming out of a state.

- The idea is that the automaton guesses a path in it and verifies whether that guess leads to a final state. The other paths may lead to non-final states or may end even before you finish reading the input (terminated).
- Note 1: You are allowed to put more than one arrows with the same label coming out of a state.
- Note 2: You are allowed to choose a set of start states.

- The idea is that the automaton guesses a path in it and verifies whether that guess leads to a final state. The other paths may lead to non-final states or may end even before you finish reading the input (terminated).
- Note 1: You are allowed to put more than one arrows with the same label coming out of a state.
- Note 2: You are allowed to choose a set of start states.
- Note 3: Since we are relaxing the transition function to a transition map and allowing termination of a guess, we do not need to define transitions from a state for each possible input alphabet – there may be no option for a transition from a certain state on reading a certain alphabet!

Nondeterministic Finite Automaton (NFA): Example

Power of an NFA

• Much more compact that a corresponding DFA.

Power of an NFA

- Much more compact that a corresponding DFA.
- But does an NFA really have more computation power than a DFA?

Power of an NFA

- Much more compact that a corresponding DFA.
- But does an NFA really have more computation power than a DFA?
- Can there be a language that is not a regular set (no DFA) but has an NFA?

Formal definition of NFA

- $N = (Q, \Sigma, \Delta, S, F)$
- Q states
- Σ − alphabet

- 5 start states
- F final states.
- Again, finite encoding of an NFA possible.

• $\hat{\Delta}: 2^Q \times \Sigma^* \rightarrow 2^Q$

- $\hat{\Delta}: 2^Q \times \Sigma^* \rightarrow 2^Q$
- Inductive definition:

•
$$\hat{\Delta}: 2^Q \times \Sigma^* \rightarrow 2^Q$$

• Inductive definition:

$$\hat{\Delta}(A, \epsilon) = A$$

$$\hat{\Delta}(A, xa) = \bigcup_{q \in \hat{\Delta}(A, x)} \Delta(q, a)$$

 Image set of states = set of all states reachable from some state in A on reading input xa.

- $\hat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$
- Inductive definition:

$$\hat{\Delta}(A, \epsilon) = A$$
 $\hat{\Delta}(A, xa) = \bigcup_{q \in \hat{\Delta}(A, x)} \Delta(q, a)$

- Image set of states = set of all states reachable from some state in A on reading input xa.
- State $r \in \hat{\Delta}(A, xa)$ if there exists a $q \in \hat{\Delta}(A, x)$ such that $r \in \Delta(q, a)$.

• What happens on length 1 strings?

- What happens on length 1 strings?
- $\hat{\Delta}(A, a) = \hat{\Delta}(A, \epsilon.a) = \bigcup_{q \in \hat{\Delta}(A, \epsilon)} \Delta(q, a) = \bigcup_{q \in A} \Delta(q, a)$

- What happens on length 1 strings?
- $\hat{\Delta}(A, a) = \hat{\Delta}(A, \epsilon.a) = \bigcup_{q \in \hat{\Delta}(A, \epsilon)} \Delta(q, a) = \bigcup_{q \in A} \Delta(q, a)$
- N accepts x if $\hat{\Delta}(S,x) \cap F$ is nonempty.

- What happens on length 1 strings?
- $\hat{\Delta}(A, a) = \hat{\Delta}(A, \epsilon.a) = \bigcup_{q \in \hat{\Delta}(A, \epsilon)} \Delta(q, a) = \bigcup_{q \in A} \Delta(q, a)$
- N accepts x if $\hat{\Delta}(S,x) \cap F$ is nonempty.
- $L(N) = \{x | N \text{ accepts } x\}$

• **Lemma**: For any $x, y \in \Sigma^*$, and a subset $A \subseteq Q$, $\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$.

- **Lemma**: For any $x, y \in \Sigma^*$, and a subset $A \subseteq Q$, $\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$.
- Proof: Induction on |y|.

- **Lemma**: For any $x, y \in \Sigma^*$, and a subset $A \subseteq Q$, $\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$.
- Proof: Induction on |y|.
- Base: $y = \epsilon$ $\hat{\Delta}(A, x.\epsilon)$ $= \hat{\Delta}(A, x)$ $= \hat{\Delta}(\hat{\Delta}(A, x), \epsilon)$ [By definition].

• Induction: Suppose true for all x and y; take ya.

- Induction: Suppose true for all x and y; take ya.
- $\hat{\Delta}(A, xya) = \bigcup_{q \in \hat{\Delta}(A, xy)} \Delta(q, a)$ $= \bigcup_{q \in \hat{\Delta}(\hat{\Delta}(A, x), y)} \Delta(q, a) \text{ [I.H]}$

 - $= \hat{\Delta}(\hat{\Delta}(A,x), ya)$ [By LHS of inductive definition]

• Lemma: $\hat{\Delta}(A, x) = \bigcup_{p \in A} \hat{\Delta}(\{p\}, x)$.

- Lemma: $\hat{\Delta}(A, x) = \bigcup_{p \in A} \hat{\Delta}(\{p\}, x)$.
- Proof: Induction on |x|.

• A DFA can be thought of as an NFA: $(Q, \Sigma, \Delta, \{s\}, F)$ such that $\Delta(p, a) = \{\delta(p, a)\}$. If a set is accepted by a DFA then it is also accepted by an NFA.

- A DFA can be thought of as an NFA: $(Q, \Sigma, \Delta, \{s\}, F)$ such that $\Delta(p, a) = \{\delta(p, a)\}$. If a set is accepted by a DFA then it is also accepted by an NFA.
- Suppose $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$ is an NFA and L(N) is the set accepted by N.

• DFA construction: $M = (2^{\mathbb{Q}}, \Sigma, \delta_M, s_M, F_M)$.

- DFA construction: $M = (2^{Q_N}, \Sigma, \delta_M, s_M, F_M)$.
- s_M = state corresponding to the subset S_N ,

- DFA construction: $M = (2^{Q_N}, \Sigma, \delta_M, s_M, F_M)$.
- s_M = state corresponding to the subset S_N ,
- F_M = states corresponding to subsets that have nonempty intersection with F_N

- DFA construction: $M = (2^{Q_N}, \Sigma, \delta_M, s_M, F_M)$.
- s_M = state corresponding to the subset S_N ,
- F_M = states corresponding to subsets that have nonempty intersection with F_N
- $\delta_M(A,a) = \hat{\Delta}_N(A,a)$

• **Lemma**: For any subset $A \in 2^{\mathbb{Q}_N}$, and string x, $\hat{\delta}_M(A,x) = \hat{\Delta}_N(A,x)$

- **Lemma**: For any subset $A \in 2^{Q_N}$ and string x, $\hat{\delta}_M(A, x) = \hat{\Delta}_N(A, x)$
- Proof: Induction on |x|.

- **Lemma**: For any subset $A \in 2^{\mathbb{Q}_N}$ and string x, $\hat{\delta}_M(A,x) = \hat{\Delta}_N(A,x)$
- Proof: Induction on |x|.
- Base: $x = \epsilon$. $\hat{\delta}_M(A, \epsilon) = A = \hat{\Delta}_N(A, \epsilon)$ [Definition]

• Induction: True for all x, now consider xa.

- Induction: True for all x, now consider xa.
- $\hat{\delta}_{M}(A, xa)$ = $\delta_{M}(\hat{\delta}_{M}(A, x), a)$ = $\delta_{M}(\hat{\Delta}_{N}(A, x), a)$ [I.H] = $\hat{\Delta}_{N}(\hat{\Delta}_{N}(A, x), a)$ [Definition of δ_{M}] = $\hat{\Delta}_{N}(A, xa)$ (Earlier Lemma)

• **Theorem**: The same set of strings is accepted by M and N.

- **Theorem**: The same set of strings is accepted by M and N.
- Proof: $x \in L(M) \implies \hat{\delta}_M(s_M, x) \in F_M$ $\iff \hat{\delta}_M(s_M, x)$ has nonempty intersection with F_N $\iff \hat{\Delta}_N(S_N, x) \cap F_N$ not empty [Previous Lemma] $\iff x \in L(N)$.

- **Theorem**: The same set of strings is accepted by M and N.
- Proof: $x \in L(M) \implies \hat{\delta}_M(s_M, x) \in F_M$ $\iff \hat{\delta}_M(s_M, x)$ has nonempty intersection with F_N $\iff \hat{\Delta}_N(S_N, x) \cap F_N$ not empty [Previous Lemma] $\iff x \in L(N)$.
- So DFA and NFA have the same power. NFAs accept regular sets.

€-Transitions

 \bullet A transition with label ϵ . It means that the automaton is making such a transition without reading an input symbol.

ϵ-Transitions

- A transition with label ϵ . It means that the automaton is making such a transition without reading an input symbol.
- Eg. $\{x \in \{a\}^* | |x| \text{ is divisible by 2 or 7}\}$

€-Transitions

- A transition with label ϵ . It means that the automaton is making such a transition without reading an input symbol.
- Eg. $\{x \in \{a\}^* | |x| \text{ is divisible by 2 or 7}\}$
- They do not add any power. (Prove this.)

Revisiting Closure Properties of Regular Sets

Construction of DFA/NFA for AB when A and B are regular:
 Construct an NFA with ε-transition.
 DFAs M₁ for A and M₂ for B.
 ε-transition between end states of A and start state of B.

Revisiting Closure Properties of Regular Sets

- Construction of DFA/NFA for AB when A and B are regular:
 Construct an NFA with ε-transition.
 DFAs M₁ for A and M₂ for B.
 ε-transition between end states of A and start state of B.
- If A is regular then so is A*: Create new start state;
 Add ε-transitions from new start state to old start state, and from old final states to new start state
 Make new start state new final state as well.

