Pattern Matching and Regular Sets

Finite Representations of a language

@ (a) Finite Automaton structure, (b) Pattern matching.

Finite Representations of a language

@ (a) Finite Automaton structure, (b) Pattern matching.

@ Example: When we type *.ext on a console we are pattern
matching with any file with the same extension.

Finite Representations of a language

@ (a) Finite Automaton structure, (b) Pattern matching.

@ Example: When we type *.ext on a console we are pattern
matching with any file with the same extension.

@ Note: Pattern matching is an important application of finite
automata. Grep, fgrep, egrep are pattern matching commands
and they use finite automata in their implementation.

What is Pattern Matching?

@ 2 is the finite alphabet. A pattern is a single string of
symbols that represents a subset of strings in 2*. Eg. *.ext

What is Pattern Matching?

@ 2 is the finite alphabet. A pattern is a single string of
symbols that represents a subset of strings in 2*. Eg. *.ext

@ Two kinds — atomic and compound.

What is Pattern Matching?

@ 2 is the finite alphabet. A pattern is a single string of
symbols that represents a subset of strings in 2*. Eg. *.ext

@ Two kinds — atomic and compound.

@ Notational Convention: Denoted by Greek letters a, (3 etc.

Atomic Patterns

@ a foreach ae X,

@I =0

Atomic Patterns

@ a foreach ae X,
€,

0,

7
Q.

e Given a pattern «, L(«a) = {x|x matches the pattern a}.

Atomic Patterns

@ a foreach ae X,
€,

0,

7
Q.

e Given a pattern «, L(«a) = {x|x matches the pattern a}.

@ What are the strings that match to these atomic patterns?
{a},{e}, 0, %, %, respectively.

Compound Patterns

@ Inductively defined from atomic patterns using
binary operators +,, -, and
unary operators *," , ~ (or).

Compound Patterns

@ Inductively defined from atomic patterns using
binary operators +,, -, and
unary operators *," , ~ (or).

@ If v and 3 are patterns then so are

a+ B, ang, a- B,
a*, at,~ a (or ~a).

Strings matching to Compound Patterns

o [(a+pB)=Lla)U L(B)

Strings matching to Compound Patterns

Strings matching to Compound Patterns

Strings matching to Compound Patterns

Strings matching to Compound Patterns

Strings matching to Compound Patterns

a- f) = L(a)L(B)

a*) = L(«)*, concatenation of strings of length > 0
a’) = L(a)™, concatenation of length > 1 strings
~a)=~Lla)=2" - L(a)

Patterns and Properties of Matching

@ So patterns are strings over symbols ¥ = ¥ U {¢,), #, ©,
—I_J‘ ma '7+ 7* » ™y (7)}

Patterns and Properties of Matching

@ So patterns are strings over symbols ¥ = ¥ U {¢,), #, ©,
‘|‘a ﬁ, 'a+ 7* » ™y (7)}
@ Meaning of #, ©, ~ depends on 2.

Patterns and Properties of Matching

@ So patterns are strings over symbols ¥ = ¥ U {¢,), #, ©,
‘|‘a ﬁ, 'a+ 7* » ™ (7)}
@ Meaning of #, ©, ~ depends on 2.

@ Eg. x € L* is a pattern, L(x) is {x}.
What is L(x; + x2 + x3)7

Patterns and Properties of Matching

@ So patterns are strings over symbols ¥ = ¥ U {¢,), #, ©,
+, 17, 'v+ r 2 (7)}

@ Meaning of #, ©, ~ depends on 2.

@ Eg. x € L* is a pattern, L(x) is {x}.
What is L(x; + x2 + x3)7

@ Note: + is associative. So is -.

Patterns and Properties of Matching

So patterns are strings over symbols ¥ = ¥ U {¢,), #, ©,
‘|‘a ma 'a+ 7* » ™ (:')}
Meaning of #, ©, ~ depends on X.

Eg. x € L* is a pattern, L(x) is {x}.
What is L(x; + x2 + x3)7

Note: + is associative. So is -.

©a0@a means: Set of strings with at least 2 a's and ending in a.

Patterns and Properties of Matching

So patterns are strings over symbols ¥ = ¥ U {¢,), #, ©,
el b4 s 65)}

Meaning of #, ©, ~ depends on X.

Eg. x € L* is a pattern, L(x) is {x}.

What is L(x; + x2 + x3)7

Note: + is associative. So is -.

©a0@a means: Set of strings with at least 2 a's and ending in a.

Language L over 2 where every a has at least one b after it
(two a's may have the same b after them): is there a pattern
astl=La)?

(#N ~ a)* + @b(#N ~ a)*

Patterns and Properties of Matching

So patterns are strings over symbols ¥ = ¥ U {¢,), #, ©,
el b4 s 65)}

Meaning of #, ©, ~ depends on X.

Eg. x € L* is a pattern, L(x) is {x}.

What is L(x; + x2 + x3)7

Note: + is associative. So is -.

©a0@a means: Set of strings with at least 2 a's and ending in a.

Language L over 2 where every a has at least one b after it
(two a's may have the same b after them): is there a pattern
astl=La)?

(#N ~ a)* + @b(#N ~ a)*

Above language L if ¥ = {a, b}: what is the pattern?

e + ©b.

Questions

@ How hard is it to check if a string matches a given pattern?

Questions

@ How hard is it to check if a string matches a given pattern?

@ If | give you any set of strings, can it be matched by a pattern?
A pattern is a string over some ¥.1. There can be countably
infinite such patterns — think of it as a k-ary representation
where k is the number of symbols in ¥'; each pattern then
maps to a unique natural number. If a set matches to the
pattern, the strings are over 2. The number of possible
subsets is a power set of 2.*. So uncountable. So there will be
sets that cannot be matched to a pattern.

Questions

@ How hard is it to check if a string matches a given pattern?

@ If | give you any set of strings, can it be matched by a pattern?
A pattern is a string over some ¥.1. There can be countably
infinite such patterns — think of it as a k-ary representation
where k is the number of symbols in ¥'; each pattern then
maps to a unique natural number. If a set matches to the
pattern, the strings are over 2. The number of possible
subsets is a power set of 2.*. So uncountable. So there will be
sets that cannot be matched to a pattern.

@ Patterns o and /3 are equivalent (o = f3) if L(«) = L(/3). How
can you find out equivalence?

Questions

@ How hard is it to check if a string matches a given pattern?

@ If | give you any set of strings, can it be matched by a pattern?
A pattern is a string over some ¥.1. There can be countably
infinite such patterns — think of it as a k-ary representation
where k is the number of symbols in ¥'; each pattern then
maps to a unique natural number. If a set matches to the
pattern, the strings are over 2. The number of possible
subsets is a power set of 2.*. So uncountable. So there will be
sets that cannot be matched to a pattern.

@ Patterns o and /3 are equivalent (o = f3) if L(«) = L(/3). How
can you find out equivalence?

© Which operators are redundant?

Which operators are redundant?

e Eg. ¢ is equivalent to ~ (#0) or ()*.
© is same as #".
T not necessary: a* = aa*
not necessary: . ={a,b,..z} means # =a+b+...z
N is redundant — anN b =~ (~ a+ ~ b)
Can be shown that ~ is also redundant.

Which operators are redundant?

e Eg. ¢ is equivalent to ~ (#0) or ()*.
© is same as #".
T not necessary: a* = aa*
not necessary: . ={a,b,..z} means # =a+b+...z
N is redundant — anN b =~ (~ a+ ~ b)
Can be shown that ~ is also redundant.

@ Thus, each pattern is equivalent to one with only atomic
patterns a € X, ¢, () and operators +, -,*.

Which operators are redundant?

e Eg. ¢ is equivalent to ~ (#0) or ()*.
© is same as #".
T not necessary: a* = aa*
not necessary: . ={a,b,..z} means # =a+b+...z
N is redundant — anN b =~ (~ a+ ~ b)
Can be shown that ~ is also redundant.

@ Thus, each pattern is equivalent to one with only atomic
patterns a € X, ¢, () and operators +, -,*.

@ Note: Atomic pattern € is also redundant but we keep it for
notational simplicity.

Which operators are redundant?

Eg. ¢ is equivalent to ~ (#Q) or ()*.

© is same as #".

T not necessary: at = aa*

not necessary: . ={a,b,..z} means # =a+b+...z
N is redundant — anN b =~ (~ a+ ~ b)

Can be shown that ~ is also redundant.

Thus, each pattern is equivalent to one with only atomic
patterns a € X, ¢,) and operators +, -.*.

Note: Atomic pattern € is also redundant but we keep it for
notational simplicity.

A pattern that only uses the above atomic patterns and
operators is called a regular expression.

Notational Conventions for Patterns

@ - given preference over —+.
Eg: o+ Bvis a+ (Bv) and not (a + B)7.

Notational Conventions for Patterns

@ - given preference over +.
Eg: a+ Bvis a+ (87v) and not (a + B)7.

@ “ given preference over + or -.
Eg: o+ 8* is a+ (8*) and not (a + 3)*

Notational Conventions for Patterns

@ - given preference over +.
Eg: a+ Bvis a+ (87v) and not (a + B)7.

@ “ given preference over + or -.
Eg: a+ 8* is a+ (8*) and not (a + B)*
@ Or use parenthesis properly!

Regular Expressions and Regular Sets

@ Theorem: Equivalent statements:

Regular Expressions and Regular Sets

@ Theorem: Equivalent statements:

@ A. Ais a regular set

Regular Expressions and Regular Sets

@ Theorem: Equivalent statements:
@ A. Ais a regular set
@ B. A= L(«) for a pattern «

Regular Expressions and Regular Sets

Theorem: Equivalent statements:
A. Ais a regular set
B. A= L(«) for a pattern «

C. A= L(«) for a regular expression «.

Theorem: C = B

A = L(«) for a regular expression « = A = L(«) for a pattern
Q.
Proof: C — B from definition.

Theorem: B — A

A = L(«) for a pattern « = A is a regular set

@ Proof:

Theorem: B — A

A = L(«) for a pattern « = A is a regular set
@ Proof :

@ Singleton set {a} is regular (How?)

Theorem: B — A

A = L(«) for a pattern « = A is a regular set
@ Proof :
@ Singleton set {a} is regular (How?)
@ {¢} is regular (How?)

Theorem: B — A

A = L(«) for a pattern « = A is a regular set
@ Proof :
@ Singleton set {a} is regular (How?)
@ {¢} is regular (How?)
@ () is regular (How?)

Theorem: B =—> A contd.

@ We have shown regular sets are closed under
[Tl e | BF)5

Theorem: B —> A contd.

@ We have shown regular sets are closed under
[Tl e | BF)5

@ Closure under © (Final states make an ¢ transition to one new
final state which goes to start state by an € transition)

Theorem: B —> A contd.

@ We have shown regular sets are closed under
s e { BF)55,

@ Closure under © (Final states make an ¢ transition to one new
final state which goes to start state by an € transition)

@ Now we induct on the length of the pattern. What is the form
of the pattern?

Theorem: B —> A contd.

We have shown regular sets are closed under

[Tl e | BF)5

Closure under ™ (Final states make an € transition to one new
final state which goes to start state by an € transition)

Now we induct on the length of the pattern. What is the form
of the pattern?

Base case:

1. aforsome ac X : L(a) = {a} a regular set
2. €: L(e) = {e} a regular set

3. 0 : L(0) =0 a regular set

4. # - redundant

5. @ — redundant

Theorem: B —> A contd.

@ Induction: For compound pattern, induction on the number of
operators.

6. 37 — redundant

7. B+~: L(B+~) = L(B)UL(7y). By induction, 5 and = give
regular sets. Closure under U gives regular set.

8. L(BN~)=L(B)N L(v): regular set

9. L(B-v) = L(B) - L(v): regular set

10. L(B*) = L(B)*: regular set

11. L(~ B) or L(—=p) =~ L(B): regular set

Theorem: B —> A contd.

@ Induction: For compound pattern, induction on the number of

operators.

6. 37 — redundant

7. B+~: L(B+~) = L(B)UL(7y). By induction, 5 and = give
regular sets. Closure under U gives regular set.

8. L(BN~)=L(B)N L(v): regular set

9. L(B-v) = L(B) - L(v): regular set
10. L(B*) = L(B)*: regular set
11. L(~ B) or L(—=p) =~ L(B): regular set

@ Thus, done.

Intermezzo

e Eg: Convert the regular expression (ab* + b*a)(aaa)* to the
corresponding regular set.

Intermezzo

e Eg: Convert the regular expression (ab* + b*a)(aaa)* to the
corresponding regular set.

@ Eg. Try to convert {a"b"|n > 0} to a pattern. Is this regular?
Is this a pattern, or does there exist a pattern? - Wil
eventually lead to answer to Q2.

Intermezzo

e Eg: Convert the regular expression (ab* + b*a)(aaa)* to the
corresponding regular set.

@ Eg. Try to convert {a"b"|n > 0} to a pattern. Is this regular?
Is this a pattern, or does there exist a pattern? - Wil
eventually lead to answer to Q2.

@ Going back to the Questions: Q1 — How will you match a
string to a given pattern? [B — A]

Intermezzo

Eg: Convert the regular expression (ab* + b*a)(aaa)* to the
corresponding regular set.

Eg. Try to convert {a"b"|n > 0} to a pattern. Is this regular?
Is this a pattern, or does there exist a pattern? - Wil
eventually lead to answer to Q2.

Going back to the Questions: Q1 — How will you match a
string to a given pattern? [B — A]
(Q3 — We will have a look later).

Theorem: A — C

A is a regular set =— A = L(«) for a regular expression .

@ Proof:

Theorem: A — C

A is a regular set =— A = L(«) for a regular expression .
@ Proof:

@ Suppose | have an NFA M = (Q, >, A, S, F).
We will be defining an equivalent regular expression for L(M).

Theorem: A — C

A is a regular set =— A = L(«) for a regular expression .
@ Proof:

@ Suppose | have an NFA M = (Q, >, A, S, F).
We will be defining an equivalent regular expression for L(M).

e Aim: For a subset X C @ and states u, v, let o, be a
regular expression for all strings x that have a path from v to
v with all internal vertices in X labelled by x. K

o @
b J

Theorem: A — C

A is a regular set =— A = L(«) for a regular expression .

Proof:

Suppose | have an NFA M = (Q, X, A, S, F).
We will be defining an equivalent regular expression for L(M).

Aim: For a subset X C @ and states u, v, let o, be a
regular expression for all strings x that have a path from v to
v with all internal vertices in X labelled by x.

Implication: If we did this for all u, v and all subsets X, then

Zseszfef:()dgc would be a regular expression for all strings in
L(M). We will be done.

Theorem: A —> (C contd.

@ Proving the Aim by induction on size of X.

Theorem: A —> (C contd.

@ Proving the Aim by induction on size of X.

@ Base case: X is ().

Theorem: A —> (C contd.

@ Proving the Aim by induction on size of X.

@ Base case: X is ().

@ Ifu#v a‘ﬂv WS 72
— Sum over all elements in ¥’ ; 1 o

—Pif Y= n oping @ o L

Theorem: A —> (C contd.

Proving the Aim by induction on size of X.

Base case: X is ().
If usv, o

— Sum over all elements in ¥, Z' -Q{aLPMMtD thok ang (ol
—QifZ'=0 on ga%u\ﬂdsxmog uj

-)
If u= v, then o,

— Sum over all elements in ¥+ ¢ [all possible labelled loops
plus staying in the same state means no input read|

—cif 2'=10

Theorem: A —> (C contd.

e Now inductive definition of a%,. Take some q € X

Theorem: A —> (C contd.

e Now inductive definition of a%,. Take some q € X

X~ X—q7, X~ X—
° ay, = auy’ +aug "(age 7)ag 7.

Theorem: A —> (C contd.

e Now inductive definition of a%,. Take some g € X
X~ X g, . X— X
o @ﬁ(v = o | + Quq q(aqq q)*@qv o,
@ By IH on size of X, RHS combines to form a regular
expression. So, we are done with proving Aim, and therefore

Implication.

Example: Regular Expressions
for DFA for binary strings divisible by 3

0,12 02 0.2, 02vs« 02 ,
oy = agp + agy (g7) aqg O
02 s
gy = 0
42 o
ag] = L L

aqy = 01*0 + 10*1

ayp = 10° I O

So 0* + 0*1(01*0 + 10*1)*01*

0* + 0*1(01*0 + 10*1)*01* !

@ Can we get a simpler expression? Recall Q3. Is there an
equivalent expression that is simpler?

0* + 0*1(01*0 + 10*1)*01* !

@ Can we get a simpler expression? Recall Q3. Is there an
equivalent expression that is simpler?

@ Equivalence (=): reflexive, symmetric and transitive.
So if two expressions are equivalent one can substitute the

other.

0* + 0*1(01*0 + 10*1)*01* !

@ Can we get a simpler expression? Recall Q3. Is there an
equivalent expression that is simpler?

@ Equivalence (=): reflexive, symmetric and transitive.
So if two expressions are equivalent one can substitute the

other.
@ Q3 is asking to solve an NP-hard problem!

Laws of Simplification

at+(f+y)=(a+8)+7

a+ =0+«
a+0=a«a
& -10 = &

cel By = e)y

E' =€ =8

ol 5 4] Sl - §

Laws of Simplification

= €
Notation: a < f <— L(«
&+ p=l
@ fH+a-v<~v = a*f <~ (show set theoretically)
@ f+v.a<y = p.a* <~ (show set theoretically)

Other Equations

o (a-B)'a=a(B-a)*: Argue that (a-B) -a=a(8-a)

o (a*f)*a* =(a+)"

@ of(f-a*)" = (a+ B)*: Same as above if a* is taken as 7
and the first equation is applied.

@ (e+ «)* = ™ : Substitute appropriately in 2nd equation

@ o =a" - a: assume «v IS not € as otherwise it trivially
follows.
Neither LHS nor RHS matches with the ¢ string. Add € to
both sides and this gives o* to both sides, so LHS must be
same as RHS.

Example of Simplification

e (14+01+001)*(e+ 0+ 00)

Example of Simplification

e (1+ 01+ 001)*(e+ 0+ 00)
@ =((e+0+00)1)(e+0+04+00)[asl=€-1, a=a+a]

Example of Simplification

((e+0+00)1)*(e4+04+0+00)[asl=€-1, a=a+ q]

(14 01+ 001)*(e + 0+ 00)
= ((e+0)(e+0)1)*(e+0)(e + 0)

Example of Simplification

(1 4+ 01+ 001)*(e + 0+ 00)
=((e+0+00)1)*(e+0+0+00)[asl=€-1, a=a+q]
= ((e+0)(e+0)1)*(e+0)(e + 0)

This defines a set of strings that do not have more than 2
consecutive 0's in any substring.

