Pattern Matching and Regular Sets

Finite Representations of a language

• (a) Finite Automaton structure, (b) Pattern matching.

Finite Representations of a language

- (a) Finite Automaton structure, (b) Pattern matching.
- Example: When we type *.ext on a console we are pattern matching with any file with the same extension.

Finite Representations of a language

- (a) Finite Automaton structure, (b) Pattern matching.
- Example: When we type *.ext on a console we are pattern matching with any file with the same extension.
- Note: Pattern matching is an important application of finite automata. Grep, fgrep, egrep are pattern matching commands and they use finite automata in their implementation.

What is Pattern Matching?

• Σ is the finite alphabet. A *pattern* is a single string of symbols that represents a subset of strings in Σ^* . Eg. *.ext

What is Pattern Matching?

- Σ is the finite alphabet. A *pattern* is a single string of symbols that represents a subset of strings in Σ^* . Eg. *.ext
- Two kinds atomic and compound.

What is Pattern Matching?

- Σ is the finite alphabet. A *pattern* is a single string of symbols that represents a subset of strings in Σ^* . Eg. *.ext
- Two kinds atomic and compound.
- Notational Convention: Denoted by Greek letters α, β etc.

Atomic Patterns

a for each a ∈ Σ,
 ϵ,
 ∅,
 #,
 ℚ.

Atomic Patterns

```
    a for each a ∈ Σ,
    ϵ,
    ∅,
    #,
    ℚ.
```

• Given a pattern α , $L(\alpha) = \{x | x \text{ matches the pattern } \alpha\}$.

Atomic Patterns

```
    a for each a ∈ Σ,
    ϵ,
    ∅,
    #,
    ℚ.
```

- Given a pattern α , $L(\alpha) = \{x | x \text{ matches the pattern } \alpha\}$.
- What are the strings that match to these atomic patterns? $\{a\}, \{\epsilon\}, \emptyset, \Sigma, \Sigma^*$, respectively.

Compound Patterns

 Inductively defined from atomic patterns using binary operators +, ∩, ·, and unary operators *, +, ~ (or ¬).

Compound Patterns

- Inductively defined from atomic patterns using binary operators +, ∩, ·, and unary operators *, +, ~ (or ¬).
- If α and β are patterns then so are $\alpha + \beta$, $\alpha \cap \beta$, $\alpha \cdot \beta$, α^* , α^+ , $\sim \alpha$ (or $\neg \alpha$).

•
$$L(\alpha + \beta) = L(\alpha) \cup L(\beta)$$

- $L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
- $L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$

- $L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
- $L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$
- $L(\alpha \cdot \beta) = L(\alpha)L(\beta)$

- $L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
- $L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$
- $L(\alpha \cdot \beta) = L(\alpha)L(\beta)$
- $L(\alpha^*) = L(\alpha)^*$, concatenation of strings of length ≥ 0

- $L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
- $L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$
- $L(\alpha \cdot \beta) = L(\alpha)L(\beta)$
- $L(\alpha^*) = L(\alpha)^*$, concatenation of strings of length ≥ 0
- $L(\alpha^+) = L(\alpha)^+$, concatenation of length ≥ 1 strings

- $L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
- $L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$
- $L(\alpha \cdot \beta) = L(\alpha)L(\beta)$
- $L(\alpha^*) = L(\alpha)^*$, concatenation of strings of length ≥ 0
- $L(\alpha^+) = L(\alpha)^+$, concatenation of length ≥ 1 strings
- $L(\sim \alpha) = \sim L(\alpha) = \Sigma^* L(\alpha)$

• So patterns are strings over symbols $\Sigma^{\dagger} = \Sigma \cup \{\epsilon, \emptyset, \#, @, +, \cap, \cdot, +, *, \sim, (,)\}$

- So patterns are strings over symbols $\Sigma^{\dagger} = \Sigma \cup \{\epsilon, \emptyset, \#, @, +, \cap, \cdot, +, *, \sim, (,)\}$
- Meaning of #, @, \sim depends on Σ .

- So patterns are strings over symbols $\Sigma^{\dagger} = \Sigma \cup \{\epsilon, \emptyset, \#, @, +, \cap, \cdot, +, *, \sim, (,)\}$
- Meaning of #, @, \sim depends on Σ .
- Eg. $x \in \Sigma^*$ is a pattern, L(x) is $\{x\}$. What is $L(x_1 + x_2 + x_3)$?

- So patterns are strings over symbols $\Sigma^{\dagger} = \Sigma \cup \{\epsilon, \emptyset, \#, @, +, \cap, \cdot, +, *, \sim, (,)\}$
- Meaning of #, @, \sim depends on Σ .
- Eg. $x \in \Sigma^*$ is a pattern, L(x) is $\{x\}$. What is $L(x_1 + x_2 + x_3)$?
- Note: + is associative. So is ..

- So patterns are strings over symbols $\Sigma^{\dagger} = \Sigma \cup \{\epsilon, \emptyset, \#, @, +, \cap, \cdot, +, *, \sim, (,)\}$
- Meaning of #, @, \sim depends on Σ .
- Eg. $x \in \Sigma^*$ is a pattern, L(x) is $\{x\}$. What is $L(x_1 + x_2 + x_3)$?
- Note: + is associative. So is ..
- QaQa means: Set of strings with at least 2 a's and ending in a.

- So patterns are strings over symbols $\Sigma^{\dagger} = \Sigma \cup \{\epsilon, \emptyset, \#, @, +, \cap, \cdot, +, *, \sim, (,)\}$
- Meaning of #, @, \sim depends on Σ .
- Eg. $x \in \Sigma^*$ is a pattern, L(x) is $\{x\}$. What is $L(x_1 + x_2 + x_3)$?
- Note: + is associative. So is ..
- QaQa means: Set of strings with at least 2 a's and ending in a.
- Language L over Σ where every a has at least one b after it (two a's may have the same b after them): is there a pattern α s.t $L = L(\alpha)$? $(\# \cap \sim a)^* + @b(\# \cap \sim a)^*$

- So patterns are strings over symbols $\Sigma^{\dagger} = \Sigma \cup \{\epsilon, \emptyset, \#, @, +, \cap, \cdot, +, *, \sim, (,)\}$
- Meaning of #, @, \sim depends on Σ .
- Eg. $x \in \Sigma^*$ is a pattern, L(x) is $\{x\}$. What is $L(x_1 + x_2 + x_3)$?
- Note: + is associative. So is ..
- QaQa means: Set of strings with at least 2 a's and ending in a.
- Language L over Σ where every a has at least one b after it (two a's may have the same b after them): is there a pattern α s.t $L = L(\alpha)$? $(\# \cap \sim a)^* + @b(\# \cap \sim a)^*$
- Above language L if $\Sigma = \{a, b\}$: what is the pattern? $\epsilon + @b$.

• How hard is it to check if a string matches a given pattern?

- How hard is it to check if a string matches a given pattern?
- 2 If I give you any set of strings, can it be matched by a pattern? A pattern is a string over some Σ^{\dagger} . There can be countably infinite such patterns think of it as a k-ary representation where k is the number of symbols in Σ^{\dagger} ; each pattern then maps to a unique natural number. If a set matches to the pattern, the strings are over Σ . The number of possible subsets is a power set of Σ^* . So uncountable. So there will be sets that cannot be matched to a pattern.

- How hard is it to check if a string matches a given pattern?
- 2 If I give you any set of strings, can it be matched by a pattern? A pattern is a string over some Σ[†]. There can be countably infinite such patterns think of it as a k-ary representation where k is the number of symbols in Σ[†]; each pattern then maps to a unique natural number. If a set matches to the pattern, the strings are over Σ. The number of possible subsets is a power set of Σ*. So uncountable. So there will be sets that cannot be matched to a pattern.
- One of the proof of the proof

- How hard is it to check if a string matches a given pattern?
- If I give you any set of strings, can it be matched by a pattern? A pattern is a string over some Σ[†]. There can be countably infinite such patterns – think of it as a k-ary representation where k is the number of symbols in Σ[†]; each pattern then maps to a unique natural number. If a set matches to the pattern, the strings are over Σ. The number of possible subsets is a power set of Σ*. So uncountable. So there will be sets that cannot be matched to a pattern.
- One Patterns α and β are equivalent $(\alpha \equiv \beta)$ if $L(\alpha) = L(\beta)$. How can you find out equivalence?
- Which operators are redundant?

Eg. ε is equivalent to ~ (#@) or Ø*.
@ is same as #*.
+ not necessary: a⁺ = aa*
not necessary: Σ = {a, b, ..z} means # = a + b + ... z
∩ is redundant - a ∩ b = ~ (~ a+ ~ b)
Can be shown that ~ is also redundant.

- Eg. ε is equivalent to ~ (#@) or ∅*.
 @ is same as #*.
 + not necessary: a⁺ = aa*
 # not necessary: Σ = {a, b, ..z} means # = a + b + ... z
 ∩ is redundant a ∩ b = ~ (~ a+ ~ b)
 Can be shown that ~ is also redundant.
- Thus, each pattern is equivalent to one with only atomic patterns $a \in \Sigma, \epsilon, \emptyset$ and operators $+, \cdot, *$.

- Eg. ε is equivalent to ~ (#@) or Ø*.
 @ is same as #*.
 + not necessary: a⁺ = aa*
 # not necessary: Σ = {a, b, ..z} means # = a + b + ... z
 ∩ is redundant a ∩ b = ~ (~ a+ ~ b)
 Can be shown that ~ is also redundant.
- Thus, each pattern is equivalent to one with only atomic patterns $a \in \Sigma, \epsilon, \emptyset$ and operators $+, \cdot, *$.
- Note: Atomic pattern ∈ is also redundant but we keep it for notational simplicity.

- Eg. ε is equivalent to ~ (#@) or Ø*.
 ② is same as #*.
 + not necessary: a⁺ = aa*
 # not necessary: Σ = {a, b, ..z} means # = a + b + ... z
 ∩ is redundant a ∩ b = ~ (~ a+ ~ b)
 Can be shown that ~ is also redundant.
- Thus, each pattern is equivalent to one with only atomic patterns $a \in \Sigma, \epsilon, \emptyset$ and operators $+, \cdot, *$.
- Note: Atomic pattern ϵ is also redundant but we keep it for notational simplicity.
- A pattern that only uses the above atomic patterns and operators is called a regular expression.

Notational Conventions for Patterns

• given preference over +.

Eg: $\alpha + \beta \gamma$ is $\alpha + (\beta \gamma)$ and not $(\alpha + \beta)\gamma$.

Notational Conventions for Patterns

- given preference over +.
 - Eg: $\alpha + \beta \gamma$ is $\alpha + (\beta \gamma)$ and not $(\alpha + \beta)\gamma$.
- * given preference over + or ·.
 - Eg: $\alpha + \beta^*$ is $\alpha + (\beta^*)$ and not $(\alpha + \beta)^*$

Notational Conventions for Patterns

- given preference over +.
 - Eg: $\alpha + \beta \gamma$ is $\alpha + (\beta \gamma)$ and not $(\alpha + \beta)\gamma$.
- * given preference over + or ·.
 - Eg: $\alpha + \beta^*$ is $\alpha + (\beta^*)$ and not $(\alpha + \beta)^*$
- Or use parenthesis properly!

• **Theorem**: Equivalent statements:

- **Theorem**: Equivalent statements:
- A. A is a regular set

- **Theorem**: Equivalent statements:
- A. A is a regular set
- B. $A = L(\alpha)$ for a pattern α

- **Theorem**: Equivalent statements:
- A. A is a regular set
- B. $A = L(\alpha)$ for a pattern α
- C. $A = L(\alpha)$ for a regular expression α .

 $A = L(\alpha)$ for a regular expression $\alpha \implies A = L(\alpha)$ for a pattern α .

Proof: $C \implies B$ from definition.

 $A = L(\alpha)$ for a pattern $\alpha \implies A$ is a regular set

• Proof:

 $A = L(\alpha)$ for a pattern $\alpha \implies A$ is a regular set

- Proof:
- Singleton set {a} is regular (How?)

 $A = L(\alpha)$ for a pattern $\alpha \implies A$ is a regular set

- Proof :
- Singleton set {a} is regular (How?)
- $\{\epsilon\}$ is regular (How?)

- $A = L(\alpha)$ for a pattern $\alpha \implies A$ is a regular set
 - Proof :
 - Singleton set {a} is regular (How?)
 - $\{\epsilon\}$ is regular (How?)
 - ∅ is regular (How?)

• We have shown regular sets are closed under \cap, \cup, \sim (or \neg), $\cdot, *$.

- We have shown regular sets are closed under \cap, \cup, \sim (or \neg), $\cdot, *$.
- Closure under $^+$ (Final states make an ϵ transition to one new final state which goes to start state by an ϵ transition)

- We have shown regular sets are closed under \cap, \cup, \sim (or \neg), $\cdot, *$.
- Closure under $^+$ (Final states make an ϵ transition to one new final state which goes to start state by an ϵ transition)
- Now we induct on the length of the pattern. What is the form of the pattern?

- We have shown regular sets are closed under \cap, \cup, \sim (or \neg), $\cdot, *$.
- Closure under $^+$ (Final states make an ϵ transition to one new final state which goes to start state by an ϵ transition)
- Now we induct on the length of the pattern. What is the form of the pattern?
- Base case:
 - 1. a for some $a \in \Sigma$: $L(a) = \{a\}$ a regular set
 - 2. ϵ : $L(\epsilon) = {\epsilon}$ a regular set
 - 3. \emptyset : $L(\emptyset) = \emptyset$ a regular set
 - 4. # redundant
 - 5. 0 redundant

- Induction: For compound pattern, induction on the number of operators.
 - 6. β^+ redundant
 - 7. $\beta + \gamma$: $L(\beta + \gamma) = L(\beta) \cup L(\gamma)$. By induction, β and γ give regular sets. Closure under \cup gives regular set.
 - 8. $L(\beta \cap \gamma) = L(\beta) \cap L(\gamma)$: regular set
 - 9. $L(\beta \cdot \gamma) = L(\beta) \cdot L(\gamma)$: regular set
 - 10. $L(\beta^*) = L(\beta)^*$: regular set
 - 11. $L(\sim \beta)$ or $L(\neg \beta) = \sim L(\beta)$: regular set

- Induction: For compound pattern, induction on the number of operators.
 - 6. β^+ redundant
 - 7. $\beta + \gamma$: $L(\beta + \gamma) = L(\beta) \cup L(\gamma)$. By induction, β and γ give regular sets. Closure under \cup gives regular set.
 - 8. $L(\beta \cap \gamma) = L(\beta) \cap L(\gamma)$: regular set
 - 9. $L(\beta \cdot \gamma) = L(\beta) \cdot L(\gamma)$: regular set
 - 10. $L(\beta^*) = L(\beta)^*$: regular set
 - 11. $L(\sim \beta)$ or $L(\neg \beta) = \sim L(\beta)$: regular set
- Thus, done.

• Eg: Convert the regular expression $(ab^* + b^*a)(aaa)^*$ to the corresponding regular set.

- Eg: Convert the regular expression $(ab^* + b^*a)(aaa)^*$ to the corresponding regular set.
- Eg. Try to convert $\{a^nb^n|n\geq 0\}$ to a pattern. Is this regular? Is this a pattern, or does there exist a pattern? Will eventually lead to answer to Q2.

- Eg: Convert the regular expression $(ab^* + b^*a)(aaa)^*$ to the corresponding regular set.
- Eg. Try to convert $\{a^nb^n|n\geq 0\}$ to a pattern. Is this regular? Is this a pattern, or does there exist a pattern? Will eventually lead to answer to Q2.
- Going back to the Questions: Q1 How will you match a string to a given pattern? $[B \implies A]$

- Eg: Convert the regular expression $(ab^* + b^*a)(aaa)^*$ to the corresponding regular set.
- Eg. Try to convert $\{a^nb^n|n\geq 0\}$ to a pattern. Is this regular? Is this a pattern, or does there exist a pattern? Will eventually lead to answer to Q2.
- Going back to the Questions: Q1 How will you match a string to a given pattern? $[B \implies A]$
- (Q3 We will have a look later).

A is a regular set \implies $A = L(\alpha)$ for a regular expression α .

Proof:

A is a regular set \implies $A = L(\alpha)$ for a regular expression α .

- Proof:
- Suppose I have an NFA $M = (Q, \Sigma, \Delta, S, F)$. We will be defining an equivalent regular expression for L(M).

A is a regular set \implies $A = L(\alpha)$ for a regular expression α .

- Proof:
- Suppose I have an NFA $M = (Q, \Sigma, \Delta, S, F)$. We will be defining an equivalent regular expression for L(M).
- **Aim**: For a subset $X \subseteq Q$ and states u, v, let α_{uv}^X be a regular expression for all strings x that have a path from u to v with all internal vertices in X labelled by x.

· L 5

A is a regular set \implies $A = L(\alpha)$ for a regular expression α .

- Proof:
- Suppose I have an NFA $M = (Q, \Sigma, \Delta, S, F)$. We will be defining an equivalent regular expression for L(M).
- **Aim**: For a subset $X \subseteq Q$ and states u, v, let α_{uv}^X be a regular expression for all strings x that have a path from u to v with all internal vertices in X labelled by x.
- Implication: If we did this for all u, v and all subsets X, then $\sum_{s \in S} \sum_{f \in F} \alpha_{sf}^{Q}$ would be a regular expression for all strings in L(M). We will be done.

Proving the Aim by induction on size of X.

- Proving the Aim by induction on size of X.
- Base case: X is ∅.

- Proving the Aim by induction on size of X.
- Base case: X is ∅.
- If $u \neq v$, α_{uv}^{\emptyset} = Sum over all elements in Σ' , $\Sigma' = \{$ alphabets that are labels on outgoing edges of $u \in \emptyset$ if $\Sigma' = \emptyset$

- Proving the Aim by induction on size of X.
- Base case: X is ∅.
- If $u \neq v$, α_{uv}^{\emptyset} = Sum over all elements in Σ' , Σ' Ealphabets that are labels = \emptyset if $\Sigma' = \emptyset$ on sutgarg edges of u on sutgarg edges of u
- If u = v, then α_{uv}^{\emptyset} = Sum over all elements in $\Sigma' + \epsilon$ [all possible labelled loops plus staying in the same state means no input read] = ϵ if $\Sigma' = \emptyset$

• Now inductive definition of α_{uv}^X . Take some $q \in X$

• Now inductive definition of α_{uv}^X . Take some $q \in X$

•
$$\alpha_{uv}^{X} = \alpha_{uv}^{X-q} + \alpha_{uq}^{X-q} (\alpha_{qq}^{X-q})^* \alpha_{qv}^{X-q}$$
.

- Now inductive definition of α_{uv}^X . Take some $q \in X$
- $\alpha_{uv}^{X} = \alpha_{uv}^{X-q} + \alpha_{uq}^{X-q} (\alpha_{qq}^{X-q})^* \alpha_{qv}^{X-q}$.
- By IH on size of X, RHS combines to form a regular expression. So, we are done with proving Aim, and therefore Implication.

Example: Regular Expressions for DFA for binary strings divisible by 3

$$\begin{array}{l} \bullet \ \alpha_{00}^{0,1,2} = \alpha_{00}^{0,2} + \alpha_{01}^{0,2}(\alpha_{11}^{0,2})^*\alpha_{10}^{0,2} \\ \bullet \ \alpha_{00}^{0,2} = 0^* \\ \bullet \ \alpha_{01}^{0,2} = 0^*1 \\ \bullet \ \alpha_{11}^{0,2} = 01^*0 + 10^*1 \\ \bullet \ \alpha_{10}^{0,2} = 10^* \\ \bullet \ \mathrm{So} \ 0^* + 0^*1(01^*0 + 10^*1)^*01^* \end{array}$$

$$0^* + 0^*1(01^*0 + 10^*1)^*01^*$$

 Can we get a simpler expression? Recall Q3. Is there an equivalent expression that is simpler?

$$0^* + 0^*1(01^*0 + 10^*1)^*01^*$$

- Can we get a simpler expression? Recall Q3. Is there an equivalent expression that is simpler?
- Equivalence (≡): reflexive, symmetric and transitive.
 So if two expressions are equivalent one can substitute the other.

$$0^* + 0^*1(01^*0 + 10^*1)^*01^*$$
!!

- Can we get a simpler expression? Recall Q3. Is there an equivalent expression that is simpler?
- Equivalence (≡): reflexive, symmetric and transitive.
 So if two expressions are equivalent one can substitute the other.
- Q3 is asking to solve an NP-hard problem!

Laws of Simplification

•
$$\alpha + (\beta + \gamma) \equiv (\alpha + \beta) + \gamma$$

•
$$\alpha + \beta \equiv \beta + \alpha$$

$$\bullet \ \alpha + \emptyset \equiv \alpha$$

$$\bullet \ \alpha + \alpha \equiv \alpha$$

•
$$\alpha(\beta \cdot \gamma) \equiv (\alpha \cdot \beta)\gamma$$

$$\bullet \ \epsilon \cdot \alpha \equiv \alpha \cdot \epsilon \equiv \alpha$$

•
$$\alpha(\beta + \gamma) \equiv \alpha \cdot \beta + \alpha \cdot \gamma$$

Laws of Simplification

•
$$(\alpha + \beta)\gamma \equiv \alpha \cdot \gamma + \beta \cdot \gamma$$

•
$$\emptyset \cdot \alpha \equiv \alpha \cdot \emptyset \equiv \emptyset$$

$$\bullet \ \epsilon + \alpha \cdot \alpha^* \equiv \alpha^* \equiv \epsilon + \alpha^* \alpha$$

Notation: $\alpha \leq \beta \iff L(\alpha) \subseteq L(\beta) \iff L(\alpha + \beta) = L(\beta)$, or $\alpha + \beta \equiv \beta$

- $\beta + \alpha \cdot \gamma \leq \gamma \implies \alpha^* \beta \leq \gamma$ (show set theoretically)
- $\beta + \gamma . \alpha \leq \gamma \implies \beta . \alpha^* \leq \gamma$ (show set theoretically)

Other Equations

- $(\alpha \cdot \beta)^* \alpha \equiv \alpha (\beta \cdot \alpha)^*$: Argue that $(\alpha \cdot \beta)^i \cdot \alpha \equiv \alpha (\beta \cdot \alpha)^i$
- $(\alpha^*\beta)^*\alpha^* \equiv (\alpha + \beta)^*$
- $\alpha^*(\beta \cdot \alpha^*)^* \equiv (\alpha + \beta)^*$: Same as above if α^* is taken as γ and the first equation is applied.
- $(\epsilon + \alpha)^* \equiv \alpha^*$: Substitute appropriately in 2nd equation
- $\alpha \cdot \alpha^* \equiv \alpha^* \cdot \alpha$: assume α is not ϵ as otherwise it trivially follows.

Neither LHS nor RHS matches with the ϵ string. Add ϵ to both sides and this gives α^* to both sides, so LHS must be same as RHS.

•
$$(1+01+001)^*(\epsilon+0+00)$$

•
$$(1+01+001)^*(\epsilon+0+00)$$

•
$$\equiv ((\epsilon + 0 + 00)1)^*(\epsilon + 0 + 0 + 00)$$
 [as $1 \equiv \epsilon \cdot 1$, $\alpha \equiv \alpha + \alpha$]

- $(1+01+001)^*(\epsilon+0+00)$
- $\equiv ((\epsilon + 0 + 00)1)^*(\epsilon + 0 + 0 + 00)$ [as $1 \equiv \epsilon \cdot 1$, $\alpha \equiv \alpha + \alpha$]
- $\bullet \equiv ((\epsilon+0)(\epsilon+0)1)^*(\epsilon+0)(\epsilon+0)$

- $(1+01+001)^*(\epsilon+0+00)$
- $\equiv ((\epsilon + 0 + 00)1)^*(\epsilon + 0 + 0 + 00)$ [as $1 \equiv \epsilon \cdot 1$, $\alpha \equiv \alpha + \alpha$]
- $\bullet \equiv ((\epsilon+0)(\epsilon+0)1)^*(\epsilon+0)(\epsilon+0)$
- This defines a set of strings that do not have more than 2 consecutive 0's in any substring.