Finite Automaton and Regular sets
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State of a system: in one particular time step, description of
the system. All relevant information necessary to determine
where the system is at present and this helps to determine
what action the system will take in the next time step.

Transitions: changes of state. Can happen spontaneously or
In response to external inputs.

Math assumption: no time step, instantaneous transitions.
Clock cycles in digital computers allow us to treat computers
as digital instead of analog devices.

State transition system: system modelled in terms of states
and transitions. Eg. Digital watch, elevator, Rubic’'s cube

System with finite states and transitions among them — finite
state transition system. This leads to the math model called
finite automaton.



Deterministic Finite Automaton: Math representation

DFA: Structure M = (Q, %, 9, s, F)

@ — finite set of states

> — Finite alphabet

0 — @ x X — @, state transition function. Which state to move to
In response to input alphabet. Finite set of ordered pairs.

s — start state

F — subset of @ called accept/final states.

Note: A DFA structure can be represented as a finite string — pick
favourite encoding. The structure definition involves finite items,
so the structure can be represented as a finite string.



An Example DFA

M= (Q,%,8 s,F) 3
=20,1,2 {a,b
(2: i&>(0,0§ 1, (0, '°) O

§(2/a)= 6(2,b)=2
s=0 , F=932§



Transition Table
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Transition Diagram
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Input String to a DFA M

@ Following a path along the transition diagram to see in what
state M ends up when the input string ends.

@ String accepted if the end is in F, rejected otherwise.

@ Ex: What are the strings accepted in the example above?

5.0.8"




Strings accepted by Example DFA

!zast 2 a's
ba bbb A
beob V4
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Formalisation: Function for processing an input string

@ Processing an input alphabet: Transition function
0: QXX — Q.

@ Processing an input string: Extend ¢ to a multistep transition
function, 0 : Q@ X X* = @

s

0(g,€) = q

~ M

0(q,xa) = 0(d(q, x), a) — Inductive definition
@ Each step is determined by 0.
@ Induction step says g —*@ ¢’ same as g —+* p =7 ¢

@ 0 and d agree on length 1 strings:
d(q,a) = d(q,e.a) = 6(5(q, €), a) [Inductive definition]
= 0(q, a) |Base case of definition]
x accepted if 4(s, x) € F, otherwise not.
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Language accepted by DFA M

L(M) = {x|o(s, x) € F}

Such a set is called a regular set. A is a regular set if A= L(M) for
a DFA M.

Eg: Is the set {x € {a, b}*|x contains two consecutive a's} a
regular set?
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0(q, xy) = 0(0(q, ), y)

@ Proof: Induction on length of y.
@ Base Case 1: If y = ¢, for any x LHS (g, x.€) = d(q, x),
]

o Similarly, by definition of §, RHS 6(d(q, x), €) = d(q, x)



0(q, xy) = 0(0(q, ), y)

Proof: Induction on length of y.
Base Case 1: If y = ¢, for any x LHS 6(q, x.€) = &
]

Similarly, by definition of 4, RHS §(d(q, x), €) =
56 LHS = RHD.

Base Case 2: y = a,a € X: For any x
0(q,xa) = 0(0(q, x), a) [Inductive definition]
= 0(d(q, x), a) [By equality on length 1 strings]

(g,x),
q,X)



5(q,xv) = 8(5(q.x). y) (contd.)

@ IH: True for all x and all y’ with length strictly less than y.



5(q,xv) = 8(5(q.x). y) (contd.)

@ IH: True for all x and all y’ with length strictly less than y.

o Consider the string xy = xy'a, a € ¥.



5(q,xv) = 8(5(q.x). y) (contd.)

@ IH: True for all x and all y’ with length strictly less than y.
e Consider the string xy = xy’a, a € X.

o 0(q,xy'a) = 6(6(q,xy’),a) = 0(5(q, x/'), a) [equality on
length 1 strings]



5(q,xv) = 8(5(q.x). y) (contd.)

IH: True for all x and all y’ with length strictly less than y.
Consider the string xy = xy’a, a € ¥.

0(q,xy'a) = 6(0(q,xy"),a) = 5(6(g, xy"), a) [equality on
length 1 strings]

= 5(5(0(q,x),y"), a) [IH]



5(q,xv) = 8(5(q.x). y) (contd.)

IH: True for all x and all y’ with length strictly less than y.
Consider the string xy = xy’a, a € ¥.

0(q,xy'a) = 6(6(q,xy’), a) = 6(3(q, xy"), a) [equality on
length 1 strings]
= 4(6 ( (g, x),y"),a) [IH]

(Le 5(q,x))



5(q,xv) = 8(5(q.x). y) (contd.)

IH: True for all x and all y’ with length strictly less than y.
Consider the string xy = xy’a, a € ¥.

0(q,xy'a) = 6(6(q, %), a) = 0(3(q,xy"), a) [equality on
length 1 strings]

(((A) y'),a) [IH]
q' = (g, x))
q,y'),a)
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5(q,xv) = 8(5(q.x). y) (contd.)

IH: True for all x and all y’ with length strictly less than y.
Consider the string xy = xy’a, a € ¥.

0(q,xy'a) = 6(6(q, %), a) = 0(3(q,xy"), a) [equality on
length 1 strings]

0(0(0(q,x),y’),a) [IH]



5(q,xv) = 8(5(q.x). y) (contd.)

IH: True for all x and all y’ with length strictly less than y.
Consider the string xy = xy’a, a € ¥.

0(q,xy'a) = 6(6(q, %), a) = 0(3(q,xy"), a) [equality on
length 1 strings]

((( x),y"),a) [IH]

t 6(q,x))
:5(5( y'), a)
= (g, y'a) [Base Case 2: length 1 string]
= 0(0(q,x),y'a) = 0(3(q,x), y)



