An algorithm for the Quotient Construction

\overline{a}							
×	b						
×		С					
×			d				
×				e			
×							
	×	×	×	×	×	$\overline{(\mathbf{g})}$	
	×	×	×	×	×) -	(h)
а							
a ×	b						
a × ×	b -	С					
a × × ×	b - -	С —	d				
a × × × ×	b - -∠×	с - ×	d ×	е			
a × × × × ×	<i>b</i> - -√√× ×	с - × ×	<i>d</i> × ×	e 			
$a \\ \times \\ $	<i>b</i> - -√× × ×	с - × × ×	<i>d</i> × × ×	e - ×	f ×	8_	

0 1

c d

C

b

d

8

<u>g</u>

h

h h

e

e

8

h

8

a

b

d

e

g

h

a								a								C							
-	b								b							2	k						
—	-	С						1	1	С						1	1	С					
0	0	0	d					0	0	0	d					C	0	0	d				
	—	-	0	е				-		1	0	е				-	- 2	1	0	е			
	-	—	0	-	f			1 1	-	1	0	-	f			2	-	1	0	2	f		
	—	-	0	_		8		1	1	-	0	1	1	<i>g</i>		1	1	-	0	1	1	8	
0	0	0	-	0	0	0	h	0	0	0	_	0	0	0	h	(C	0	-	0	0	0	h

Running time
$$T$$
 has $\binom{n}{2} = O(n^2)$ entries
 $n = |Q|$ $|\Sigma| = Constant$
Init: $O(n^2)$
Each iteration : $O(n^2)$
Max no of iteration is $O(n^2)$
Correctness β and q are marked
 $\begin{cases} \beta & p & and \ q & are marked \end{cases}$
 \Rightarrow Evident $(\Xi - \widehat{S}(\beta, z) \in F \text{ and } \widehat{S}(q, z) \notin F$
for nome $z \in \mathbb{Z}^*$
Proceed by induction on (F) .

Partition of
$$\Sigma^*$$
 produced by a DFA

$$L = \mathcal{L}(M)$$

$$\chi \in \Sigma^*$$

$$\delta(x, x) \rightarrow a \text{ unique element of } Q$$

$$\delta \neq L_q = \{x \in \Sigma^* \mid \delta(x, x) = q\} \subseteq \Sigma^*$$

$$L_q, q \in Q, \text{ from a partition of } \Sigma^*$$

$$L = U L_q$$

$$\phi \neq q \Rightarrow L_p \cap L_q = \phi$$

$$\chi \in Q = U L_q$$

$$q \in Q = F$$

$L = \{x \in \{0,1\}^* \mid x \text{ contains at least one 1 in its last two positions}\}$

 $L_{\varepsilon} = \{ \varepsilon \}$ $L_0 = \{ 0 \}$ $L_1 = \{ 1 \}$ $L_{00} = \mathscr{L} ((0+1) * 00)$ $L_{01} = \mathscr{L} ((0+1)*01)$ $L_{10} = \mathscr{L} ((0+1)^* 10)$ $L_{11} = \mathscr{L} ((0+1)^* 11)$ $L = L_1 \cup L_{01} \cup L_{10} \cup L_{11}$ 7 - part fartition

$L = \{x \in \{0,1\}^* \mid x \text{ contains at least one 1 in its last two positions}\}$

 $L_{\mathcal{E}} = \{ \epsilon \}$ $L_{00} = \{ 0 \} \cup \mathscr{L} ((0 + 1)*00)$ $L_{01} = \{ 1 \} \cup \mathscr{L} ((0 + 1)*01)$ $L_{10} = \mathscr{L} ((0 + 1)*10)$ $L_{11} = \mathscr{L} ((0 + 1)*11)$ $L = L_{01} \cup L_{10} \cup L_{11}$

5 parts

$L = \{x \in \{0,1\}^* \mid x \text{ contains at least one } 1 \text{ in its last two positions}\}$

 $L_{00} = \{ \epsilon, 0 \} \cup \mathscr{L} ((0+1)*00)$ $L_{01} = \{ 1 \} \cup \mathscr{L} ((0+1)*01)$ $L_{10} = \mathscr{L} ((0+1)*10)$ $L_{11} = \mathscr{L} ((0+1)*11)$ $L = L_{01} \cup L_{10} \cup L_{11}$

4 parts

 $L = \{x \in \{0,1\}^* \mid x \text{ contains at least one } 1 \text{ in its last two positions}\}$

As the # of states decreases, the partition becomes COArser. $L_{00} = \{ \epsilon, 0 \} \cup \mathscr{L} ((0+1)*00)$ $L_{10} = \mathscr{L} ((0+1)*10)$ $L_{\#1} = \mathscr{L} ((0+1)*1)$ $L = L_{10} \cup L_{\#1}$

3 parts

Not all partitions are realizable by DFA

 $L = \{x \in \{0,1\}^* \mid x \text{ contains at least one 1 in its last two positions}\}$

Partitions = Equivalence relations Myhill–Nerode Relations Given M, define an équivalence velation = M OR Z as MNT $\chi \equiv Y$ if and any if $\hat{S}(s, \chi) = \hat{S}(s, \chi)$ relation For Left congruence: $\chi \equiv y \implies \chi \alpha \equiv y \alpha \forall \alpha \epsilon \Sigma$ finitely many equiv classes.