Formal Languages and Automata Theory

A note on ε -NFA

Let $N = (Q, \Sigma, \Delta, S, F)$ be an ε -NFA. Here, Q is a finite set of states, Σ is the input alphabet, $S \subseteq Q$ is the set of start states, $F \subseteq Q$ is the set of final states, and $\Delta : Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$ is the transition function satisfying $q \in \Delta(q, \varepsilon)$ for all $q \in Q$.

Def: A subset $T \subseteq Q$ is called ε -closed if there is no ε -transition from any state in T to any state outside T.

Evidently, \emptyset and Q are always ε -closed.

Lemma: ε -closed subsets are closed under intersection.

Proof Let T_1 and T_2 be two ε -closed subsets, and $T = T_1 \cap T_2$. If $T = \emptyset$, the result is obvious. So assume that $T \neq \emptyset$. Suppose that T is not ε -closed. Then, there exists $t \in T$ and $t' \in Q - T$ such that $t \to t'$ is an ε -transition. Since $t' \notin T_1 \cap T_2$, it follows that either $t' \notin T_1$ or $t' \notin T_2$ (or both). But then, if $t' \notin T_1$, then T_1 is not ε -closed, whereas if $t' \notin T_2$, then T_2 is not ε -closed, a contradiction.

- 1. (a) Prove that ε -closed subsets are closed under union.
 - (b) Prove that ε -closed subsets are non necessarily closed under complement.
- **2.** Let *T* be an ε -closed subset of *Q*. Prove that $\bigcup_{t \in T} \Delta(t, \varepsilon) = T$.

Def: Let $T \subseteq Q$. The ε -closure of T is the smallest (with respect to containment) subset C of Q such that C is ε -closed, and $T \subseteq C$.

By the above lemma (and the fact that Q itself is ε -closed), the ε -closure of any subset of Q is uniquely defined. We denote the ε -closure of T as ε -closure(T).

3. Let T_1 and T_2 be two subsets of Q. Prove that ε -closure $(T_1 \cup T_2) = \varepsilon$ -closure $(T_1) \cup \varepsilon$ -closure (T_2) .

We now define the function $\hat{\Delta} : 2^Q \times \Sigma^* \to 2^Q$ as follows. We take all $T \subseteq Q$, $x \in \Sigma^*$, and $a \in \Sigma$ in the following recursive definition.

$$\hat{\Delta}(T, \varepsilon) = \varepsilon \text{-closure}(T), \hat{\Delta}(T, xa) = \varepsilon \text{-closure}\left(\bigcup_{t \in \hat{\Delta}(T, x)} \Delta(t, a)\right).$$

Notice that Σ^* consists of strings containing symbols in Σ alone. So we take *a* to be a real symbol (not ε). The ε -transitions are handled by the ε -closures.

Finally, the language of N is defined as

$$\mathscr{L}(N) = \Big\{ w \in \Sigma^* \ \Big| \ \hat{\Delta}(S, w) \cap F \neq \emptyset \Big\}.$$

We now convert the ε -NFA $N = (Q, \Sigma, \Delta, S, F)$ to an equivalent DFA $D = (Q', \Sigma, \delta, s, F')$. We take Q' to be the set of all ε -closed subsets of Q, $s = \varepsilon$ -closure(S), and F' to be set of all ε -closed subsets T of Q such that $T \cap F \neq \emptyset$. Finally, for all $T \in Q'$ and $a \in \Sigma$, we define

$$\delta(T,a) = \varepsilon$$
-closure $\left(\bigcup_{t \in T} \Delta(t,a)\right)$.

4. Prove that *D* is a DFA under this transition function δ , and also that $\mathscr{L}(D) = \mathscr{L}(N)$.

As an example, the ε -NFA in Part (a) of Figure 1 has the following transition function. We take $\Sigma = \{a, b\}$.

$\Delta(0,a)$	=	{1}	$\Delta(0,b)$	=	Ø	$\Delta(0, oldsymbol{arepsilon})$	=	$\{0\}$
$\Delta(1,a)$	=	{1}	$\Delta(1,b)$	=	{2}	$\Delta(1, \varepsilon)$	=	{1}
$\Delta(2,a)$	=	Ø	$\Delta(2,b)$	=	{2}	$\Delta(2, \varepsilon)$	=	$\{0,2\}$

Let $L = \mathscr{L}(N)$. Clearly, L consists all and only the strings of the form $(a^+b^+)^+$, that is,

$$L = \left\{ a^{i_1} b^{j_1} a^{i_2} b^{j_2} \dots a^{i_n} b^{j_n} \mid n \ge 1 \text{ and all } i_k \text{ and } j_l \text{ are } \ge 1 \right\}.$$

5. Prove that L is the same as the set of all strings over $\{a, b\}$, that start with a and end with b.

 \emptyset is always ε -closed. Since there are no outgoing ε -transitions from 0,1, the subsets $\{0\}, \{1\}, \{0,1\}$ are ε -closed. Since there is an ε -transition from 2 to 0, any ε -closed subset containing 2 must also contain 0. This gives two more ε -closed subsets $\{0,2\}$ and $\{0,1,2\}$. The subsets $\{2\}$ and $\{1,2\}$ are not ε -closed. So we take $Q' = \{\emptyset, \{0\}, \{1\}, \{0,1\}, \{0,2\}, \{0,1,2\}\}$. We have $s = \varepsilon$ -closure(S) = ε -closure($\{0\}$) = $\{0\}$. Since $F = \{2\}$, the final states of D are $\{0,2\}$ and $\{0,1,2\}$ only. In order to illustrate the working of δ , we take the example of $T = \{0,2\}$. We have $\delta(\{0,2\},a) = \varepsilon$ -closure($\Delta(0,a) \cup \Delta(2,a)$) = ε -closure($\{1\} \cup \emptyset$) = ε -closure($\{1\}\} = \{1\}$, and $\delta(\{0,2\},b) = \varepsilon$ -closure($\Delta(0,b) \cup \Delta(2,b)$) = ε -closure($\emptyset \cup \{2\}$) = ε -closure($\{2\}$) = $\{0,2\}$. The complete transition diagram is given in Part (b) of the Figure 1. The (ε -closed) states $\{0,1\}$ and $\{0,1,2\}$ are not reachable from the start state $\{0\}$, and can be removed from the converted DFA.

6. Convert the following three ε -NFA to equivalent DFA. In each case, mark the unreachable states (if any).

Let us now review the question whether an ε -NFA can be converted to an NFA (without ε -transitions) without invoking the subset-construction procedure. Let us start with the ε -NFA $N = (Q, \Sigma, \Delta, S, F)$. We want to generate

an NFA (without ε -transitions) $\tilde{N} = (\tilde{Q}, \Sigma, \tilde{\Delta}, \tilde{S}, \tilde{F})$ with $\mathscr{L}(N) = \mathscr{L}(\tilde{N})$. We take $\tilde{Q} = Q$ and $\tilde{S} = \varepsilon$ -closure(S). We also take $\tilde{F} = \{q \in Q \mid \varepsilon$ -closure($\{q\} \cap F \neq \emptyset\}$. For every $q \in Q$ and $a \in \Sigma$, we take $\tilde{\Delta}(q, a) = \varepsilon$ -closure($\Delta(q, a)$). We do not include any ε -transition of N in $\tilde{\Delta}$. This completes the construction.

- 7. We apply the subset-construction procedure on \tilde{N} to generate a DFA \tilde{D} .
 - (a) Prove that all non- ε -closed subsets of Q are unreachable in \tilde{D} .
 - (b) Remove the non- ε -closed subsets from \tilde{D} . Prove that after this removal, \tilde{D} becomes exactly the same as the DFA *D* constructed from the ε -NFA *N* using the subset-construction procedure described in the text.
 - (c) Conclude that $\mathscr{L}(\tilde{N}) = \mathscr{L}(N)$.

Figure 2: Explaining the conversion of an ε -NFA to an NFA and then to a DFA

(b) The converted DFA

Let us illustrate this construction on the ε -NFA of Figure 1. We have $\tilde{S} = \varepsilon$ -closure({0}) = {0}. We also have ε -closure({1}) = {1}, and ε -closure({2}) = {0,2}. Therefore $\tilde{F} = \{2\}$. The transition function for \tilde{N} is as follows.

$$\begin{split} \hat{\Delta}(0,a) &= \varepsilon \text{-closure}(\Delta(0,a)) = \varepsilon \text{-closure}(\{1\}) = \{1\} \\ \hat{\Delta}(0,b) &= \varepsilon \text{-closure}(\Delta(0,b)) = \varepsilon \text{-closure}(\emptyset) = \emptyset \\ \hat{\Delta}(1,a) &= \varepsilon \text{-closure}(\Delta(1,a)) = \varepsilon \text{-closure}(\{1\}) = \{1\} \\ \hat{\Delta}(1,b) &= \varepsilon \text{-closure}(\Delta(1,b)) = \varepsilon \text{-closure}(\{2\}) = \{0,2\} \\ \hat{\Delta}(2,a) &= \varepsilon \text{-closure}(\Delta(2,a)) = \varepsilon \text{-closure}(\emptyset) = \emptyset \\ \hat{\Delta}(2,b) &= \varepsilon \text{-closure}(\Delta(2,b)) = \varepsilon \text{-closure}(\{2\}) = \{0,2\} \end{split}$$

The converted NFA is given in Part (a) of Figure 2. If we apply the subset-construction procedure on this NFA, we get the DFA in Part (b) of Figure 2. Compare this DFA with the DFA in Part (b) of Figure 1.

- 8. (a) Apply the ε -NFA-to-NFA construction on the three ε -NFA of Exercise 6.
 - (b) Apply the subset-construction procedure on each of these constructed NFA, and verify Part (b) of Exercise 7.