Formal Languages and Automata Theory

End-Semester Test

Maximum marks: 60
Time: April 12, 2022
Duration: 11am - 01pm

1. Consider the following language over the alphabet $\{0,1, \#\}$.

$$
\begin{equation*}
L_{1}=\left\{x \# y\left|x, y \in\{0,1\}^{*}, x \neq y,|x|=|y|\right\} .\right. \tag{10}
\end{equation*}
$$

Here, $|w|$ denotes the length of the string w. Prove/Disprove: L_{1} is context-free.

1. Consider the following language over the alphabet $\{a, b, \#\}$.

$$
\begin{equation*}
L_{1}=\left\{x \# y\left|x, y \in\{a, b\}^{*}, x \neq y,|x|=|y|\right\} .\right. \tag{10}
\end{equation*}
$$

Here, $|w|$ denotes the length of the string w. Prove/Disprove: L_{1} is context-free.

1. Consider the following language over the alphabet $\{0,1, \#\}$.

$$
\begin{equation*}
L_{1}=\left\{x \# y\left|x, y \in\{0,1, \#\}^{*}, x \neq y,|x|=|y|\right\} .\right. \tag{10}
\end{equation*}
$$

Here, $|w|$ denotes the length of the string w. Prove/Disprove: L_{1} is context-free.

1. Consider the following language over the alphabet $\{a, b, \#\}$.

$$
\begin{equation*}
L_{1}=\left\{x \# y\left|x, y \in\{a, b, \#\}^{*}, x \neq y,|x|=|y|\right\} .\right. \tag{10}
\end{equation*}
$$

Here, $|w|$ denotes the length of the string w. Prove/Disprove: L_{1} is context-free.

Solution Consider the language

$$
L_{1}=\{x \# y|x \neq y,|x|=|y|\} .
$$

Here, x, y are in $\{c, d\}^{*}$ or $\{c, d, \#\}^{*}$. This language is not context-free. We prove this by the pumping lemma.
Suppose that L_{1} is context-free, and let k be a pumping-lemma constant for L_{1}. Consider the string

$$
z=c^{k+k!} d^{k} \# c^{k} d^{k+k!} \in L_{1} .
$$

The pumping lemma gives a decomposition of this string of the form $z=u v w x y$ such that $v x \neq \varepsilon,|v w x| \leqslant k$, and $z_{i}=u v^{i} w x^{i} y \in L_{1}$ for all $i \geqslant 0$. We consider several cases.
Case 1: $v x$ contains \#. Then, z_{0} does not contain any \#.
Case 2: v and x are both to the left of \#, or both to the right of \#. Then, for all $i \neq 1$, the two sides of \# in z_{i} are of unequal lengths.
Case 3: v is to the left of \# and x is to the right of $\#$. If $|v| \neq|x|$, then again for $i \neq 1$, the two sides of $\#$ in z_{i} are of unequal lengths. So we must have $|v|=|x| \neq 0$. Since $|v w x| \leqslant k$, we must have v in the left block of d 's, and x in the right block of c 's. Since $1 \leqslant l=|v|=|x| \leqslant k$, we conclude that l is a divisor of $k!$. But then, $z_{1+k!/ l}=c^{k+k!} d^{k+k!} \# c^{k+k!} d^{k+k!} \in L_{1}$.
2. Design a DPDA (deterministic pushdown automaton) to accept the language

$$
L_{2}=\left\{a^{m} b^{n} \mid m, n \geqslant 0, \text { and } 2 m-3 n=5\right\} .
$$

Your DPDA should loop in only two distinguished states t and r. There must not be any other infinite loops or cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and t is the only final state, whereas r is a non-final state. Show all the transitions clearly.
2. Design a DPDA (deterministic pushdown automaton) to accept the language

$$
L_{2}=\left\{a^{m} b^{n} \mid m, n \geqslant 0, \text { and } 3 m-2 n=5\right\}
$$

Your DPDA should loop in only two distinguished states t and r. There must not be any other infinite loops or cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and t is the only final state, whereas r is a non-final state. Show all the transitions clearly.

Solution Consider the language

$$
L_{2}=\left\{a^{m} b^{n} \mid m, n \geqslant 0, \text { and } u m-v n=w\right\} .
$$

Here, u, v, w are constant positive integers. In the start state s, the DPDA consumes the a 's, and pushes u symbols like A to the stack for each a.

$$
\begin{aligned}
\delta(s, a, \perp) & =\left(s, A^{u} \perp\right) \\
\delta(s, a, A) & =\left(s, A^{u+1}\right)
\end{aligned}
$$

If anything else appears in the input, the DPDA manages by moving to state p_{1} using an ε-transition keeping its stack intact.

$$
\delta(s, \varepsilon, *)=\left(p_{1}, *\right)
$$

At state p_{1}, the DPDA consumes the b 's from the input, and for each b, should be able to pop $v A$'s from the stack. But only one pop is allowed for each transition, so we add temporary states $p_{2}, p_{3}, \ldots, p_{v}$.

$$
\begin{aligned}
\delta\left(p_{1}, b, A\right) & =\left(p_{2}, \varepsilon\right) \\
\delta\left(p_{2}, \varepsilon, A\right) & =\left(p_{3}, \varepsilon\right) \\
\delta\left(p_{3}, \varepsilon, A\right) & =\left(p_{4}, \varepsilon\right) \\
& \cdots \\
\delta\left(p_{v-1}, \varepsilon, A\right) & =\left(p_{v}, \varepsilon\right) \\
\delta\left(p_{v}, \varepsilon, A\right) & =\left(p_{1}, \varepsilon\right)
\end{aligned}
$$

After all the b 's are read, the end of input is exposed, and the DPDA discards $w A$'s from the top, and eventually accepts by looping in state t.

$$
\begin{aligned}
\delta\left(p_{1}, \dashv, A\right) & =\left(t_{1}, \varepsilon\right) \\
\delta\left(t_{1}, \varepsilon, A\right) & =\left(t_{2}, \varepsilon\right) \\
\delta\left(t_{2}, \varepsilon, A\right) & =\left(t_{3}, \varepsilon\right) \\
& \cdots \\
\delta\left(t_{w-1}, \varepsilon, A\right) & =\left(t_{w}, \varepsilon\right) \\
\delta\left(t_{w}, \varepsilon, \perp\right) & =(t, \perp) \\
\delta(t, \varepsilon, \perp) & =(t, \perp)
\end{aligned}
$$

Let us now see what happens if the input is not accepted. This may happen in the following cases.

1. An a is read in state p_{1}.

$$
\delta\left(p_{1}, a, *\right)=\left(r^{\prime}, *\right)
$$

2. A is not on the top of the stack in some p_{i}.

$$
\begin{aligned}
\delta\left(p_{1}, b, \perp\right) & =\left(r^{\prime}, \perp\right) \\
\delta\left(p_{i}, \varepsilon, \perp\right) & =\left(r^{\prime}, \perp\right) \text { for } i=2,3, \ldots, v
\end{aligned}
$$

3. Less than $w A$'s are in the stack after all b 's are read.

$$
\begin{aligned}
\delta\left(p_{1}, \dashv, \perp\right) & =(r, \perp) \\
\delta\left(t_{i}, \varepsilon, \perp\right) & =(r, \perp) \text { for } i=1,2, \ldots, w-1
\end{aligned}
$$

4. Excess A 's remain in the stack.

$$
\delta\left(t_{w}, \varepsilon, A\right)=(r, A)
$$

In the state r^{\prime}, the DPDA reads the rest of the input and eventually goes to r.

$$
\begin{aligned}
\delta\left(r^{\prime}, a, *\right) & =\left(r^{\prime}, *\right) \\
\delta\left(r^{\prime}, b, *\right) & =\left(r^{\prime}, *\right) \\
\delta\left(r^{\prime}, \dashv, *\right) & =(r, *)
\end{aligned}
$$

2. Design a DPDA (deterministic pushdown automaton) to accept the language

$$
L_{2}=\left\{a^{m} b^{n} \mid m, n \geqslant 0, \text { and } 2 n-3 m=5\right\}
$$

Your DPDA should loop in only two distinguished states t and r. There must not be any other infinite loops or cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and t is the only final state, whereas r is a non-final state. Show all the transitions clearly.
2. Design a DPDA (deterministic pushdown automaton) to accept the language

$$
L_{2}=\left\{a^{m} b^{n} \mid m, n \geqslant 0, \text { and } 3 n-2 m=5\right\} .
$$

Your DPDA should loop in only two distinguished states t and r. There must not be any other infinite loops or cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and t is the only final state, whereas r is a non-final state. Show all the transitions clearly.

Solution Consider the language

$$
L_{2}=\left\{a^{m} b^{n} \mid m, n \geqslant 0, \text { and } u n-v m=w\right\} .
$$

Here, u, v, w are constant positive integers. The condition can be rewritten as

$$
w+v m-u n=0
$$

The DPDA starts by pushing w symbols (like A) to the stack.

$$
\delta(s, \varepsilon, \perp)=\left(p, A^{w} \perp\right)
$$

In the state $p, v A$'s are pushed for each a consumed from the input.

$$
\delta(p, a, A)=\left(p, A^{v+1}\right)
$$

If anything else appears in the input, the DPDA manages by moving to state q_{1} using an ε-transition keeping its stack intact.

$$
\delta(p, \varepsilon, *)=\left(q_{1}, *\right)
$$

At state q_{1}, the DPDA consumes the b 's from the input, and for each b, should be able to pop u A's from the stack. But only one pop is allowed for each transition, so we add temporary states $q_{2}, q_{3}, \ldots, q_{v}$.

$$
\begin{aligned}
\delta\left(q_{1}, b, A\right) & =\left(q_{2}, \varepsilon\right) \\
\delta\left(q_{2}, \varepsilon, A\right) & =\left(q_{3}, \varepsilon\right) \\
\delta\left(q_{3}, \varepsilon, A\right) & =\left(q_{4}, \varepsilon\right) \\
& \cdots \\
\delta\left(q_{u-1}, \varepsilon, A\right) & =\left(q_{u}, \varepsilon\right) \\
\delta\left(q_{u}, \varepsilon, A\right) & =\left(q_{1}, \varepsilon\right)
\end{aligned}
$$

After all the b 's are read, both the end of input and the stack bottom marker should be exposed. This leads to acceptance.

$$
\begin{aligned}
\delta\left(q_{1}, \dashv, \perp\right) & =(t, \perp) \\
\delta(t, \varepsilon, \perp) & =(t, \perp)
\end{aligned}
$$

Let us now see what happens if the input is not accepted. This may happen in the following cases.

1. An a is read in state q_{1}.

$$
\delta\left(q_{1}, a, *\right)=\left(r^{\prime}, *\right)
$$

2. A is not on the top of the stack in some q_{i}.

$$
\begin{aligned}
\delta\left(q_{1}, b, \perp\right) & =\left(r^{\prime}, \perp\right) \\
\delta\left(q_{i}, \varepsilon, \perp\right) & =\left(r^{\prime}, \perp\right) \text { for } i=2,3, \ldots, u
\end{aligned}
$$

3. Excess A 's remain in the stack.

$$
\delta\left(q_{1}, \dashv, A\right)=(r, A)
$$

In the state r^{\prime}, the DPDA reads the rest of the input and eventually goes to r.

$$
\begin{aligned}
\delta\left(r^{\prime}, a, *\right) & =\left(r^{\prime}, *\right) \\
\delta\left(r^{\prime}, b, *\right) & =\left(r^{\prime}, *\right) \\
\delta\left(r^{\prime}, \dashv, *\right) & =(r, *)
\end{aligned}
$$

3. For a language L over the alphabet $\{0,1\}$, define the language

$$
\operatorname{half}(L)=\left\{x \mid x \in \Sigma^{*}, \text { and there exists } y \in \Sigma^{*} \text { such that }|x|=|y| \text { and } x y \in L\right\}
$$

Prove/Disprove the following three statements.
(a) If L is context-free, then half (L) nust be context-free.
(b) If L is recursively enumerable, then half (L) must be recursively enumerable.
(c) If L is recursive, then half (L) must be recursive.

Solution (a) False Take $L=\left\{0^{n} 1^{n} 0^{m} 10^{3 m} 1 \mid n, m \geqslant 1\right\}$. You can design a CFG for L (do it), so L is context-free. If half (L) is context-free, than so also is half $(L) \cap \mathscr{L}\left(0^{+} 1^{+} 0^{+} 1\right)$. But the latter language is $\left\{0^{n} 1^{n} 0^{n} 1 \mid n \geqslant 1\right\}$ which is not context-free (use a proof similar to that for the language $\left\{0^{n} 1^{n} 0^{n} \mid n \geqslant 1\right\}$).
(b) True Let M be a DTM for accepting L. We design an NTM N for half (L) (and then convert N to a DTM D using the usual procedure). N, given an input x, first deterministically computes the length l of $x . N$ then non-deterministically appends a string $y \in \Sigma^{*}$ of length l to generate the string $x y$. Subsequently, N simulates M on $x y$, and accepts if M accepts. If $x \in \operatorname{half}(L)$, then some guess for y lets the simulation accept.
(c) True The construction in this part is the same as in Part (b). Since L is recursive, we take M as a total TM. There are finitely many guesses $\left(|\Sigma|^{l}\right.$ to be precise, where $\left.l=|x|\right)$ for y. Since M is total, each guess gives a string $x y$ that can be accepted/rejected in finite time by the simulation of M. Therefore, N and the converted DTM D are total too.
3. For a language L over the alphabet $\{a, b\}$, define the language
$\operatorname{half}(L)=\left\{x \mid x \in \Sigma^{*}\right.$, and there exists $y \in \Sigma^{*}$ such that $|x|=|y|$ and $\left.x y \in L\right\}$.
Prove/Disprove the following three statements.
(a) If L is context-free, then half (L) nust be context-free.
(b) If L is recursively enumerable, then half (L) must be recursively enumerable.
(c) If L is recursive, then $\operatorname{half}(L)$ must be recursive.

Solution (a) Replace 0 by a and 1 by b in the previous variant.
3. For a language L over the alphabet $\{0,1\}$, define the language

$$
\operatorname{half}(L)=\left\{x \mid x \in \Sigma^{*}, \text { and there exists } y \in \Sigma^{*} \text { such that }|x|=|y| \text { and } y x \in L\right\}
$$

Prove/Disprove the following three statements.
(a) If L is context-free, then $\operatorname{half}(L)$ nust be context-free.
(b) If L is recursively enumerable, then half (L) must be recursively enumerable.
(c) If L is recursive, then half (L) must be recursive.

Solution (a) Take $L=\left\{10^{3 m} 10^{m} 1^{n} 0^{n} \mid m, n \geqslant 1\right\}$. Then, half $(L) \cap \mathscr{L}\left(10^{+} 1^{+} 0^{+}\right)=\left\{10^{n} 1^{n} 0^{n} \mid n \geqslant 1\right\}$.
3. For a language L over the alphabet $\{a, b\}$, define the language

$$
\operatorname{half}(L)=\left\{x \mid x \in \Sigma^{*}, \text { and there exists } y \in \Sigma^{*} \text { such that }|x|=|y| \text { and } y x \in L\right\}
$$

Prove/Disprove the following three statements.
(a) If L is context-free, then half (L) nust be context-free.
(b) If L is recursively enumerable, then half (L) must be recursively enumerable.
(c) If L is recursive, then $\operatorname{half}(L)$ must be recursive.

Solution (a) Replace 0 by a and 1 by b in the previous variant.
4. Consider the following language over the alphabet $\Sigma=\{a, b, c\}$.

$$
L_{4}=\left\{a^{n} w c^{n} \mid w \in \Sigma^{*}, n \geqslant 0, \text { and } \# a(w)=n\right\}
$$

Here, \#a(w) denotes the number of a 's in the string w. Design an unrestricted grammar for L_{4}. Explain the roles played by the non-terminal symbols of your grammar.

Solution We use a derivation of the form

$$
S \rightarrow^{*} a^{n} T(U c)^{n} \rightarrow^{*} a^{n} T U^{n} c^{n} \rightarrow^{*} a^{n} T(a V)^{n} c^{n} \rightarrow a^{n} V(a V)^{n} c^{n}
$$

Each V generates a string over $\{b, c\}$. Thus, we use the following productions.

$$
\begin{aligned}
S & \rightarrow a S U c \mid T \\
c U & \rightarrow U c \\
a U & \rightarrow U a \\
V U & \rightarrow U V \\
T U & \rightarrow a V \\
T & \rightarrow V \\
V & \rightarrow b V|c V| \varepsilon
\end{aligned}
$$

4. Consider the following language over the alphabet $\Sigma=\{a, b, c\}$.

$$
L_{4}=\left\{a^{n} w c^{n} \mid w \in \Sigma^{*}, n \geqslant 0, \text { and } \# b(w)=n\right\}
$$

Here, $\# b(w)$ denotes the number of b 's in the string w. Design an unrestricted grammar for L_{4}. Explain the roles played by the non-terminal symbols of your grammar.
4. Consider the following language over the alphabet $\Sigma=\{a, b, c\}$.

$$
L_{4}=\left\{a^{n} w c^{n} \mid w \in \Sigma^{*}, n \geqslant 0, \text { and } \# c(w)=n\right\}
$$

Here, \#c(w) denotes the number of c 's in the string w. Design an unrestricted grammar for L_{4}. Explain the roles played by the non-terminal symbols of your grammar.
4. Consider the following language over the alphabet $\Sigma=\{a, b, c\}$.

$$
L_{4}=\left\{a^{n} w b^{n} \mid w \in \Sigma^{*}, n \geqslant 0, \text { and } \# c(w)=n\right\}
$$

Here, \#c (w) denotes the number of c 's in the string w. Design an unrestricted grammar for L_{4}. Explain the roles played by the non-terminal symbols of your grammar.

Solution Make appropriate changes in the grammar of the first variant for the other variants.
5. Consider the language
$L_{5}=\{M \mid M$ is (the encoding of) a deterministic Turing machine that loops on at most 2022 input strings $\}$.
Prove/Disprove:
(a) L_{5} is recursively enumerable.
(b) $\overline{L_{5}}$ (that is, the complement of L_{5}) is recursively enumerable.
5. Consider the language
$L_{5}=\{M \mid M$ is (the encoding of) a deterministic Turing machine that loops on at least 2022 input strings $\}$. Prove/Disprove:
(a) L_{5} is recursively enumerable.
(b) $\overline{L_{5}}$ (that is, the complement of L_{5}) is recursively enumerable.
5. Consider the language
$L_{5}=\{M \mid M$ is (the encoding of) a deterministic Turing machine that loops on less than 2022 input strings $\}$.
Prove/Disprove:
(a) L_{5} is recursively enumerable.
(b) $\overline{L_{5}}$ (that is, the complement of L_{5}) is recursively enumerable.
5. Consider the language
$L_{5}=\{M \mid M$ is (the encoding of) a deterministic Turing machine that loops on more than 2022 input strings $\}$.
Prove/Disprove:
(a) L_{5} is recursively enumerable.
(b) $\overline{L_{5}}$ (that is, the complement of L_{5}) is recursively enumerable.

Solution Let k be a constant positive integer. Consider the following four languages.

$$
\begin{aligned}
L E_{k} & =\{M \mid M \text { loops on at most } k \text { inputs }\} \\
G E_{k} & =\{M \mid M \text { loops on at least } k \text { inputs }\} \\
L T_{k} & =\{M \mid M \text { loops on less than } k \text { inputs }\} \\
G T_{k} & =\{M \mid M \text { loops on more than } k \text { inputs }\}
\end{aligned}
$$

All these languages are non-RE and non-co-RE.
First, note that $L E_{k}=L T_{k+1}, L T_{k}=L E_{k-1}, G E_{k}=G T_{k-1}$, and $G T_{k}=G E_{k+1}$. Moreover, $\overline{L E_{k}}=G T_{k}, \overline{L T_{k}}=G E_{k}$, $\overline{G E_{k}}=L T_{k}$, and $\overline{G T_{k}}=L E_{k}$. In view of these, the following two reductions suffice for all the four parts.
$\overline{\mathrm{HP}} \leqslant L E_{k}$ and $\overline{\mathrm{HP}} \leqslant L T_{k}$
N, on input y, does the following.

1. Simulate M on x for $|y|$ steps.
2. If the limited-time simulation does not halt, halt.
3. If the limited-time simulation halts, loop.

Let k^{\prime} be the number of inputs, on which N loops.
If M does not halt on x, then M does not halt on x in any finite number of steps, so N halts on all inputs. Therefore $k^{\prime}=0$, and so $k^{\prime} \leqslant k$ and $k^{\prime}<k$.
If M halts on x in s steps, then for all inputs y of length $\geqslant s, N$ loops. In particular, N loops on infinitely many inputs in this case, that is, $k^{\prime}=\infty$, and we have $k^{\prime}>k$ and $k^{\prime} \geqslant k$.
$\overline{\mathrm{HP}} \leqslant G E_{k}$ and $\overline{\mathrm{HP}} \leqslant G T_{k}$
N, on input y, does the following.

1. Simulate M on x.
2. Halt.

Let k^{\prime} be the number of inputs, on which N loops.
If M does not halt on x, then N loops on all inputs, that is, $k^{\prime}=\infty$, and we have $k^{\prime} \geqslant k$ and $k^{\prime}>k$.
If M halts on x, then N halts on all inputs, that is, $k^{\prime}=0$, and we have $k^{\prime}<k$ and $k^{\prime} \leqslant k$.

