Formal Languages and Automata Theory
End-Semester Test

Maximum marks: 60 Time: April 12, 2022 Duration: 11am — Olpm

1. Consider the following language over the alphabet {0, 1,#}.

Li={x#y|xye (0.1}, x4y Ix =i}
Here, |w| denotes the length of the string w. Prove/Disprove: L; is context-free.

1. Consider the following language over the alphabet {a, b, #}.

L={x#y xyefabl, vy =i}
Here, |w| denotes the length of the string w. Prove/Disprove: L; is context-free.

1. Consider the following language over the alphabet {0, 1,#}.

L= {x#y|xye {014, x £y, =i}
Here, |w| denotes the length of the string w. Prove/Disprove: L; is context-free.

1. Consider the following language over the alphabet {a,b,#}.

Li={x#y|xye{ab st x£y b=}
Here, |w| denotes the length of the string w. Prove/Disprove: L; is context-free.

Solution Consider the language

Ly ={x#y|x#yx[=|y[}.

Here, x,y are in {c,d}* or {c,d,#}*. This language is not context-free. We prove this by the pumping lemma.
Suppose that L; is context-free, and let k be a pumping-lemma constant for L;. Consider the string

7= KR gRack gtk
The pumping lemma gives a decomposition of this string of the form z = uvwxy such that vx # &, [vwx| < k, and
zi =uv'wx'y € Ly for all i > 0. We consider several cases.

Case 1: vx contains #. Then, zo does not contain any #.

Case 2: v and x are both to the left of #, or both to the right of #. Then, for all i # 1, the two sides of # in z; are of
unequal lengths.

Case 3: v s to the left of # and x is to the right of #. If |v| # |x|, then again for i # 1, the two sides of # in z; are of unequal
lengths. So we must have |v| = |x| # 0. Since |[vwx| < k, we must have v in the left block of d’s, and x in the right block
of ¢’s. Since 1 <1 = |[v| = |x| <k, we conclude that [is a divisor of k!. But then, z;_ 4/, = M a@* R gk e 1)

2. Design a DPDA (deterministic pushdown automaton) to accept the language

Lzz{amb” | m,n>0, and 2m73n:5}.

— Page 1of 7 —

(10)

(10)

(10)

(10)

Your DPDA should loop in only two distinguished states ¢ and r. There must not be any other infinite loops or
cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and ¢ is
the only final state, whereas r is a non-final state. Show all the transitions clearly. (10)

2. Design a DPDA (deterministic pushdown automaton) to accept the language
- {amb" | m,n>0, and 3m—2n= 5}.

Your DPDA should loop in only two distinguished states ¢ and r. There must not be any other infinite loops or
cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and ¢ is
the only final state, whereas r is a non-final state. Show all the transitions clearly. (10)

Solution Consider the language
L, ={a"b" | m,n >0, and um —vn = w}.

Here, u,v,w are constant positive integers. In the start state s, the DPDA consumes the a’s, and pushes u# symbols like
A to the stack for each a.

o(s,a,l) = (s,A"L)
8(s,a,A) = (s,A""h)

If anything else appears in the input, the DPDA manages by moving to state p; using an &-transition keeping its stack
intact.

5(5‘,8,*) = (p1,*)

At state p;, the DPDA consumes the b’s from the input, and for each b, should be able to pop v A’s from the stack. But

only one pop is allowed for each transition, so we add temporary states pa, p3,..., py.
6(p1,b,A) = (p2,€)
8(p2,€,A) = (p3,¢€)
6(p3.€,A) = (ps,€)
6(17"7]’8714) = (ng)
6(pv.g,A) = (p1.¢)

After all the b’s are read, the end of input is exposed, and the DPDA discards w A’s from the top, and eventually accepts
by looping in state 7.

6(p1,1A) = (1¢)
o0(n,e,A) = (n,¢)
8(n,€,A) = (13,€)
O(ty—1,€,A) = (ty,€)
O(tw,e, L) = (1,1)
o(t,e, L) = (t,1)

Let us now see what happens if the input is not accepted. This may happen in the following cases.
1. An ais read in state p.
8(pr.ax) = (%)
2. A is not on the top of the stack in some p;.

6(p17b7l> = (r/vj—)
S(pie, L) = (/,L1) fori=273,...,v

— Page2of 7 —

3. Less than w A’s are in the stack after all b’s are read.
o(p1,4, L) = (nl)
6(t,e,L) = (rL) fori=1,2,....w—1

4. Excess A’s remain in the stack.

6(twa S,A) = (V,A)

In the state 7/, the DPDA reads the rest of the input and eventually goes to r.

8(Fax) = (V%)
8(r',b,x) = (¥,%)
8(r' A% = (%)

2. Design a DPDA (deterministic pushdown automaton) to accept the language
L= {a’"b” | m,n>0, and 2n—3m= 5}.

Your DPDA should loop in only two distinguished states # and r. There must not be any other infinite loops or
cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and ¢ is
the only final state, whereas r is a non-final state. Show all the transitions clearly. (10)

2. Design a DPDA (deterministic pushdown automaton) to accept the language
L= {amb" | m,n>0, and 3n—2m= 5}.

Your DPDA should loop in only two distinguished states ¢ and . There must not be any other infinite loops or
cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and ¢ is
the only final state, whereas r is a non-final state. Show all the transitions clearly. (10)

Solution Consider the language

L, ={a"b" | m,n >0, and un —vm = w}.

Here, u, v, w are constant positive integers. The condition can be rewritten as
w—+vm —un = 0.

The DPDA starts by pushing w symbols (like A) to the stack.
O(s,e,1) = (p,A"L)

In the state p, v A’s are pushed for each a consumed from the input.
§(pa,A) = (p,A")

If anything else appears in the input, the DPDA manages by moving to state g; using an €-transition keeping its stack
intact.

6(17387*) = (q17*>

At state g1, the DPDA consumes the b’s from the input, and for each b, should be able to pop u A’s from the stack. But

only one pop is allowed for each transition, so we add temporary states g2,¢3, ..., qy.
6(q1,0,4) = (q2€)
6(q2,8,A) = (g3,€)
0(gq3,€,A) = (q4,€)
6(6]u717£,A) = (qua 8)
6(qu.8,A) = (q1,€)

— Page 3of 7 —

After all the b’s are read, both the end of input and the stack bottom marker should be exposed. This leads to acceptance.

8(q1,,1) (t, 1)
o(t,e, L) = (,1)

Let us now see what happens if the input is not accepted. This may happen in the following cases.

1. Anais read in state g .
S(qi,a,%) = (r,%)
2. A s not on the top of the stack in some g;.
8(q1,b,1) = (7, 1)
S(gie, L) = (¥, L) for i=2,3,....u
3. Excess A’s remain in the stack.
6(q1,4,A) = (rA)

In the state 7/, the DPDA reads the rest of the input and eventually goes to r.

7*)

*)

8(r,a,%) =
8(r',b,*) :
(7, 4%) = (n¥

—~
AR

3. For a language L over the alphabet {0, 1}, define the language
half(L) = {x | x € X, and there exists y € £* such that |x| = |y| and xy € L}.

Prove/Disprove the following three statements.

(a) If Lis context-free, then half(L) nust be context-free. 8)
(b) If Lis recursively enumerable, then half(L) must be recursively enumerable. 7
(c) If Lis recursive, then half(L) must be recursive. 5

Solution (a) False Take L= {0"1"0"10*"1 | n,m > 1}. You can design a CFG for L (do it), so L is context-free. If half(L)
is context-free, than so also is half(L) N .2 (0711707 1). But the latter language is {0"1"0"1 | n > 1} which is not
context-free (use a proof similar to that for the language {0"1"0" | n > 1}).

(b) True Let M be a DTM for accepting L. We design an NTM N for half(L) (and then convert N to a DTM D using the
usual procedure). N, given an input x, first deterministically computes the length / of x. N then non-deterministically
appends a string y € X* of length [to generate the string xy. Subsequently, N simulates M on xy, and accepts if M
accepts. If x € half(L), then some guess for y lets the simulation accept.

(c) True The construction in this part is the same as in Part (b). Since L is recursive, we take M as a total TM. There
are finitely many guesses (|Z|’ to be precise, where [= |x|) for y. Since M is total, each guess gives a string xy that can
be accepted/rejected in finite time by the simulation of M. Therefore, N and the converted DTM D are total too.

3. For a language L over the alphabet {a, b}, define the language
half(L) = {x | x € X, and there exists y € £* such that |x| = |y| and xy € L}.

Prove/Disprove the following three statements.

(a) If Lis context-free, then half(L) nust be context-free.)
(b) If L is recursively enumerable, then half(L) must be recursively enumerable. ©))
(c) If Lis recursive, then half(L) must be recursive. 3)

— Page 4of 7 —

Solution (a) Replace 0 by a and 1 by b in the previous variant.

3. For a language L over the alphabet {0, 1}, define the language
half(L) = {x | x € X, and there exists y € £* such that |x| = |y| and yx € L}.

Prove/Disprove the following three statements.

(a) If L is context-free, then half(L) nust be context-free. 3
(b) If L is recursively enumerable, then half(L) must be recursively enumerable. ())
(c¢) If Lis recursive, then half(L) must be recursive. 5

Solution (a) Take L= {103"10"170" | m,n > 1}. Then, half(L) N.Z(1071707) = {10"1"0" | n > 1}.

3. For a language L over the alphabet {a, b}, define the language
half(L) = {x | x € X, and there exists y € £* such that |x| = |y| and yx € L}.

Prove/Disprove the following three statements.

(a) If L is context-free, then half(L) nust be context-free.)
(b) If Lis recursively enumerable, then half(L) must be recursively enumerable. 7
(c) If Lis recursive, then half(L) must be recursive. 5)

Solution (a) Replace 0 by a and 1 by b in the previous variant.

4. Consider the following language over the alphabet £ = {a,b,c}.
Ly= {a”wc” | weX*, n=0, and #a(w) = n}

Here, #a(w) denotes the number of a’s in the string w. Design an unrestricted grammar for Ly. Explain the roles
played by the non-terminal symbols of your grammar.)

Solution We use a derivation of the form
S="d"T(Uc)" =" a"TU" " =" a"T(aV)"'c" — a"V(aV)"c".

Each V generates a string over {b,c}. Thus, we use the following productions.

S — aSUc | T
cU — Uc
alU — Ua
vu — UV
TU — aV
T — VvV
V. — bV |cV|e

4. Consider the following language over the alphabet £ = {a,b,c}.
Ly = {a”wc” ‘ weXl' n>0, and #b(w) = n}

— Page5o0of7 —

Here, #b(w) denotes the number of b’s in the string w. Design an unrestricted grammar for Ly. Explain the roles
played by the non-terminal symbols of your grammar.)

4. Consider the following language over the alphabet £ = {a,b,c}.
Ly = {a”wc" | weX*, n>0, and #c(w) = n}

Here, #c(w) denotes the number of ¢’s in the string w. Design an unrestricted grammar for Ls. Explain the roles
played by the non-terminal symbols of your grammar.)

4. Consider the following language over the alphabet £ = {a,b,c}.
Ly = {a”wb” ‘ weX" n>0, and #c(w) = n}

Here, #c(w) denotes the number of ¢’s in the string w. Design an unrestricted grammar for Ls. Explain the roles
played by the non-terminal symbols of your grammar. t))

Solution Make appropriate changes in the grammar of the first variant for the other variants.

5. Consider the language

Ls = {M ‘ M is (the encoding of) a deterministic Turing machine that loops on at most 2022 input strings}.

Prove/Disprove:
(a) Ls is recursively enumerable. 6)
(b) Ls (that is, the complement of Ls) is recursively enumerable. 6)

5. Consider the language

Ls = {M ‘ M is (the encoding of) a deterministic Turing machine that loops on at least 2022 input strings}.

Prove/Disprove:
(a) Ls isrecursively enumerable. 6)
(b) Ls (that is, the complement of Ls) is recursively enumerable. 6)

5. Consider the language

Ls = {M ‘ M is (the encoding of) a deterministic Turing machine that loops on less than 2022 input strings}.

Prove/Disprove:
(a) Ls is recursively enumerable. 6)
(b) Ls (that is, the complement of Ls) is recursively enumerable. (6)

5. Consider the language

Ls = {M ’ M is (the encoding of) a deterministic Turing machine that loops on more than 2022 input strings}.

Prove/Disprove:
(a) Ls is recursively enumerable. 6)
(b) Ls (that is, the complement of Ls) is recursively enumerable. 6)

— Page 6of 7 —

Solution Let k be a constant positive integer. Consider the following four languages.

LE, = {M| M loops on at most k inputs}
GE, = {M | M loops on at least k inputs}
LT, = {M |M loops on less than k inputs}
GT, = {M|M loops on more than k inputs}

All these languages are non-RE and non-co-RE.

First, note that LE; = LTy, LTy = LE; 1, GE; = GTy_y, and GTy = GEjy1. Moreover, LE; = GT, LT = GE,
GE; = LT}, and GT; = LE;. In view of these, the following two reductions suffice for all the four parts.

HP < LE; and HP < LT,

N, on input y, does the following.

1. Simulate M on x for |y| steps.
2. If the limited-time simulation does not halt, halt.

3. If the limited-time simulation halts, loop.

Let k' be the number of inputs, on which N loops.

If M does not halt on x, then M does not halt on x in any finite number of steps, so N halts on all inputs. Therefore
K =0,andso kK’ <kand k' <k.

If M halts on x in s steps, then for all inputs y of length 2> s, N loops. In particular, N loops on infinitely many inputs
in this case, that is, K’ = oo, and we have k¥’ > k and k' > k.

HP < GE;, and HP < GT;,
N, on input y, does the following.
1. Simulate M on x.
2. Halt.
Let k' be the number of inputs, on which N loops.
If M does not halt on x, then N loops on all inputs, that is, kX’ = oo, and we have k' > k and k' > k.
If M halts on x, then N halts on all inputs, that is, k¥’ = 0, and we have K’ < k and ¥’ < k.

— Page70of 7 —

