
Formal Languages and Automata Theory

End-Semester Test

Maximum marks: 60 Time: April 12, 2022 Duration: 11am – 01pm

1. Consider the following language over the alphabet {0,1,#}.

L1 =
{

x # y
∣

∣ x,y ∈ {0,1}∗, x 6= y, |x|= |y|
}

.

Here, |w| denotes the length of the string w. Prove/Disprove: L1 is context-free. (10)

1. Consider the following language over the alphabet {a,b,#}.

L1 =
{

x # y
∣

∣ x,y ∈ {a,b}∗, x 6= y, |x|= |y|
}

.

Here, |w| denotes the length of the string w. Prove/Disprove: L1 is context-free. (10)

1. Consider the following language over the alphabet {0,1,#}.

L1 =
{

x # y
∣

∣ x,y ∈ {0,1,#}∗, x 6= y, |x|= |y|
}

.

Here, |w| denotes the length of the string w. Prove/Disprove: L1 is context-free. (10)

1. Consider the following language over the alphabet {a,b,#}.

L1 =
{

x # y
∣

∣ x,y ∈ {a,b,#}∗, x 6= y, |x|= |y|
}

.

Here, |w| denotes the length of the string w. Prove/Disprove: L1 is context-free. (10)

Solution Consider the language

L1 = {x # y | x 6= y, |x|= |y|}.

Here, x,y are in {c,d}∗ or {c,d,#}∗. This language is not context-free. We prove this by the pumping lemma.

Suppose that L1 is context-free, and let k be a pumping-lemma constant for L1. Consider the string

z = ck+k!dk#ckdk+k! ∈ L1.

The pumping lemma gives a decomposition of this string of the form z = uvwxy such that vx 6= ε , |vwx| 6 k, and

zi = uviwxiy ∈ L1 for all i > 0. We consider several cases.

Case 1: vx contains #. Then, z0 does not contain any #.

Case 2: v and x are both to the left of #, or both to the right of #. Then, for all i 6= 1, the two sides of # in zi are of

unequal lengths.

Case 3: v is to the left of # and x is to the right of #. If |v| 6= |x|, then again for i 6= 1, the two sides of # in zi are of unequal

lengths. So we must have |v|= |x| 6= 0. Since |vwx|6 k, we must have v in the left block of d’s, and x in the right block

of c’s. Since 1 6 l = |v|= |x|6 k, we conclude that l is a divisor of k!. But then, z1+k!/l = ck+k!dk+k!#ck+k!dk+k! ∈ L1.

2. Design a DPDA (deterministic pushdown automaton) to accept the language

L2 =
{

ambn
∣

∣ m,n > 0, and 2m−3n = 5
}

.

— Page 1 of 7 —

Your DPDA should loop in only two distinguished states t and r. There must not be any other infinite loops or

cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and t is

the only final state, whereas r is a non-final state. Show all the transitions clearly. (10)

2. Design a DPDA (deterministic pushdown automaton) to accept the language

L2 =
{

ambn
∣

∣ m,n > 0, and 3m−2n = 5
}

.

Your DPDA should loop in only two distinguished states t and r. There must not be any other infinite loops or

cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and t is

the only final state, whereas r is a non-final state. Show all the transitions clearly. (10)

Solution Consider the language

L2 = {ambn | m,n > 0, and um− vn = w}.

Here, u,v,w are constant positive integers. In the start state s, the DPDA consumes the a’s, and pushes u symbols like

A to the stack for each a.

δ (s,a,⊥) = (s,Au⊥)

δ (s,a,A) = (s,Au+1)

If anything else appears in the input, the DPDA manages by moving to state p1 using an ε-transition keeping its stack

intact.

δ (s,ε ,∗) = (p1,∗)

At state p1, the DPDA consumes the b’s from the input, and for each b, should be able to pop v A’s from the stack. But

only one pop is allowed for each transition, so we add temporary states p2, p3, . . . , pv.

δ (p1,b,A) = (p2,ε)

δ (p2,ε ,A) = (p3,ε)

δ (p3,ε ,A) = (p4,ε)

· · ·

δ (pv−1,ε ,A) = (pv,ε)

δ (pv,ε ,A) = (p1,ε)

After all the b’s are read, the end of input is exposed, and the DPDA discards w A’s from the top, and eventually accepts

by looping in state t.

δ (p1,⊣,A) = (t1,ε)

δ (t1,ε ,A) = (t2,ε)

δ (t2,ε ,A) = (t3,ε)

· · ·

δ (tw−1,ε ,A) = (tw,ε)

δ (tw,ε ,⊥) = (t,⊥)

δ (t,ε ,⊥) = (t,⊥)

Let us now see what happens if the input is not accepted. This may happen in the following cases.

1. An a is read in state p1.

δ (p1,a,∗) = (r′,∗)

2. A is not on the top of the stack in some pi.

δ (p1,b,⊥) = (r′,⊥)

δ (pi,ε ,⊥) = (r′,⊥) for i = 2,3, . . . ,v

— Page 2 of 7 —

3. Less than w A’s are in the stack after all b’s are read.

δ (p1,⊣,⊥) = (r,⊥)

δ (ti,ε ,⊥) = (r,⊥) for i = 1,2, . . . ,w−1

4. Excess A’s remain in the stack.

δ (tw,ε ,A) = (r,A)

In the state r′, the DPDA reads the rest of the input and eventually goes to r.

δ (r′,a,∗) = (r′,∗)

δ (r′,b,∗) = (r′,∗)

δ (r′,⊣,∗) = (r,∗)

2. Design a DPDA (deterministic pushdown automaton) to accept the language

L2 =
{

ambn
∣

∣ m,n > 0, and 2n−3m = 5
}

.

Your DPDA should loop in only two distinguished states t and r. There must not be any other infinite loops or

cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and t is

the only final state, whereas r is a non-final state. Show all the transitions clearly. (10)

2. Design a DPDA (deterministic pushdown automaton) to accept the language

L2 =
{

ambn
∣

∣ m,n > 0, and 3n−2m = 5
}

.

Your DPDA should loop in only two distinguished states t and r. There must not be any other infinite loops or

cycles. The DPDA enters these states after reading the entire input (including the end-of-input marker), and t is

the only final state, whereas r is a non-final state. Show all the transitions clearly. (10)

Solution Consider the language

L2 = {ambn | m,n > 0, and un− vm = w}.

Here, u,v,w are constant positive integers. The condition can be rewritten as

w+ vm−un = 0.

The DPDA starts by pushing w symbols (like A) to the stack.

δ (s,ε ,⊥) = (p,Aw⊥)

In the state p, v A’s are pushed for each a consumed from the input.

δ (p,a,A) = (p,Av+1)

If anything else appears in the input, the DPDA manages by moving to state q1 using an ε-transition keeping its stack

intact.

δ (p,ε ,∗) = (q1,∗)

At state q1, the DPDA consumes the b’s from the input, and for each b, should be able to pop u A’s from the stack. But

only one pop is allowed for each transition, so we add temporary states q2,q3, . . . ,qv.

δ (q1,b,A) = (q2,ε)

δ (q2,ε ,A) = (q3,ε)

δ (q3,ε ,A) = (q4,ε)

· · ·

δ (qu−1,ε ,A) = (qu,ε)

δ (qu,ε ,A) = (q1,ε)

— Page 3 of 7 —

After all the b’s are read, both the end of input and the stack bottom marker should be exposed. This leads to acceptance.

δ (q1,⊣,⊥) = (t,⊥)

δ (t,ε ,⊥) = (t,⊥)

Let us now see what happens if the input is not accepted. This may happen in the following cases.

1. An a is read in state q1.

δ (q1,a,∗) = (r′,∗)

2. A is not on the top of the stack in some qi.

δ (q1,b,⊥) = (r′,⊥)

δ (qi,ε ,⊥) = (r′,⊥) for i = 2,3, . . . ,u

3. Excess A’s remain in the stack.

δ (q1,⊣,A) = (r,A)

In the state r′, the DPDA reads the rest of the input and eventually goes to r.

δ (r′,a,∗) = (r′,∗)

δ (r′,b,∗) = (r′,∗)

δ (r′,⊣,∗) = (r,∗)

3. For a language L over the alphabet {0,1}, define the language

half(L) =
{

x
∣

∣ x ∈ Σ
∗, and there exists y ∈ Σ∗ such that |x|= |y| and xy ∈ L

}

.

Prove/Disprove the following three statements.

(a) If L is context-free, then half(L) nust be context-free. (8)

(b) If L is recursively enumerable, then half(L) must be recursively enumerable. (7)

(c) If L is recursive, then half(L) must be recursive. (5)

Solution (a) False Take L = {0n1n0m103m1 | n,m > 1}. You can design a CFG for L (do it), so L is context-free. If half(L)
is context-free, than so also is half(L)∩L (0+1+0+1). But the latter language is {0n1n0n1 | n > 1} which is not

context-free (use a proof similar to that for the language {0n1n0n | n > 1}).

(b) True Let M be a DTM for accepting L. We design an NTM N for half(L) (and then convert N to a DTM D using the

usual procedure). N, given an input x, first deterministically computes the length l of x. N then non-deterministically

appends a string y ∈ Σ∗ of length l to generate the string xy. Subsequently, N simulates M on xy, and accepts if M

accepts. If x ∈ half(L), then some guess for y lets the simulation accept.

(c) True The construction in this part is the same as in Part (b). Since L is recursive, we take M as a total TM. There

are finitely many guesses (|Σ|l to be precise, where l = |x|) for y. Since M is total, each guess gives a string xy that can

be accepted/rejected in finite time by the simulation of M. Therefore, N and the converted DTM D are total too.

3. For a language L over the alphabet {a,b}, define the language

half(L) =
{

x
∣

∣ x ∈ Σ
∗, and there exists y ∈ Σ∗ such that |x|= |y| and xy ∈ L

}

.

Prove/Disprove the following three statements.

(a) If L is context-free, then half(L) nust be context-free. (8)

(b) If L is recursively enumerable, then half(L) must be recursively enumerable. (7)

(c) If L is recursive, then half(L) must be recursive. (5)

— Page 4 of 7 —

Solution (a) Replace 0 by a and 1 by b in the previous variant.

3. For a language L over the alphabet {0,1}, define the language

half(L) =
{

x
∣

∣ x ∈ Σ
∗, and there exists y ∈ Σ∗ such that |x|= |y| and yx ∈ L

}

.

Prove/Disprove the following three statements.

(a) If L is context-free, then half(L) nust be context-free. (8)

(b) If L is recursively enumerable, then half(L) must be recursively enumerable. (7)

(c) If L is recursive, then half(L) must be recursive. (5)

Solution (a) Take L = {103m10m1n0n | m,n > 1}. Then, half(L)∩L (10+1+0+) = {10n1n0n | n > 1}.

3. For a language L over the alphabet {a,b}, define the language

half(L) =
{

x
∣

∣ x ∈ Σ
∗, and there exists y ∈ Σ∗ such that |x|= |y| and yx ∈ L

}

.

Prove/Disprove the following three statements.

(a) If L is context-free, then half(L) nust be context-free. (8)

(b) If L is recursively enumerable, then half(L) must be recursively enumerable. (7)

(c) If L is recursive, then half(L) must be recursive. (5)

Solution (a) Replace 0 by a and 1 by b in the previous variant.

4. Consider the following language over the alphabet Σ = {a,b,c}.

L4 =
{

anwcn
∣

∣ w ∈ Σ
∗, n > 0, and #a(w) = n

}

Here, #a(w) denotes the number of a’s in the string w. Design an unrestricted grammar for L4. Explain the roles

played by the non-terminal symbols of your grammar. (8)

Solution We use a derivation of the form

S →∗ anT (Uc)n →∗ anTUncn →∗ anT (aV)ncn → anV (aV)ncn.

Each V generates a string over {b,c}. Thus, we use the following productions.

S → aSUc | T

cU → Uc

aU → Ua

VU → UV

TU → aV

T → V

V → bV | cV | ε

4. Consider the following language over the alphabet Σ = {a,b,c}.

L4 =
{

anwcn
∣

∣ w ∈ Σ
∗, n > 0, and #b(w) = n

}

— Page 5 of 7 —

Here, #b(w) denotes the number of b’s in the string w. Design an unrestricted grammar for L4. Explain the roles

played by the non-terminal symbols of your grammar. (8)

4. Consider the following language over the alphabet Σ = {a,b,c}.

L4 =
{

anwcn
∣

∣ w ∈ Σ
∗, n > 0, and #c(w) = n

}

Here, #c(w) denotes the number of c’s in the string w. Design an unrestricted grammar for L4. Explain the roles

played by the non-terminal symbols of your grammar. (8)

4. Consider the following language over the alphabet Σ = {a,b,c}.

L4 =
{

anwbn
∣

∣ w ∈ Σ
∗, n > 0, and #c(w) = n

}

Here, #c(w) denotes the number of c’s in the string w. Design an unrestricted grammar for L4. Explain the roles

played by the non-terminal symbols of your grammar. (8)

Solution Make appropriate changes in the grammar of the first variant for the other variants.

5. Consider the language

L5 =
{

M
∣

∣ M is (the encoding of) a deterministic Turing machine that loops on at most 2022 input strings
}

.

Prove/Disprove:

(a) L5 is recursively enumerable. (6)

(b) L5 (that is, the complement of L5) is recursively enumerable. (6)

5. Consider the language

L5 =
{

M
∣

∣ M is (the encoding of) a deterministic Turing machine that loops on at least 2022 input strings
}

.

Prove/Disprove:

(a) L5 is recursively enumerable. (6)

(b) L5 (that is, the complement of L5) is recursively enumerable. (6)

5. Consider the language

L5 =
{

M
∣

∣ M is (the encoding of) a deterministic Turing machine that loops on less than 2022 input strings
}

.

Prove/Disprove:

(a) L5 is recursively enumerable. (6)

(b) L5 (that is, the complement of L5) is recursively enumerable. (6)

5. Consider the language

L5 =
{

M
∣

∣ M is (the encoding of) a deterministic Turing machine that loops on more than 2022 input strings
}

.

Prove/Disprove:

(a) L5 is recursively enumerable. (6)

(b) L5 (that is, the complement of L5) is recursively enumerable. (6)

— Page 6 of 7 —

Solution Let k be a constant positive integer. Consider the following four languages.

LEk = {M | M loops on at most k inputs}

GEk = {M | M loops on at least k inputs}

LTk = {M | M loops on less than k inputs}

GTk = {M | M loops on more than k inputs}

All these languages are non-RE and non-co-RE.

First, note that LEk = LTk+1, LTk = LEk−1, GEk = GTk−1, and GTk = GEk+1. Moreover, LEk = GTk, LTk = GEk,

GEk = LTk, and GTk = LEk. In view of these, the following two reductions suffice for all the four parts.

HP 6 LEk and HP 6 LTk

N, on input y, does the following.

1. Simulate M on x for |y| steps.

2. If the limited-time simulation does not halt, halt.

3. If the limited-time simulation halts, loop.

Let k′ be the number of inputs, on which N loops.

If M does not halt on x, then M does not halt on x in any finite number of steps, so N halts on all inputs. Therefore

k′ = 0, and so k′ 6 k and k′ < k.

If M halts on x in s steps, then for all inputs y of length > s, N loops. In particular, N loops on infinitely many inputs

in this case, that is, k′ = ∞, and we have k′ > k and k′ > k.

HP 6 GEk and HP 6 GTk

N, on input y, does the following.

1. Simulate M on x.

2. Halt.

Let k′ be the number of inputs, on which N loops.

If M does not halt on x, then N loops on all inputs, that is, k′ = ∞, and we have k′ > k and k′ > k.

If M halts on x, then N halts on all inputs, that is, k′ = 0, and we have k′ < k and k′ 6 k.

— Page 7 of 7 —

