Formal Languages and Automata Theory
Test 1
Maximum marks: 40 Time: 22-02-2022, 10:15am Duration: 1 hour 15 minutes

1. Consider the following language over the alphabet £ = {a,b}.
L= {ukur | uv,weXt, |v|=|w/+ 1},

where u” stands for the reverse of the string u, and |x| is the length of the string x.

(a) Write a regular expression for L. 4)
Solution a((a+b)(a+b)(a+b)((a+b)(a+b))*)a + b((a+b)(a+b)(a+b)((a+b)(a+b))*)b.

(b) Argue that the language of the €-NFA of Figure 1 is L*. “)

Figure 1: e-NFA for Q1

Solution Let us call this e-NFA N. If N can reach State 9, it accepts by making an &-transition to State 0. Let us remove this -
transition, and make 9 as the final state and 0 a non-final state. Easy inspection shows that both the sets {x |7 € A(1,x)}
and {x |8 € A(2,x)} are equal to the set of all odd-length strings over {@,b} of length at least 3. Therefore, the modified
NFA accepts all the odd-length strings of length > 5 and starting and ending with the same symbol. These are precisely
all the strings in L. The given NFA accepts € (the only member of L°). Now, let w = wiw»...w, € L* for some n > 1
and with each w; € L. Under the inductive hypothesis that N accepts wiw,...w,_1, we have 0 € A(O, WIWD . Wp_1).
But then, A(O, wiwy ... wy) contains 9, and so 0 by the e-transition from 9 to 0.

(¢) If A denotes the transition function of the £-NFA of Figure 1, find A(0,aabbaba). Show all the states that the
e-NFA can be in, after reading each symbol from the given input string. “)

Solution We have the following transitions:

( ,€) e-closure({0}) {0},

A(0,a) = e-closure({1}) = {1},

A(0,aa) =  e-closure({3}) = {3},
A(0,aab) = e-closure({5}) = {1,5},
A(0,aabb) =  e-closure({3,7}) = {3,7},

A(0,aabba) =  e-closure({5,9}) = {0,1,5,9},
A(0,aabbab) = e-closure({2,3,7}) = {2,3,7},
A(0,aabbaba) = e-closure({4,5,9}) = {0,1,4,5,9}.

(d) Convert the e-NFA of Figure 1 to an equivalent NFA without e-transitions but with the same set of states. @
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Figure 2: NFA for Q1(d)

Solution The equivalent NFA is given in Figure 2.

2. Let L be a language over an alphabet X. Recall that a string x is called a prefix of a string y if y = xz for some
string z. For example, all the prefixes of abbab are €,a,ab,abb,abba,abbab. From L, we generate the language
dupPrefix(L) by duplicating prefixes of strings in L. More precisely, we define

dupPrefix(L) = {xy ‘ y € L, and x is a prefix of y}.

(a) Prove/Disprove: If L is regular, then dupPrefix(L) must also be regular.

Solution False. Take £ = {a,b}, and L = £ (a*b) = {d"b | n > 0}. Suppose that dupPrefix(L) is regular. Let k be a pumping-

lemma constant for dupPrefix(L). Supply the string a*ba*b € dupPrefix(L) to the pumping lemma with u = a*b, v = d*,

and w = b. The lemma returns a decomposition v = xyz with y = a’ for some / > 0. Pumping out y, we get the string
uxzw = a*ba*~'b € L. But since [ > 0, a¥b cannot be a prefix of @b, a contradiction.

(b) Prove/Disprove: If L is not regular, then dupPrefix(L) must also be non-regular.

Solution False: Take ¥ = {a}, and L = {a"2 | n > 0} (alanguage already proved as not regular). We have
dupPrefix(L) = {a" |m >0, m # 3}

which is regular (because its complement is a finite set).

3. In this exercise, we use the Myhill-Nerode theorem to prove that the intersection L of two regular languages L;
and L, (over the same alphabet X) is again regular. Let =; and =, be Myhill-Nerode (MN) relations for L,
and L,, respectively. The equivalence classes C,Cs,...,Cy of = partition £*. Likewise, the equivalence classes
D1,D,,...,D; of = partition £*. Define the subsets E;; = C;ND; of ¥* fori=1,2,...,kand j=1,2,...,l. We
consider only those Ej; that are non-empty. For any fixed i, the non-empty subsets E;; partition C;. Therefore all
the non-empty subsets E;; partition X*.

(a) Let L= L;NL,. The partition of £* by non-empty E;; induces an equivalence relation = on X*. Prove that =
is an MN relation for L. By the Myhill-Nerode theorem, L is therefore regular.

Solution [Right congruence of =] Letx =y, and a € . Then, x and y belong to the same part E;; for some i, j. We have
E;j = CiNDj, thatis, x and y belong to both C; and D;, that is, x = y and x =, y. Since =; and =, are MN relations,
xa =1 ya and xa =; ya, that is, there exist i’, j’ such that both xa, ya € C;:, and both xa, ya € D;. But then, both xa and
ya are in Ejjr, that is, xa = ya.

[= refines L] Let x =y. Then, both of them belong to some E;; and therefore to both C; and D, that is, x =; y and
X =5 y. Suppose that x € L, that is, x € L and x € L. Since = and =, are MN relations, we have y € L; and y € L,,

that is, y € L. Analogously, we can prove that if y € L, then x € L too.

[= has finite index] The maximum possible index of = is k.
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(b) TakeX={a,b}. LetL; =% (a(a+b)*)and L, =% ((a+b)b(a+b)*). Then, L =L NL, = £ (ab(a+b)*).
Construct the minimal DFA for L; and L;, and deduce the partitions induced by the corresponding coarsest MN
relations =; and =,. Construct the MN relation = for L as described above, and generate an equivalent DFA M
from that relation. Prove/Disprove: M is the minimal DFA for L. @4+3+1)

Solution The minimal DFA for L; and L, are given in Parts (a) and (b) of Figure 3. The partitions induced by these DFA are as

follows.
C] = {8} D] = {8}
G = ZL(bla+db)") D, = {a,b}
G = Zlala+b)) D; = Z((a+bala+b)")

Dy = Z((a+b)bla+Db)*)

Figure 3: The constructions for Q3(b)

(a) Minimal DFA for L1 (b) Minimal DFA for L2

(c) DFA obtained by the given construction

The non-empty intersections E;; are given below.

Ey = {8} E» = {b} Eyp = {a}
Exy = g(bd(d‘f'b)*) Bz = f(aa(a—i—b)*)
E24 = f(bb(a‘f'b)*) E34 = g(db(d—i—b)*)

The DFA equivalent to this partition is given in Part (c) of Figure 3. This DFA is not minimal, because the states 33,
22,23, and 24 are equivalent.

— Page 30f3 —



