
Formal Languages and Automata Theory

Test 1

Maximum marks: 40 Time: 22-02-2022, 10:15am Duration: 1 hour 15 minutes

1. Consider the following language over the alphabet Σ = {a,b}.

L =
{

uvwur
∣

∣ u,v,w ∈ Σ
+
, |v|= |w|+1

}

,

where ur stands for the reverse of the string u, and |x| is the length of the string x.

(a) Write a regular expression for L. (4)

Solution a
(

(a+b)(a+b)(a+b)
(

(a+b)(a+b)
)∗
)

a + b
(

(a+b)(a+b)(a+b)
(

(a+b)(a+b)
)∗
)

b.

(b) Argue that the language of the ε-NFA of Figure 1 is L∗. (4)

Figure 1: ε-NFA for Q1
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Solution Let us call this ε-NFA N. If N can reach State 9, it accepts by making an ε-transition to State 0. Let us remove this ε-

transition, and make 9 as the final state and 0 a non-final state. Easy inspection shows that both the sets {x | 7 ∈ ∆̂(1,x)}
and {x | 8∈ ∆̂(2,x)} are equal to the set of all odd-length strings over {a,b} of length at least 3. Therefore, the modified

NFA accepts all the odd-length strings of length > 5 and starting and ending with the same symbol. These are precisely

all the strings in L. The given NFA accepts ε (the only member of L0). Now, let w = w1w2 . . .wn ∈ L∗ for some n > 1

and with each wi ∈ L. Under the inductive hypothesis that N accepts w1w2 . . .wn−1, we have 0 ∈ ∆̂(0,w1w2 . . .wn−1).
But then, ∆̂(0,w1w2 . . .wn) contains 9, and so 0 by the ε-transition from 9 to 0.

(c) If ∆ denotes the transition function of the ε-NFA of Figure 1, find ∆̂(0,aabbaba). Show all the states that the

ε-NFA can be in, after reading each symbol from the given input string. (4)

Solution We have the following transitions:

∆̂(0,ε) = ε-closure({0}) = {0},

∆̂(0,a) = ε-closure({1}) = {1},

∆̂(0,aa) = ε-closure({3}) = {3},

∆̂(0,aab) = ε-closure({5}) = {1,5},

∆̂(0,aabb) = ε-closure({3,7}) = {3,7},

∆̂(0,aabba) = ε-closure({5,9}) = {0,1,5,9},

∆̂(0,aabbab) = ε-closure({2,3,7}) = {2,3,7},

∆̂(0,aabbaba) = ε-closure({4,5,9}) = {0,1,4,5,9}.

(d) Convert the ε-NFA of Figure 1 to an equivalent NFA without ε-transitions but with the same set of states. (4)
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Figure 2: NFA for Q1(d)
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Solution The equivalent NFA is given in Figure 2.

2. Let L be a language over an alphabet Σ. Recall that a string x is called a prefix of a string y if y = xz for some

string z. For example, all the prefixes of abbab are ε ,a,ab,abb,abba,abbab. From L, we generate the language

dupPrefix(L) by duplicating prefixes of strings in L. More precisely, we define

dupPrefix(L) =
{

xy
∣

∣ y ∈ L, and x is a prefix of y
}

.

(a) Prove/Disprove: If L is regular, then dupPrefix(L) must also be regular. (5)

Solution False. Take Σ = {a,b}, and L = L (a∗b) = {anb | n > 0}. Suppose that dupPrefix(L) is regular. Let k be a pumping-

lemma constant for dupPrefix(L). Supply the string akbakb∈ dupPrefix(L) to the pumping lemma with u= akb, v= ak,

and w = b. The lemma returns a decomposition v = xyz with y = al for some l > 0. Pumping out y, we get the string

uxzw = akbak−lb ∈ L. But since l > 0, akb cannot be a prefix of ak−lb, a contradiction.

(b) Prove/Disprove: If L is not regular, then dupPrefix(L) must also be non-regular. (5)

Solution False: Take Σ = {a}, and L = {an2
| n > 0} (a language already proved as not regular). We have

dupPrefix(L) = {am | m > 0, m 6= 3}

which is regular (because its complement is a finite set).

3. In this exercise, we use the Myhill–Nerode theorem to prove that the intersection L of two regular languages L1

and L2 (over the same alphabet Σ) is again regular. Let ≡1 and ≡2 be Myhill–Nerode (MN) relations for L1

and L2, respectively. The equivalence classes C1,C2, . . . ,Ck of ≡1 partition Σ
∗. Likewise, the equivalence classes

D1,D2, . . . ,Dl of ≡2 partition Σ
∗. Define the subsets Ei j = Ci ∩D j of Σ

∗ for i = 1,2, . . . ,k and j = 1,2, . . . , l. We

consider only those Ei j that are non-empty. For any fixed i, the non-empty subsets Ei j partition Ci. Therefore all

the non-empty subsets Ei j partition Σ
∗.

(a) Let L = L1 ∩L2. The partition of Σ
∗ by non-empty Ei j induces an equivalence relation ≡ on Σ

∗. Prove that ≡
is an MN relation for L. By the Myhill–Nerode theorem, L is therefore regular. (6)

Solution [Right congruence of ≡] Let x ≡ y, and a ∈ Σ. Then, x and y belong to the same part Ei j for some i, j. We have

Ei j =Ci ∩D j, that is, x and y belong to both Ci and D j, that is, x ≡1 y and x ≡2 y. Since ≡1 and ≡2 are MN relations,

xa ≡1 ya and xa ≡2 ya, that is, there exist i ′, j ′ such that both xa,ya ∈Ci ′ , and both xa,ya ∈ D j ′ . But then, both xa and

ya are in Ei ′ j ′ , that is, xa ≡ ya.

[≡ refines L] Let x ≡ y. Then, both of them belong to some Ei j and therefore to both Ci and D j, that is, x ≡1 y and

x ≡2 y. Suppose that x ∈ L, that is, x ∈ L1 and x ∈ L2. Since ≡1 and ≡2 are MN relations, we have y ∈ L1 and y ∈ L2,

that is, y ∈ L. Analogously, we can prove that if y ∈ L, then x ∈ L too.

[≡ has finite index] The maximum possible index of ≡ is kl.
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(b) Take Σ= {a,b}. Let L1 =L
(

a(a+b)∗
)

and L2 =L
(

(a+b)b(a+b)∗
)

. Then, L= L1∩L2 =L
(

ab(a+b)∗
)

.

Construct the minimal DFA for L1 and L2, and deduce the partitions induced by the corresponding coarsest MN

relations ≡1 and ≡2. Construct the MN relation ≡ for L as described above, and generate an equivalent DFA M

from that relation. Prove/Disprove: M is the minimal DFA for L. (4 + 3 + 1)

Solution The minimal DFA for L1 and L2 are given in Parts (a) and (b) of Figure 3. The partitions induced by these DFA are as

follows.

C1 = {ε} D1 = {ε}
C2 = L (b(a+b)∗) D2 = {a,b}
C3 = L (a(a+b)∗) D3 = L ((a+b)a(a+b)∗)

D4 = L ((a+b)b(a+b)∗)

Figure 3: The constructions for Q3(b)
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The non-empty intersections Ei j are given below.

E11 = {ε} E22 = {b} E32 = {a}
E23 = L (ba(a+b)∗) E33 = L (aa(a+b)∗)
E24 = L (bb(a+b)∗) E34 = L (ab(a+b)∗)

The DFA equivalent to this partition is given in Part (c) of Figure 3. This DFA is not minimal, because the states 33,

22, 23, and 24 are equivalent.
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