## Formal Languages and Automata Theory

## Test 1

1. Consider the following language over the alphabet $\Sigma=\{a, b\}$.

$$
L=\left\{u v w u^{r}\left|u, v, w \in \Sigma^{+},|v|=|w|+1\right\}\right.
$$

where $u^{r}$ stands for the reverse of the string $u$, and $|x|$ is the length of the string $x$.
(a) Write a regular expression for $L$.

Solution $a\left((a+b)(a+b)(a+b)((a+b)(a+b))^{*}\right) a+b\left((a+b)(a+b)(a+b)((a+b)(a+b))^{*}\right) b$.
(b) Argue that the language of the $\varepsilon$-NFA of Figure 1 is $L^{*}$.

Figure 1: $\varepsilon$-NFA for Q1


Solution Let us call this $\varepsilon$-NFA $N$. If $N$ can reach State 9 , it accepts by making an $\varepsilon$-transition to State 0 . Let us remove this $\varepsilon$ transition, and make 9 as the final state and 0 a non-final state. Easy inspection shows that both the sets $\{x \mid 7 \in \hat{\Delta}(1, x)\}$ and $\{x \mid 8 \in \hat{\Delta}(2, x)\}$ are equal to the set of all odd-length strings over $\{a, b\}$ of length at least 3 . Therefore, the modified NFA accepts all the odd-length strings of length $\geqslant 5$ and starting and ending with the same symbol. These are precisely all the strings in $L$. The given NFA accepts $\varepsilon$ (the only member of $L^{0}$ ). Now, let $w=w_{1} w_{2} \ldots w_{n} \in L^{*}$ for some $n \geqslant 1$ and with each $w_{i} \in L$. Under the inductive hypothesis that $N$ accepts $w_{1} w_{2} \ldots w_{n-1}$, we have $0 \in \hat{\Delta}\left(0, w_{1} w_{2} \ldots w_{n-1}\right)$. But then, $\hat{\Delta}\left(0, w_{1} w_{2} \ldots w_{n}\right)$ contains 9 , and so 0 by the $\varepsilon$-transition from 9 to 0 .
(c) If $\Delta$ denotes the transition function of the $\varepsilon$-NFA of Figure 1 , find $\hat{\Delta}(0, a a b b a b a)$. Show all the states that the $\varepsilon$-NFA can be in, after reading each symbol from the given input string.

Solution We have the following transitions:

$$
\begin{aligned}
& \hat{\Delta}(0, \varepsilon)=\varepsilon \text {-closure }(\{0\})=\{0\}, \\
& \hat{\Delta}(0, a)=\varepsilon \text {-closure }(\{1\})=\{1\}, \\
& \hat{\Delta}(0, a a)=\varepsilon \text {-closure }(\{3\})=\{3\}, \\
& \hat{\Delta}(0, a a b)=\varepsilon \text {-closure }(\{5\})=\{1,5\}, \\
& \hat{\Delta}(0, a a b b)=\varepsilon \text {-closure }(\{3,7\})=\{3,7\} \text {, } \\
& \hat{\Delta}(0, a a b b a)=\varepsilon \text {-closure }(\{5,9\})=\{0,1,5,9\}, \\
& \hat{\Delta}(0, a a b b a b)=\varepsilon \text {-closure }(\{2,3,7\})=\{2,3,7\}, \\
& \hat{\Delta}(0, a a b b a b a)=\varepsilon \text {-closure }(\{4,5,9\})=\{0,1,4,5,9\} .
\end{aligned}
$$

(d) Convert the $\varepsilon$-NFA of Figure 1 to an equivalent NFA without $\varepsilon$-transitions but with the same set of states.


Solution The equivalent NFA is given in Figure 2.
2. Let $L$ be a language over an alphabet $\Sigma$. Recall that a string $x$ is called a prefix of a string $y$ if $y=x z$ for some string $z$. For example, all the prefixes of $a b b a b$ are $\varepsilon, a, a b, a b b, a b b a, a b b a b$. From $L$, we generate the language dupPrefix $(L)$ by duplicating prefixes of strings in $L$. More precisely, we define

$$
\text { dupPrefix }(L)=\{x y \mid y \in L, \text { and } x \text { is a prefix of } y\}
$$

(a) Prove/Disprove: If $L$ is regular, then dupPrefix $(L)$ must also be regular.

Solution False. Take $\Sigma=\{a, b\}$, and $L=\mathscr{L}\left(a^{*} b\right)=\left\{a^{n} b \mid n \geqslant 0\right\}$. Suppose that dupPrefix $(L)$ is regular. Let $k$ be a pumpinglemma constant for dupPrefix $(L)$. Supply the string $a^{k} b a^{k} b \in \operatorname{dupPrefix}(L)$ to the pumping lemma with $u=a^{k} b, v=a^{k}$, and $w=b$. The lemma returns a decomposition $v=x y z$ with $y=a^{l}$ for some $l>0$. Pumping out $y$, we get the string $u x z w=a^{k} b a^{k-l} b \in L$. But since $l>0, a^{k} b$ cannot be a prefix of $a^{k-l} b$, a contradiction.
(b) Prove/Disprove: If $L$ is not regular, then dupPrefix $(L)$ must also be non-regular.

Solution False: Take $\Sigma=\{a\}$, and $L=\left\{a^{n^{2}} \mid n \geqslant 0\right\}$ (a language already proved as not regular). We have

$$
\operatorname{dupPrefix}(L)=\left\{a^{m} \mid m \geqslant 0, m \neq 3\right\}
$$

which is regular (because its complement is a finite set).
3. In this exercise, we use the Myhill-Nerode theorem to prove that the intersection $L$ of two regular languages $L_{1}$ and $L_{2}$ (over the same alphabet $\Sigma$ ) is again regular. Let $\equiv_{1}$ and $\equiv_{2}$ be Myhill-Nerode (MN) relations for $L_{1}$ and $L_{2}$, respectively. The equivalence classes $C_{1}, C_{2}, \ldots, C_{k}$ of $\equiv_{1}$ partition $\Sigma^{*}$. Likewise, the equivalence classes $D_{1}, D_{2}, \ldots, D_{l}$ of $\equiv_{2}$ partition $\Sigma^{*}$. Define the subsets $E_{i j}=C_{i} \cap D_{j}$ of $\Sigma^{*}$ for $i=1,2, \ldots, k$ and $j=1,2, \ldots, l$. We consider only those $E_{i j}$ that are non-empty. For any fixed $i$, the non-empty subsets $E_{i j}$ partition $C_{i}$. Therefore all the non-empty subsets $E_{i j}$ partition $\Sigma^{*}$.
(a) Let $L=L_{1} \cap L_{2}$. The partition of $\Sigma^{*}$ by non-empty $E_{i j}$ induces an equivalence relation $\equiv$ on $\Sigma^{*}$. Prove that $\equiv$ is an MN relation for $L$. By the Myhill-Nerode theorem, $L$ is therefore regular.

Solution [Right congruence of $\equiv$ ] Let $x \equiv y$, and $a \in \Sigma$. Then, $x$ and $y$ belong to the same part $E_{i j}$ for some $i, j$. We have $E_{i j}=C_{i} \cap D_{j}$, that is, $x$ and $y$ belong to both $C_{i}$ and $D_{j}$, that is, $x \equiv_{1} y$ and $x \equiv_{2} y$. Since $\equiv_{1}$ and $\equiv_{2}$ are MN relations, $x a \equiv_{1} y a$ and $x a \equiv_{2} y a$, that is, there exist $i^{\prime}, j^{\prime}$ such that both $x a, y a \in C_{i^{\prime}}$, and both $x a, y a \in D_{j^{\prime}}$. But then, both $x a$ and $y a$ are in $E_{i^{\prime} j^{\prime}}$, that is, $x a \equiv y a$.
[ $\equiv$ refines $L] \quad$ Let $x \equiv y$. Then, both of them belong to some $E_{i j}$ and therefore to both $C_{i}$ and $D_{j}$, that is, $x \equiv_{1} y$ and $x \equiv_{2} y$. Suppose that $x \in L$, that is, $x \in L_{1}$ and $x \in L_{2}$. Since $\equiv_{1}$ and $\equiv_{2}$ are MN relations, we have $y \in L_{1}$ and $y \in L_{2}$, that is, $y \in L$. Analogously, we can prove that if $y \in L$, then $x \in L$ too.
[ $\equiv$ has finite index] The maximum possible index of $\equiv$ is $k l$.
(b) Take $\Sigma=\{a, b\}$. Let $L_{1}=\mathscr{L}\left(a(a+b)^{*}\right)$ and $L_{2}=\mathscr{L}\left((a+b) b(a+b)^{*}\right)$. Then, $L=L_{1} \cap L_{2}=\mathscr{L}\left(a b(a+b)^{*}\right)$. Construct the minimal DFA for $L_{1}$ and $L_{2}$, and deduce the partitions induced by the corresponding coarsest MN relations $\equiv_{1}$ and $\equiv_{2}$. Construct the MN relation $\equiv$ for $L$ as described above, and generate an equivalent DFA $M$ from that relation. Prove/Disprove: $M$ is the minimal DFA for $L$.

Solution The minimal DFA for $L_{1}$ and $L_{2}$ are given in Parts (a) and (b) of Figure 3. The partitions induced by these DFA are as follows.

$$
\begin{array}{ll}
C_{1}=\{\varepsilon\} & D_{1}=\{\varepsilon\} \\
C_{2}=\mathscr{L}\left(b(a+b)^{*}\right) & D_{2}=\{a, b\} \\
C_{3}=\mathscr{L}\left(a(a+b)^{*}\right) & D_{3}=\mathscr{L}\left((a+b) a(a+b)^{*}\right) \\
& D_{4}=\mathscr{L}\left((a+b) b(a+b)^{*}\right)
\end{array}
$$

Figure 3: The constructions for Q3(b)

(c) DFA obtained by the given construction

The non-empty intersections $E_{i j}$ are given below.

$$
\begin{array}{lll}
E_{11}=\{\varepsilon\} & E_{32}=\{a\} \\
& E_{22}=\{b\} & E_{33}=\mathscr{L}\left(a a(a+b)^{*}\right) \\
E_{23}=\mathscr{L}\left(b a(a+b)^{*}\right) & E_{34}=\mathscr{L}\left(a b(a+b)^{*}\right)
\end{array}
$$

The DFA equivalent to this partition is given in Part (c) of Figure 3. This DFA is not minimal, because the states 33, 22,23 , and 24 are equivalent.

