SOME DECIDABLE PROBLEMS

ABOUT TURING MACHINES

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

March 14, 2021

Properties of RE Sets / Turing Machines?

M accepts ε

- This is a property of RE sets.
- This is specified by any member of $\{M \mid \varepsilon \in \mathscr{L}(M)\}$.
- This is a non-trivial property, and is undecidable by Rice's theorem, Part 1.
- The property is monotone, so Rice's theorem, Part 2, is not applicable.
- The property is semidecidable.
 - Simulate *M* on ε , and accept if and only if *M* accepts.
 - For any *M* with $\varepsilon \in \mathscr{L}(M)$, the simulation accepts and halts.
 - For an *M* with $\varepsilon \notin \mathscr{L}(M)$, the simulation may halt in the reject state, or loop.

Properties of RE Sets / Turing Machines?

M halts on ε

- This is not a property of RE sets.
- If $\varepsilon \notin \mathscr{L}(M)$, then upon input ε , *M* may have a choice to halt after rejecting or loop.
- Rice's theorems cannot be applied in this context.
- The language $\{M \mid M \text{ halts on } \varepsilon\}$ is r.e. but not recursive.
- RE: Simulate M on ε , and accept if and only if the simulation halts.
- Not recursive: Reduction from HP: $M # w \mapsto N$.
 - Simulate *M* on *w*.
 - If the simulation halts, accept.

Given *M*, decide whether *M* contains at least 2021 states.

- A Turing machine looks at the encoding of *M*, and finds out the answer.
- This machine runs in finite time for every input.

Given *M*, decide whether *M* halts within 2021 steps on input ε .

- Simulate M on ε for (at most) 2021 steps.
- If the simulation halts (after accepting/rejecting), accept.
- If the simulation does not halt after 2021 steps, reject.
- This machine is also a decider.

Problem 3

Given *M*, decide whether *M* takes more than 2021 steps on some input.

- *M* takes more than 2021 steps on some input ⇐⇒
 M takes more than 2021 steps on some input of length ≤ 2021.
- Suppose that *M* takes ≤ 2021 steps on all inputs of length ≤ 2021 . Supply an input *w* of length > 2021 to *M*.

- Within 2021 steps, *M* cannot see more than 2021 symbols from the input.
- This initial behavior of *M* on *w* is the same as its behavior on the prefix of *w* of length 2021. *M* is deterministic. *M* halts on *w* within 2021 steps.
- A decider simulates M on all inputs of length ≤ 2021 , each for 2021 steps.
- If some simulation takes more than 2021 steps, accept, else reject.

Given *M*, decide whether *M* takes more than 2021 steps on all inputs.

- *M* takes more than 2021 steps on all inputs ⇐⇒
 M takes more than 2021 steps on all inputs of length ≤ 2021.
- It suffices to simulate *M* on all inputs of length ≤ 2021 , each for 2021 steps.

Problem 5

Given *M*, decide whether *M* ever moves to the right of the 2021-st cell on input ε .

- This problem is semidecidable: Simulate M on ε .
- Let m = |Q| (number of states).
- Let $k = |\Gamma|$ (number of symbols in the tape alphabet).
- Suppose *M* never goes to the right of the 2021-st cell.
- Total number of configurations possible is $2022mk^{2021}$.
- Simulate *M* on ε for at most $2022mk^{2021}$ steps.
- If the head ever moves to the right of the 2021-st cell during the simulation, accept.
- If the simulation halts without the head moving to the right of the 2021-st cell, reject.
- Otherwise, some configuration is repeated (pigeon-hole principle).
- Thus the machine must have entered an infinite loop, and will never go beyond the 2021-st cell. Reject.

Three Possibilities

Rice's theorems do not apply to problems specific to Turing machines but not to their languages.

- The problem may be decidable
 - Design a decider for the problem.
 - You must prove that on all inputs, the decider halts after making correct accept/reject decisions.
- The problem may be semidecidable but not decidable.
 - Design a Turing machine (not total) to semidecide the problem.
 - You must prove that all accept decisions are made in finite amounts of time.
 - Use reduction from an undecidable problem like HP.
- The problem may be not even semidecidable.
 - Use reduction from a non-semidecidable problem like $\overline{\text{HP}}$.

Tutorial Exercises

- **1.** Prove that the following problems on a TM *M* are decidable.
 - (a) Decide whether *M* halts on some input within 2021 steps.
 - (b) Decide whether *M* halts on all inputs within 2021 steps.
 - (c) Decide whether *M* runs for at least 2021^{2021} steps for input a^{2021} .
 - (d) Decide whether M on input ε moves left at least ten times.
 - (e) Decide whether M on a given input w moves left at least ten times.
- **2.** Is the problem whether a Turing machine on any input reenters the start state decidable or not? Prove.
- 3. Input: A Turing machine *M*. Decidable/Semidecidable/Not? Prove.
 - (a) *M* halts on exactly 2021 input strings.
 - (b) *M* halts on at least 2021 input strings.
- 4. Input: Two Turing machines M and N. Decidable/Semidecidable/Not? Prove.
 - (a) *M* takes more steps than *N* on input ε .
 - (b) *M* does not take more steps than *N* on input ε .