
CS21004 Formal Languages and Automata Theory, Spring 2019–2020

Reductions and Undecidability

1. Prove that the language

WB = {M # w | M writes the blank symbol in some step on input w}

is not recursive.

Solution We make a reduction HP 6m WB. The input is an instance M # w of HP. The output is a Turing machine N

and an input v for N such that N writes its blank symbol on its tape in some step while working on v, if and

only if M halts on w. The tape of N is composed of two tracks. The upper track is used to simulate M on w,

whereas the lower track controls the writing of the blank symbol. More precisely, the tape alphabet of N is

ΓN = ΓM ×{�,�}, where � is the blank symbol of M. The blank symbol for N is (�,�) (blank on both the

tracks). We also take QN = QM ∪{t ′,r ′}, where t ′ and r ′ are the new accept and reject states of N.

The input w for M is copied to the upper track, and the lower track is kept blank. During the simulation of

M on the upper track, N always writes � on the lower track. That is, for each δM(p,a) = (q,b,d), N has two

transitions: δN(p,(a,�)) = (q,(b,�),d) and δN(p,(a,�)) = (q,(b,�),d). If the simulation of M on w halts,

N writes (�,�) at the current head position (if the head is at the leftmost cell, then the head moves one cell

right before writing the blank), and itself halts (or loops or does whatever it likes). For example, N may have the

new transitions δN(t,(⊲,⊲)) = (t,(⊲,⊲),R), δN(r,(⊲,⊲)) = (r,(⊲,⊲),R), and δN(t,(∗,∗)) = (t ′,(�,�),R)
and δN(r,(∗,∗)) = (r ′,(�,�),R) for any other tape symbol (∗,∗).

2. (a) Prove that the language

E2020 = {M | M halts on exactly 2020 inputs}

is not r.e.

Solution We use a reduction HP 6m E2020. The input is an instance M # w for HP, and the output is a Turing machine N

that halts on exactly 2020 inputs if and only if M does not halt on w.

Fix any of 2020 strings v1,v2,v3, . . . ,v2020. For example, if a ∈ ΣM , you can take vi = ai for i = 1,2,3, . . . ,2020.

The machine N on input v = w proceeds as follows.

1. Check whether v = vi for some i = 1,2,3, . . . ,2020. If so, accept, and halt.

2. Simulate M on v (same as w).

3. If the simulation halts, accept and halt.

If M does not halt on w, then N accepts only the strings v1,v2,v3, . . . ,v2020. If M halts on w, then N accepts all

the strings. This establishes the correctness of the reduction.

(b) Prove that the language

AL2020 = {M | M halts on at least 2020 inputs}

is r.e. but not recursive.

Solution A Turing machine K can simulate M on all possible strings on a time-sharing basis. If M accepts at least 2020

inputs, K eventually detects it, and accepts and halts. If M halts on less than 2020 inputs, the simulation of K

never halts, so this is a case of looping and implicit rejection.

In order to prove non-recursiveness, we use a reduction HP 6m AL2020. The input is an instance M # w for HP,

and the output is a TM N that halts on at least 2020 strings if and only if M halts on w. The input for N is v.

N first simulates M on w. If the simulation halts, N accepts v and halts. In this case, N accepts all v ∈ Σ∗
N . In

particular, N halts on at least 2020 inputs. However, if the simulation of M on w does not halt, N has no chance

to accept and halt on any input v, so in this case, N halts on 0 < 2020 inputs.

3. Let nsteps(M,w) denote the number of steps of M on w. If M loops on w, take nsteps(M,w) = ∞. If N also

loops on v, take nsteps(M,w) = nsteps(N,v). Recursive / r.e. but not recursive / non-r.e.? Prove.

(a) La = {M # N | nsteps(M,ε)< nsteps(N,ε)}.

Solution R.E. but not recursive A two-tape TM K can simulate M on ε on one tape, and N on ε on the other tape in a

round-robin fashion. If the simulation of M halts before that of N, K accepts. If the simulation of N halts before

— Page 1 of 4 —

that of M, K rejects. If the two simulations halt after the same number of steps, K rejects. If neither simulation

halts, K continues with the simulation (that is, loops) for ever, and never accepts. This shows that La is r.e.

In order to show that La is not recursive, we propose a reduction HP 6m La. Upon input M # w (an instance of

HP), the reduction algorithm outputs N1 # N2 (an instance of La) such that N1 halts in fewer steps than N2 upon

input ε if and only if M halts on w.

N1 upon input v1 first checks whether v1 = ε . If not, N1 enters an infinite loop. If v1 = ε , N1 simulates M on w,

and accepts if M halts.

Upon any input v2 , the other machine N2 enters an infinite loop.

If M halts on w, N1 halts on ε (that is, takes a finite number of steps before halting), whereas N2 loops on ε

(infinite steps), that is, nsteps(N1,ε)< nsteps(N2,ε). On the other hand, if M does not halt on w, both N1 and

N2 loop on input ε , that is, nsteps(N1,ε) = nsteps(N2,ε) = ∞.

(b) Lb = {M # N | nsteps(M,ε)6 nsteps(N,ε)}.

Solution Not r.e. The language La = {M # N | nsteps(M,ε)> nsteps(N,ε)} is not r.e., since if both La and La are r.e.,

La is recursive. The simple reduction La 6m Lb converting M # N to N # M shows that Lb is not r.e.

(c) Lc = {M # N | nsteps(M,w)< nsteps(N,v) for some w,v}.

Solution R.E. but not recursive. An NTM K can non-deterministically guess w and v for which nsteps(M,w) <
nsteps(N,v), and verify it by simulating M on w and N on v in a round-robin fashion on two tapes. If

the verification succeeds, K accepts and halts. If there do not exist any w and v for which nsteps(M,w) <
nsteps(N,v), then all guesses of K fail to accept.

In order to prove non-recursiveness, we use a reduction HP 6m Lc. Given an input M # w (an instance of HP),

the reduction algorithm generates a pair of machines N1,N2 such that nsteps(N1,v1)< nsteps(N2,v2) for some

v1,v2 if and only if M halts on w. Without loss of generality, we can take v1 = v2 = ε .

N1 on input v1 does the following.

1. Check if v1 = ε . If not, accept, and halt.

2. If v1 = ε , simulate M on w.

3. If the simulation halts, accept and halt.

N2 on input v2 does the following.

1. Check if v1 = ε . If not, accept, and halt.

2. If v1 = ε , enter an infinite loop.

If M halts on w, nsteps(N1,ε)< ∞. If M does not halt on w, then nsteps(N1,ε) = ∞. In both the cases, we have

nsteps(N2,ε) = ∞.

(d) Ld = {M # N | nsteps(M,w)< nsteps(N,v) for all w,v}.

Solution Not recursively enumerable. We propose a reduction HP 6m Ld . On input M # w (an instance for HP), the

reduction algorithm produces two TMs N1 and N2 such that nsteps(N1,v1)< nsteps(N2,v2) for all v1,v2 if and

only if M does not halt on w.

N1 on input v1 does the following.

1. Simulate M on w for |v1| steps.

2. If the simulation halts within these many steps, enter an infinite loop.

3. If the simulation does not halt within these many steps, accept v1 and halt.

N2 on input v2 does the following.

1. Simulate M on w.

2. If the simulation halts, accept v2 and halt.

If M does not halt on w, M does not halt in any finite number of steps. So N1 halts in Step 3 irrespective of its

input. In particular, nsteps(N1,v1) is finite for all v1. On the other hand, the simulation of M on w by N2 keeps

running forever, so nsteps(N2,v2) = ∞ for any input v2.

If M halts on w, say, in n steps, N2 gets a chance to come to Step 2 and halt. So nsteps(N2,v2) is finite for all

v2 in this case. On the other hand, for any input v1 with |v1| > n, the limited-time simulation by N1 detects

— Page 2 of 4 —

the halting of M on w. In this case, N1 goes to Step 2, and enters an infinite loop, that is, nsteps(N1,v1) = ∞

whenever |v1|> n.

4. Prove that the following languages are not recursive.

(a) {M # N | L (M) = L (N)}.

Solution Reduction from HP

Input: M # w.

Output: N1 # N2 such that L (N1) = L (N2) if and only if M halts on w.

N1 on input v1 accepts and halts.

N2 on input v2 simulates M on w. If the simulation halts, N2 accepts v2 and halts.

If M halts on w, L (N1) = L (N2) = Σ∗. If M does not halt on w, L (N2) = /0, whereas L (N1) = Σ∗ as in the

other case.

(b) {M # N | L (M)⊆ L (N)}.

Solution The reduction of Part (a) works for this part too.

(c) {M # N | L (M)∩L (N) = /0}.

Solution Reduction from HP [This proves even non-r.e.-ness, but that is perfectly OK]

Input: M # w.

Output: N1 # N2 such that L (N1)∩L (N2) = /0 if and only if M does not halt on w.

N1 on input v1 accepts v1 if and only if |v1| is even.

N2 on input v2 simulates M on w for |v2| steps. If the simulation halts in these many steps, accept v2. If the

simulation does not halt in these many steps, accept v2 if and only if |v2| is odd.

We have L (N1) = {v ∈ Σ∗ | |v| is even} irrespective of whether M halts on w or not.

On the other hand, if M does not halt on w, then L (N2) = {v ∈ Σ∗ | |v| is odd}, whereas if M halts on w in n

steps, L (N2) consists of all strings of odd lengths < n, and all strings of both odd and even lengths > n.

(d) {M # N # P | L (M)∩L (N) = L (P)}.

Solution Reduction from HP

Input: M # w.

Output: N1 # N2 # N3 such that L (N1)∩L (N2) = L (N3) if and only if M halts on w.

N1 on any input v1 accepts v1, so L (N1) = Σ∗.

N2 on any input v2 accepts v2, so L (N2) = Σ∗ too.

N3 on input v3 first simulates M on w. If the simulation halts, N3 accepts v3. We therefore have

L (N3) =
{

Σ∗ if M halts on w,

/0 if M does not halt on w.

5. Prove that neither the language REG = {M | L (M) is regular} nor its complement is r.e.

Solution REG is not r.e.

Use reduction from HP. The input to the reduction algorithm is M # w, and its output is a TM N such that L (N)
is regular if and only if M does not halt on w. N, on input v, does the following.

1. Simulate M on w.

2. If the simulation halts, N accepts v if and only if v = 0p for some prime p.

We have

L (N) =

{

/0 if M does not halt on w,

{0p | p is a prime} if M halts on w.

— Page 3 of 4 —

REG is not r.e.

Use reduction from HP. The input to the reduction algorithm is M # w, and its output is a TM N such that L (N)
is not regular if and only if M does not halt on w. N, on input v, does the following.

1. Simulate M on w for |v| steps.

2. If the simulation halts in these many steps, reject v.

3. If the simulation does not halt in these many steps, accept v if and only if v = 0p for some prime p.

We have

L (N) =

{

{0p | p is a prime} if M does not halt on w,

{0p | p is a prime < n} if M halts on w in n steps.

The second set is finite (and so regular).

6. Prove that the following problems on a TM M are decidable.

(a) Decide whether M halts on some input within 2020 steps.

Solution This is the complement of the problem whether M takes more that 2020 steps on all inputs.

(b) Decide whether M on a given input w moves left at least ten times.

Solution Simulate M on w for |w|+ |Q|+ 10 steps. If the simulation makes ten (or more) left movements, accept.

Otherwise, reject. The correctness of the rejection decision comes from the fact that if M makes less than ten

left movements in the above number of iterations, the head is scanning only the blank symbol. Indeed within

|w|+ 10 steps, the head first starts scanning the blank symbol. If |Q| more steps are allowed, then some state

must be repeated indicating that the machine has entered an infinite loop.

7. Is the problem whether a Turing machine on a given input reenters the start state decidable or not? Prove.

Solution Undecidable. Use reduction from HP. Given an input M # w (an instance for HP), we create a machine M ′

which reenters its start state if and only if M halts on w. The following modifications are done on M to get M ′.

1. Mark the start state s of M as a non-start state.

2. Add a new start state s ′.

3. Mark the accept state t and the reject state r of M as non-halting.

4. Add a new accept state t ′ and a new reject state r ′. We have Q ′ = Q∪{s ′, t ′,r ′}.

5. Add a new symbol � to the tape alphabet of M. Denote Γ ′ = Γ∪{�}.

6. Add the following transitions:

δ (s ′,⊲) = (s ′,⊲,R)

δ (s ′,a) = (s,a,L) for any a ∈ Γ\{⊲}

δ (t,⊲) = (t,⊲,R)

δ (r,⊲) = (r,⊲,R)

δ (t,a) = (s ′,�,R) for any a ∈ Γ\{⊲}

δ (r,a) = (s ′,�,R) for any a ∈ Γ\{⊲}

δ (s ′,�) = (t ′,�,L)

δ (p,�) = (r ′,�,L) for any p 6= s ′, t ′,r ′.

M ′, on input w, starts in the new start state s′. After two moves, it switches to the old start state (the first two

added transitions). After that, the old transitions of M take effect, and M′ perfectly simulates M on w. If the

simulation halts in state t or r, M′ does a little bit of work before halting. It writes the new tape symbol � in the

current head position (skipping the leftmost cell if necessary), and comes back to this cell, and accepts by going

to the new accept state t ′. The last transition added above should never be executed, but given to complete the

specification of the machine M′. If M does not halt on w, M′ never reaches t or r, so s′ is never reentered by M′.

Remarks: In Q1 and Q7, the reduction algorithms are specified explicitly. Do this whenever possible. In general, the

reduction algorithm is cumbersome. So it suffices to describe the behavior of the output. We leave it to our intuition

that the reduction algorithm (a total TM) can make this conversion. If the input to the reduction algorithm is a machine

M and its input w, the reduction algorithm can embed the information of M and w in the finite control (transition

function) of the output machine. So the output machine can write w to a tape, and simulate M on w.

— Page 4 of 4 —

