
CS21004 Formal Languages and Automata Theory, Spring 2019–2020

Rice’s Theorems

1. Prove/Disprove: No non-trivial property of r.e. languages is semidecidable.

Solution False. Non-emptiness is a non-trivial property that is semidecidable (although not decidable). If a TM M

accepts any strings at all, this can be detected by simulating M on all inputs on a time-sharing basis.

2. Use Rice’s theorems to prove that neither the following languages nor their complements are r.e.

(a) FIN = {M | L (M) is finite}.

Solution Finiteness is a non-monotone property. So by Rice’s theorem, Part 2, FIN is not r.e. Infiniteness is however a

monotone property, so Rice’s theorem, Part 2, is not applicable to FIN. Infiniteness being a non-trivial property,

Rice’s theorem, Part 1, implies that FIN is not recursive. It seems that nothing more about FIN follows from

Rice’s theorems. We need a separate proof for the non-r.e.-ness of FIN (already covered).

(b) REG = {M | L (M) is regular}.

Solution Neither regularity nor non-regularity is a monotone property. For example, consider

/0 ⊆ {0p | p is a prime} ⊆ Σ
∗
.

3. [Generalization of Rice’s theorem for pairs of r.e. langauges] Consider the set of pairs of r.e. languages:

RE2 = {(L1,L2) | L1,L2 ∈ RE}.

(a) Define a property of pairs of r.e. languages.

Solution A property of a pair of r.e. languages is a map P : RE2 →{T,F}.

(b) How do you specify a property of a pair of r.e. languages?

Solution Such a property is specified by a pair of Turing machines M1,M2. We look at whether P(L (M1),L (M2)) is

true (T) or false (F). A property must be independent of the representative TMs.

(c) Which properties of pairs of r.e. languages should be called non-trivial?

Solution The constant maps PT : RE2 →{T,F} taking every (L1,L2) to T , and PF : RE2 →{T,F} taking every (L1,L2)
to F are trivial. Any other property is non-trivial.

(d) Prove that every non-trivial property of pairs of r.e. languages is undecidable.

Solution Let P be a non-trivial property of RE2. We need to show that the language

Π = {M1 # M2 | P(L (M1),L (M2)) = T}

is not recursive. Assume that P(/0, /0) = F . Since P is non-trivial, P(L1,L2) = T for some L1,L2 ∈ RE. Take two

TMs K1,K2 with L (K1) = L1 and L (K2) = L2.

Now, use a reduction HP6m Π. The input to the reduction algorithm is M # w, and the output is a pair of Turing

machines M1 and M2 such that P(L (M1),L (M2)) = T if and only if M halts on w. The reduction algorithm

can embed the information of M,w,K1,K2 in the finite controls of M1 and M2.

Behavior of M1 on input v1:

1. Store v1 on a second tape.

2. Copy w to the first track, and simulate M on w.

3. If the simulation halts, simulate K1 on v1 on the second tape, and accept v1 if and only if K1 accepts v1.

Behavior of M2 on input v2:

1. Store v2 on a second tape.

2. Copy w to the first track, and simulate M on w.

3. If the simulation halts, simulate K2 on v2 on the second tape, and accept v2 if and only if K2 accepts v2.

If M halts on w, both M1 and M2 get a chance to simulate K1 and K2, respectively. In this case, L (M1) =
L (K1) = L1 and L (M2) = L (K2) = L2. We have P(L1,L2) = T .

— Page 1 of 2 —

If M does not halt on w, neither M1 nor M2 gets a chance to run their respective simulations of K1 and K2. In

this case, L (M1) = L (M2) = /0. We have P(/0, /0) = F .

Remark: If P(/0, /0) = T , take L1,L2 ∈ RE with P(L1,L2) = F . Use a reduction HP 6m Π.

4. Use the previous exercise to prove that the following languages are not recursive.

(a) {M # N | L (M) = L (N)}.

Solution We have to show that the given set is neither empty nor equal to the entire set of pairs of TMs. Take M with

L (M) = /0, N1 with L (N1) = /0, and N2 with L (N2) = Σ
∗. But then, M # N1 is in the given set, whereas M # N2

is not in the given set.

(b) {M # N | L (M)∩L (N) is recursive}.

Solution Let U be the universal Turing machine. Its language MP = L (U) is not recursive. Take M = N2 =U , and N1

with L (N1) = /0. We see that L (M)∩L (N1) = /0 is recursive, whereas L (M)∩L (N2) = MP is not recursive.

(c) {M # N | L (M)∪L (N) is recursive}.

Solution Take M = N2 =U , and N1 with L (N1) = Σ
∗. Proceed as in Part (b).

— Page 2 of 2 —

