
UNDECIDABLE PROBLEMS

ABOUT CONTEXT-FREE LANGUAGES

Abhijit Das

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

April 2, 2020

FLAT, Spring 2020 Abhijit Das

R.E. Languages vs Context-Free Languages

• R.E. languages are specified by Turing machines M

or unrestricted grammars.

• We have seen that the following problems are undecidable.

• whether L (M) = /0.

• whether L (M) is finite.

• whether L (M) = Σ∗.

• whether L (M) is recursive.

• CFLs are specified by PDA or CFGs. We ask similar questions for a CFG G.

• whether L (G) = /0.

• whether L (G) is finite.

• whether L (G) = Σ∗.

• whether L (G) is a DCFL.

• Some of these CFL problems are decidable, some are not.

FLAT, Spring 2020 Abhijit Das

CFL Emptiness is Decidable

Theorem

It is decidable whether a context-free grammar G generates (or a PDA N accepts) any

strings at all, that is, whether L (G) = /0 (or L (N) = /0) or not.

FLAT, Spring 2020 Abhijit Das

Proof by Pumping Lemma

• Let L = L (G).

• Let n be the number of non-terminal symbols of G.

• Then k = 2n+1 is a pumping-lemma constant for L.

• The pumping lemma implies:

• If L is finite, then all strings in L are of length < k.

• If L is infinite, then L contains a string of length in the range [k,2k).

• Check whether G can generate any string of length < 2k.

• Each such string can be tested by the CKY algorithm.

FLAT, Spring 2020 Abhijit Das

A Constructive Proof

• Try to mark all symbols in Σ∪N.

• Start by marking symbols in Σ.

• Look at the rules A → β .

• If all the symbols of β are marked, mark A.

• Continue until no further markings are possible.

• |N| is finite.

• The procedure halts after a finite number of steps.

• L is non-empty if and only if the start symbol S is marked.

• This procedure is very efficient.

FLAT, Spring 2020 Abhijit Das

Example

S → ABC | UVS

A → aA | bU | cVW

B → caW | WW

C → cc

U → W | UWU | aBV

V → VC | WV

W → ε | AbcV

FLAT, Spring 2020 Abhijit Das

Example

S → ABC | UVS

A → aA | bU | cVW

B → caW | WW

C → cc

U → W | UWU | aBV

V → VC | WV

W → ε | AbcV

FLAT, Spring 2020 Abhijit Das

Example

S → ABC | UVS

A → aA | bU | cVW

B → caW | WW

C → cc

U → W | UWU | aBV

V → VC | WV

W → ε | AbcV

FLAT, Spring 2020 Abhijit Das

Example

S → ABC | UVS

A → aA | bU | cVW

B → caW | WW

C → cc

U → W | UWU | aBV

V → VC | WV

W → ε | AbcV

FLAT, Spring 2020 Abhijit Das

Example

S → ABC | UVS

A → aA | bU | cVW

B → caW | WW

C → cc

U → W | UWU | aBV

V → VC | WV

W → ε | AbcV

FLAT, Spring 2020 Abhijit Das

Example

S → ABC | UVS

A → aA | bU | cVW

B → caW | WW

C → cc

U → W | UWU | aBV

V → VC | WV

W → ε | AbcV

FLAT, Spring 2020 Abhijit Das

Example

S → ABC | UVS

A → aA | bU | cVW

B → caW | WW

C → cc

U → W | UWU | aBV

V → VC | WV

W → ε | AbcV

FLAT, Spring 2020 Abhijit Das

Example

S → ABC | UVS

A → aA | bU | cVW

B → caW | WW

C → cc

U → W | UWU | aBV

V → VC | WV

W → ε | AbcV

FLAT, Spring 2020 Abhijit Das

CFL Fullness is Undecidable

Theorem

It is undecidable whether a context-free grammar G generates (or a PDA N accepts) all

strings, that is, whether L (G) = Σ∗ (or L (N) = Σ∗) or not.

FLAT, Spring 2020 Abhijit Das

Reduction Idea

• HP 6m {G | G is a CFG over ∆ with L (G) = ∆∗}.

• Input: A Turing machine M and an input w for M.

• Output: A context-free grammar G.

• M does not halt on w ⇒ L (G) = ∆∗.

• M halts on w ⇒ L (G)$ ∆∗.

• G incorporates the computation histories of M on w.

• If M halts on w, it has one or more finite computation histories.

• If M does not halt on w, it has only infinite computation histories.

• Infinite computation histories cannot be encoded as strings.

• Only finite computation histories ending in a halting configuration are called valid.

FLAT, Spring 2020 Abhijit Das

What if M is an NTM?

• M either halts or gets stuck or loops.

• There may be both finite and infinite computation histories.

• Modify M as follows:

• Mark the old reject state r as a non-reject state.

• Add a new reject state r ′.

• If δ (p,a) = /0, change δ (p,a) = {(r,a,R)}.

• Add the transitions δ (r,a) = (r,a,R) for all a ∈ Γ.

• If M accepts w, it has one or more finite computation histories.

• M can never enter the new reject state r ′.

• M can never get stuck.

• M rejects by looping in state r.

• There is no finite computation history ending in the new reject state r ′.

• In what follows, assume that M has this modified form.

FLAT, Spring 2020 Abhijit Das

Encoding Configurations of M

• Σ is the input alphabet for M.

• Γ is the tape alphabet for M.

• Q is the set of states of M.

• A configuration of M is encoded as a string over Γ× (Q∪{−}).

• For the configuration

C = (p,⊲aubvacbvwua� vc�ω),

the encoding is:

⊲ a u b v a c b v w u a � v c

− − − − − − p − − − − − − − −

• The initial configuration C0 on input w = a1a2a3 . . .an is

⊲ a1 a2 a3 · · · an

s − − − ·· · −

FLAT, Spring 2020 Abhijit Das

Encoding Computation Histories

• A computation history is a sequence of configurations

C0,C1,C2, . . . ,CN .

• Each Ci ∈ (Γ× (Q∪{−}))∗.

• Each Ci must contain only one state.

• C0 should be the initial configuration.

• Two consecutive configurations must be consistent with the transition function of M.

• The last configuration should have the accept state t or the reject state r.

• We encode this history as

#C0#C1#C2#C3# · · ·#CN#.

• We allow t or r to appear in Ci for i < N. If so, Ci = Ci+1 = Ci+2 = · · ·= CN .

FLAT, Spring 2020 Abhijit Das

Valid Computation Histories

• Let ∆ = (Γ× (Q∪{−}))∪{#}.

• Define

VALCOMP(M,w) = {α ∈ ∆∗ | α is a valid computation history of M on input w}.

• Let L = VALCOMP(M,w) = ∆∗ \VALCOMP(M,w).

Theorem

L is a context-free language.

• A total Turing machine R, given M and w, can prepare a CFG for L.

• R does not have to simulate M on w.

FLAT, Spring 2020 Abhijit Das

Validity of this Reduction

If M halts on w

• M has one or more valid computation histories.

• VALCOMP(M,w) 6= /0.

• L = VALCOMP(M,w) 6= ∆∗.

If M does not halt on w

• M has only infinite (so invalid) computation histories.

• VALCOMP(M,w) = /0.

• L = VALCOMP(M,w) = ∆∗.

This is a valid reduction HP 6m {G | G is a CFG with L (G) = ∆∗}.

FLAT, Spring 2020 Abhijit Das

VALCOMP(M,w) and its Complement L

• A string α ∈ ∆∗ is in VALCOMP(M,w)
if and only if the following five conditions hold:

1. α is of the form #C0#C1#C2# · · ·#CN#

with each Ci ∈ (Γ× (Q∪{−}))∗.

2. Each Ci must contain only one state.

3. C0 must be the start configuration.

4. CN is a halting configuration (in state t or r).

5. Each Ci+1 follows from Ci by the transition rules of M.

• Let A = {α ∈ ∆∗ | α satisfies Conditions 1–4}.

• Let B = {α ∈ ∆∗ | α satisfies Condition 5}.

• We have VALCOMP(M,w) = A∩B.

• So L = VALCOMP(M,w) = A∪B = A∪ (A∩B).

• To show: A and A∩B (or B) are context-free.

FLAT, Spring 2020 Abhijit Das

A is Regular

• Let w = a1a2 . . .an.

• Notations:

∆− = Γ×{−}, ∆Q = Γ×Q, ∆t = Γ×{t}, and ∆r = Γ×{r}.

• Regular subexpressions:

• β0 =
⊲ a1 a2 · · · an

s − − ·· · −
.

• βi = ∆∗
− ∆Q ∆∗

−.

• βt = ∆∗
− ∆t ∆∗

−.

• βr = ∆∗
− ∆r ∆∗

−.

• A is generated by the regular expression #β0(#βi)
∗#(βt +βr)#.

• So A is regular, and A is regular too.

• A can be specified by a right-linear grammar.

FLAT, Spring 2020 Abhijit Das

A∩B is Context-Free

• Ci and Ci+1 are two consecutive configurations.

• We need to check Ci+1 does not follow from Ci.

• Two positions in Ci and Ci+1 are corresponding if

they are equidistant from their preceding hashes.

• Change in configuration is only local.

• Changes in corresponding positions consistent with the transitions of M.

• No change:
a b c

− − −
remains as

a b c

− − −
.

• State enters:
a b c

− − −
changes to

a b c

q − −
or

a b c

− − q
.

• δ (p,b) = (q,d,L):
a b c

− p −
changes to

a d c

q − −
.

• δ (p,b) = (q,d,R):
a b c

− p −
changes to

a d c

− − q
.

FLAT, Spring 2020 Abhijit Das

A∩B is Context-Free

• Changes in corresponding positions not consistent with the transitions of M.

• δ (p,b) = (q,d,L):
a b c

− p −
changes to

a d c

q ′ − −
.

• δ (p,b) = (q,d,L):
a b c

− p −
changes to

a e c

q − −
.

• δ (p,b) = (q,d,L):
a b c

− p −
changes to

a d c

− − q
.

• δ (p,b) = (q,d,R):
a b c

− p −
changes to

a d c

− − q ′ .

• δ (p,b) = (q,d,R):
a b c

− p −
changes to

a e c

− − q
.

• δ (p,b) = (q,d,R):
a b c

− p −
changes to

a d c

q − −
.

• The state in Ci is t or r, but that in Ci+1 is not the same.

FLAT, Spring 2020 Abhijit Das

An NPDA to Detect an Inconsistent Change

• The NPDA non-deterministically chooses:

• Two consecutive configurations, and

• The corresponding positions.

C i C i + 1

##
a b c

p
a ce
q −−− −

l l

• After reading the hash before Ci, the NPDA does these:

• Push l symbols to its stack.

• Read the three elements of ∆ in its finite control.

• Skip the rest of Ci and the next hash.

• Move ahead exactly l positions in Ci+1 by popping from its stack until the stack

becomes empty (or some marker is exposed).

• Read the next three symbols, and confirm inconsistency.

FLAT, Spring 2020 Abhijit Das

The Final Points about the Reduction

• L = VALCOMP(M,w) = A∪B = A∪ (A∩B).

• If α ∈ ∆∗ is in A∩B, there is at least one inconsistency.

• The NPDA can nondeterministically find that, and accept α .

• A has a right-linear grammar.

• Convert the NPDA for A∩B to a CFG.

• CFLs are closed under union.

FLAT, Spring 2020 Abhijit Das

Tutorial Exercises

1. You are given two CFGs G and G′. Prove that the following problems are

undecidable.

(a) whether L (G) = L (G′),
(b) whether L (G)⊆ L (G′),
(c) whether L (G) = L (G)L (G).

2. Prove that the following problems are undecidable.

(a) whether a CFL is a DCFL.

(b) whether the intersection of two CFLs is a CFL.

(c) whether the complement of a CFL is a CFL.

3. Prove that the finiteness problem for regular and context-free languages is decidable.

FLAT, Spring 2020 Abhijit Das

