RICE'S

THEOREMS

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

March 25, 2020

Properties of RE Languages

- Let RE = $\{ \mathcal{L}(M) \mid M \text{ is a Turing machine} \}$.
- RE is the class of all r.e. languages.
- A property of r.e. sets is a map

$$P: RE \rightarrow \{T, F\}.$$

• Example: Emptiness is a property defined as

$$P_{EMP}(L) = egin{cases} T & ext{if } L = \emptyset \ F & ext{if } L
eq \emptyset \end{cases}$$

- R.E. languages are specified by Turing machines.
- Properties too are specified by Turing machines.
- Example: The emptiness property is specified by any member of

$$P_{EMP} = \{ M \mid \mathcal{L}(M) = \emptyset \}.$$

Examples of Properties

- Finiteness property: Any member of $\{M \mid \mathcal{L}(M) \text{ is finite}\}.$
- Regularity property: Any member of $\{M \mid \mathcal{L}(M) \text{ is regular}\}.$
- Context-free property: Any member of $\{M \mid \mathcal{L}(M) \text{ is context free}\}$.
- Acceptance of a string: Any member of $\{M \mid 01011000 \in \mathcal{L}(M)\}$.
- Full-ness property: Any member of $\{M \mid \mathcal{L}(M) = \Sigma^*\}$.
- We specify a property by a **single Turing machine**, the language of which has that property.
- Properties are properties of **RE sets**, **not** of Turing machines.
- A property must be independent of the representative machine.

Non-Examples

- Any member of $\{M \mid M \text{ has at least } 2020 \text{ states}\}.$
 - We can design two TMs M_1 and M_2 both accepting \emptyset .
 - M_1 has less than 2020 states.
 - M_2 has 2020 or more states.
 - If \emptyset is represented by M_1 , the property is false for \emptyset .
 - If \emptyset is represented by M_2 , the property is true for \emptyset .
- Any member of $\{M \mid M \text{ is a total TM}\}$.
- Any member of $\{M \mid M \text{ rejects } 01011000 \text{ and halts}\}.$
- Any member of $\{M \mid M \text{ ever goes to the right of the input}\}$.
- Any member of $\{M \mid M \text{ has the smallest number of states among all machines accepting } \mathcal{L}(M)\}$.

Types of Properties

Trivial properties

- The constant map $RE \rightarrow \{T, F\}$ taking all $L \in RE$ to T.
- The constant map $RE \rightarrow \{T, F\}$ taking all $L \in RE$ to F.
- Any other property is called **non-trivial**.
- Example of trivial property: $\mathcal{L}(M)$ is recursively enumerable.
- Example of non-trivial property: $\mathcal{L}(M)$ is recursive.

Monotone properties

- Assume $F \leqslant T$.
- Whenever $A \subseteq B$, we have $P(A) \leqslant P(B)$.
- Examples of monotone properties: $\mathscr{L}(M)$ is infinite, $\mathscr{L}(M) = \Sigma^*$.
- Examples of non-monotone properties: $\mathcal{L}(M)$ is finite, $\mathcal{L}(M) = \emptyset$.

Rice's Theorem (Part 1)

Theorem

Any **non-trivial** property P of r.e. languages is undecidable. In other words, the set $\Pi = \{N \mid P(\mathcal{L}(N)) = T\}$ is not recursive.

Proof

- Let *P* be a non-trivial property of r.e. languages.
- Suppose $P(\emptyset) = F$ (the other case can be analogously handled).
- Since *P* is non-trivial, there exist $L \in RE$, $L \neq \emptyset$, such that P(L) = T.
- Let K be a Turing machine with $\mathcal{L}(K) = L$.
- We make a reduction from HP to Π .

Rice's Theorem: The Reduction HP $\leq_m \Pi$

- **Input:** *M* # *w* (an instance of HP)
- **Output:** A Turing machine *N* such that $P(\mathcal{L}(N)) = T$ if and only if *M* halts on *w*.
- Behavior of *N* on input *v*:
 - Copy *v* to a separate tape.
 - Write w to the first tape, and simulate M on w.
 - If the simulation halts:
 - Simulate K on v.
 - Accept if and only if K accepts v.
- If *M* halts on w, $\mathcal{L}(N) = \mathcal{L}(K) = L$.
- If *M* does not halt on w, $\mathcal{L}(N) = \emptyset$.
- P(L) = T and $P(\emptyset) = F$.

Rice's Theorem: Part 2

Theorem

No **non-monotone** property P of r.e. languages is semidecidable. In other words, the set $\Pi = \{N \mid P(\mathcal{L}(N)) = T\}$ is not recursively enumerable.

Proof

• P is non-monotone. So there exist r.e. languages L_1 and L_2 such that

$$L_1 \subseteq L_2$$
, $P(L_1) = T$, $P(L_2) = F$.

- Take Turing machines M_1, M_2 such that $\mathcal{L}(M_1) = L_1$ and $\mathcal{L}(M_2) = L_2$.
- We supply a reduction from \overline{HP} to Π .
- The reduction algorithms embeds the information of M, w, M₁, and M₂ in the finite control of N.

Rice's Theorem: Part 2: The Reduction HP $\leq_m \Pi$

- **Input:** *M* # *w*.
- Output: A Turing machine N such that $P(\mathcal{L}(N)) = T$ if and only if M does **not** halt on w.
- Behavior of N on input v:
 - Copy v from the first tape to the second tape, and w from the finite control to the third tape.
 - Run three simulations in parallel (one step of each in round-robin fashion)

 M_1 on v on the first tape,

 M_2 on v on the second tape,

M on w on the third tape.

- Accept if and only if one of the following conditions hold:
 - (1) M_1 accepts v,
 - (2) M halts on w, and M_2 accepts v.
- *M* does not halt on $w \Rightarrow N$ accepts by (1) $\Rightarrow \mathcal{L}(N) = \mathcal{L}(M_1) = L_1$.
- If M halts on w, N accepts if either M_1 or M_2 accepts v. In this case, $\mathcal{L}(N) = \mathcal{L}(M_1) \cup \mathcal{L}(M_2) = L_1 \cup L_2 = L_2$ (since $L_1 \subseteq L_2$).

Tutorial Exercises

- 1. Prove/Disprove: No non-trivial property of r.e. languages is semidecidable.
- 2. Use Rice's theorems to prove that neither the following languages nor their complements are r.e.
 - (a) $FIN = \{M \mid \mathcal{L}(M) \text{ is finite}\}.$
 - (b) REG = $\{M \mid \mathcal{L}(M) \text{ is regular}\}.$
 - (c) CFL = $\{M \mid \mathcal{L}(M) \text{ is context-free}\}.$
- **3.** [Generalization of Rice's theorem for pairs of r.e. languages] Consider the set of pairs of r.e. languages: $RE^2 = \{(L_1, L_2) \mid L_1, L_2 \in RE\}.$
 - (a) Define a property of pairs of r.e. languages.
 - (b) How do you specify a property of a pair of r.e. languages?
 - (c) Which properties of pairs of r.e. languages should be called non-trivial?
 - (d) Prove that every non-trivial property of pairs of r.e. languages is undecidable.

Tutorial Exercises

4. Use the previous exercise to prove that the following problems about pairs of r.e. languages are undecidable.

- (a) $\mathcal{L}(M) = \mathcal{L}(N)$.
- (b) $\mathscr{L}(M) \subseteq \mathscr{L}(N)$.
- (c) $\mathscr{L}(M) \cap \mathscr{L}(N) = \emptyset$.
- (d) $\mathcal{L}(M) \cap \mathcal{L}(N)$ is finite.
- (e) $\mathcal{L}(M) \cap \mathcal{L}(N)$ is regular.
- (f) $\mathcal{L}(M) \cap \mathcal{L}(N)$ is context-free.
- (g) $\mathcal{L}(M) \cap \mathcal{L}(N)$ is recursive.
- (h) $\mathscr{L}(M) \cup \mathscr{L}(N) = \Sigma^*$.
- (i) $\mathscr{L}(M) \cup \mathscr{L}(N) = \emptyset$.
- (j) $\mathcal{L}(M) \cup \mathcal{L}(N)$ is finite.
- (k) $\mathcal{L}(M) \cup \mathcal{L}(N)$ is recursive.