CS21004 Formal Languages and Automata Theory, Spring 2012-13

End-Semester Test

Maximum marks: 60 Date: 19-Apr-2013 Duration: Three hours (AN)

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precisevéyral questions,

1. Answer the following six parts with brief justifications. Take= {0, 1} in all the parts. (2 x 6)

(&) Write a regular expression equivalent to the following NFA.

Solution 01(1(0+ 1)1)* (easy inspection).

(b) Regular or not{afay | a, 8,y € ¥*, |B] = |7|}?

Solution Yes. We are allowed to take = ¢, so the language is the set of all even-length strings.

(c) Context-free or not{afay | a, 5,7 € ¥, a #¢€, |8 = |7]}?

Solution Yes. The language consists of all strings of ler@jtffor any! > 1) such that the first and thHé+ 1)-st symbols
are the same. A PDA can match these two symbols (by guessirgpibsitions and using its stack to verify

18] = D).

(d) Trueor False{afy | #0(a) = #1(8) = #0(y)} N L£(0*1*0*) = {0"1"0" | n > 0}?

Solution False. For example, the strir@ft2170"*! is of the form0*1*0*, and can be decomposed ag~y with
a = 0" g = 001"0 andy = 0™. Indeed, any string of the for*1*0* admits a decompositions~y with

#0(a) = #1(8) = #0(7).

(e) Recursive or not{ M | M is a Turing machine that accepts at le2(t3 stringg?

Solution No. Containing at leas2013 strings is a non-trivial (but monotone) property of r.e.sseNow, use Rice’s
theorem, Part I.

(f) Recursively enumerable or ndt)M | M is a Turing machine that accepts exacty 3 strings ?

Solution No. Containing exactl2013 strings is a non-monotone property of r.e. sets. Now, use’&®ibheorem, Part Il.

— Page 10of 10 —

2. Consider the context-free gramni@rover{a, b}, with start symbolS, and with the following productions.

S — aaB | Abb
A — al|adA
B — b|bB

(a) Whatis£(G)? (2)

Solution £(G) = {a?v™ |n > 1} | {a™b? | n > 1}.

(b) Prove that this CFG is ambiguous. 4)

Solution The stringaabb has two distinct leftmost derivations:

S = aaB = aabB = aabb,
S = Abb = aAbb = aabb.

(c) Design an unambiguous context-free grammauJ@®). 4)

Solution In order to disambiguate this grammar, we separate out sorak examples.

S — aab|abb | aabb | aa Abb | aa Bbb
A — aldd
B — b|bB

— Page 2 of 10 —

Roll no: Name:

3. Consider the unrestricted grammar over the singleton alphabet{a}, having the start symbd¥, and
with the following productions.

S
Aa
AT
T

AS | aT
aaaA
T

€

Ll

(a) Show a derivation ofi? using this grammar. 4)

Solution S = AS = AAS = AAdT = AaacAT = AaaadT = aaaAaaT = aaaaaaAdaT = aaaaaaaaaAT =
aaaaaaaaad = aaaaaaaaa.

(b) What is the language generated by this unrestricted grammar? Justify. 4)

Solution We haveZ(S) = {a*" | n > 0}. In order to prove this, we may proceed by induction on the bemof A’s
generated before the rute — a7 is applied. Each generatedmust get in contact witli” before vanishing.
In the rightward journey of eacH, the number of/’s is tripled.

— Page 30f 10 —

4. For two languageg! and B over the same alphabgt define the language
A/B ={a € ¥* | ap € Aforsomes € B}.

Prove that ifA and B are recursively enumerable, then so alsd j$5. (6)

Solution Let A and B be recognized by Turing machiné$ and N. We design a two-track non-deterministic Turing
machineK to acceptd/B as follows.

K, upon inputw, does the following:

(1) Non-deterministically choose a strifiy Appendg to « in the first track, and copy to the initially
empty second track.
(2) SimulateM onas andN on g in parallel on the two tracks.

(3) If both the simulations accept, accept. If one or bothhaf simulations reject, reject. If both the
simulations keep on looping, the parallel simulation inpS{8) never terminates (that is, Step (3) is

never executed).

The non-deterministic choice ¢f can be replaced by all choices ©f In that case, the simulations on alb
andg run on a time-sharing basis.

— Page 4 of 10 —

Roll no: Name:

5. Identify the types of the following two languages (recursive / nonsi®ee but recursively enumerable /
not recursively enumerable). Halting may be a choice of Turing machsmedp not use Rice’s theorem.
Construct appropriate Turing machines and/or supply appropriatetiedsi.

(@ L, ={M | M is a Turing machine that halts on exac2ly13 input stringg. (6)
L, is not recursively enumerable
Proof :

Solution We propose a reduction HP <,,, L, which mapsM #« to N such thatV/ does not halt om if and only if N
halts on exacth2013 input strings. The reduction algorithms uses 80y3 constant stringsy, 7o, - - ., 72013
(distinct from one another). For example, we may hayve- 0° fori = 1,2,...,2013.

N, upon inputs3, does the following:

(1) Check whethep = ~; for somei = 1,2,3,...,2013. If so, halt (after accepting or rejecting).
(2) SimulateM ona.
(3) If the simulation of Step (2) halts, halt (after accegtor rejecting).

It follows that if M halts ona, thenN halts on every inpug. On the other hand, if/ does not halt omy, then
N halts only on the013 input stringsys, v, - - - , Y2013-

— Page50f 10 —

(b) Ly ={M | M is a Turing machine that halts on at le@8t3 input stringg. (6)

Ly is recursively enumerable but not recursive

Proof :

Solution We can design a Turing machidé that simulates\/ on all possible input strings on a time-sharing basis. If
any 2013 of the simulations halti” accepts and halts. %013 strings are never found, the parallel simulation
of K never stops. Thud,, is recursively enumerable. (Alternativell; can be a non-deterministic Turing
machine which simulatesf on 2013 distinct choices of inputs. The simulations may proceedaralbel or one
after another.)

In order to prove that, is not recursive, we make a reductii® <,,, L; that maps\/#a to N such that\/
halts ona if and only if N halts on at leas2013 input strings.

N, upon inputs3, does the following:

(1) SimulateM ona.
(2) If the simulation of Step (1) halts, halt (after accegtand rejecting).

It follows that if M halts ona, then N halts on all input strings (in particular, on at le&8t 3 input strings).
On the other hand, it/ does not halt o, then N does not halt on any input string

— Page 6 of 10 —

Roll no: Name:

6. Find out (with appropriate justifications) which of the following two languaigéare recursive. Assume
that some fixed input alphabkgtis provided for CFG’s and PDA's. Do not use any theorem or algoritbin n
covered in the lectures or tutorials.

(@ L.={G#a|GisaCFGu € X*, anda € L(G)}. (6)
L.is recursive
Proof:

Solution Here is a decider foL.. Let S be the start symbol af.

(1) If @ = ¢, find out whetherS =* ¢ is a valid derivation. More precisely, first mark all nonrténal
symbolsA for which A — ¢ is a rule inG. Next, keep on marking non-terminal symbdtshaving rules
B — C10Cy...C, with C1,Cs, ..., Cy, already marked. Stop when no further marking of non-terinina
symbols is possible. If the start symi®is marked, accept, else reject.

(2) ConvertG to the Chomsky normal form. Call this converted grami@ar

(3) Derive all sentential forms of lengtd |«| using at mos®|«| — 1 derivation steps under the converted
grammarG’. If « is ever generated, accept, else reject.

Step (1) can be completed in a finite number of steps, becéese are only finitely many non-terminal
symbols. Conversion off to G’ can again be done in a finite amount of time. The third step taehes

in a finite amount of time, since a grammar in the Chomsky nbforan guarantees increase in length of a
sentential form for each application of a production of therf A — BC. Application of a production of the
form A — a, on the other hand, replaces a non-terminal symbol by a telrsiymbol. Therefore, a sentence
of lengthn does not require more th&m — 1 steps in the derivation.

— Page 7 of 10 —

(b) L;={G#P|GisaCFG,PisaPDA, andC(G) = L(P)}. (6)

Lgis not recursive

Proof :

Solution We propose a reductioNLLcrg <., Lg. Given an inputi for ALLcrg, the reduction algorithm generates a
PDA P with £(P) = ¥*, and outputs7#P. Clearly,G € ALLcpg ifand only if £(G) = L(P) = &*.

— Page 8 of 10 —

Roll no: Name:

[Space for leftover answers and rough work |

— Page 9 of 10 —

[Space for leftover answers and rough work |

— Page 10 of 10 —

