
CS21004 Formal Languages and Automata Theory, Spring 2012–13

End-Semester Test

Maximum marks: 60 Date: 19-Apr-2013 Duration: Three hours (AN)

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Answer the following six parts with brief justifications. TakeΣ = {0, 1} in all the parts. (2× 6)

(a) Write a regular expression equivalent to the following NFA.

0 1

0,1
1

Solution 01(1(0 + 1)1)∗ (easy inspection).

(b) Regular or not:{αβαγ | α, β, γ ∈ Σ∗, |β| = |γ|}?

Solution Yes. We are allowed to takeα = ǫ, so the language is the set of all even-length strings.

(c) Context-free or not:{αβαγ | α, β, γ ∈ Σ∗, α 6= ǫ, |β| = |γ|}?

Solution Yes. The language consists of all strings of length2l (for anyl > 1) such that the first and the(l+1)-st symbols
are the same. A PDA can match these two symbols (by guessing their positions and using its stack to verify
|β| = |γ|).

(d) True or False:{αβγ | #0(α) = #1(β) = #0(γ)}
⋂

L(0∗1∗0∗) = {0n1n0n | n > 0}?

Solution False. For example, the string0n+21n0n+1 is of the form0∗1∗0∗, and can be decomposed asαβγ with
α = 0n, β = 001n0 andγ = 0n. Indeed, any string of the form0∗1∗0∗ admits a decompositionαβγ with
#0(α) = #1(β) = #0(γ).

(e) Recursive or not:{M | M is a Turing machine that accepts at least2013 strings}?

Solution No. Containing at least2013 strings is a non-trivial (but monotone) property of r.e. sets. Now, use Rice’s
theorem, Part I.

(f) Recursively enumerable or not:{M | M is a Turing machine that accepts exactly2013 strings}?

Solution No. Containing exactly2013 strings is a non-monotone property of r.e. sets. Now, use Rice’s theorem, Part II.

— Page 1 of 10 —



2. Consider the context-free grammarG over{a, b}, with start symbolS, and with the following productions.

S → aaB | Abb

A → a | aA

B → b | bB

(a) What isL(G)? (2)

Solution L(G) = {a2bn | n > 1}
⋃

{anb2 | n > 1}.

(b) Prove that this CFG is ambiguous. (4)

Solution The stringaabb has two distinct leftmost derivations:

S ⇒ aaB ⇒ aabB ⇒ aabb,

S ⇒ Abb ⇒ aAbb ⇒ aabb.

(c) Design an unambiguous context-free grammar forL(G). (4)

Solution In order to disambiguate this grammar, we separate out some small examples.

S → aab | abb | aabb | aaAbb | aaBbb

A → a | aA

B → b | bB

— Page 2 of 10 —



Roll no: Name:

3. Consider the unrestricted grammar over the singleton alphabetΣ = {a}, having the start symbolS, and
with the following productions.

S → AS | aT

Aa → aaaA

AT → T

T → ǫ

(a) Show a derivation ofa9 using this grammar. (4)

Solution S ⇒ AS ⇒ AAS ⇒ AAaT ⇒ AaaaAT ⇒ AaaaT ⇒ aaaAaaT ⇒ aaaaaaAaT ⇒ aaaaaaaaaAT ⇒
aaaaaaaaaT ⇒ aaaaaaaaa.

(b) What is the language generated by this unrestricted grammar? Justify. (4)

Solution We haveL(S) = {a3
n

| n > 0}. In order to prove this, we may proceed by induction on the number ofA’s
generated before the ruleS → aT is applied. Each generatedA must get in contact withT before vanishing.
In the rightward journey of eachA, the number ofa’s is tripled.

— Page 3 of 10 —



4. For two languagesA andB over the same alphabetΣ, define the language

A/B = {α ∈ Σ∗ | αβ ∈ A for someβ ∈ B}.

Prove that ifA andB are recursively enumerable, then so also isA/B. (6)

Solution Let A andB be recognized by Turing machinesM andN . We design a two-track non-deterministic Turing
machineK to acceptA/B as follows.

K, upon inputα, does the following:

(1) Non-deterministically choose a stringβ. Appendβ to α in the first track, and copyβ to the initially
empty second track.

(2) SimulateM onαβ andN onβ in parallel on the two tracks.

(3) If both the simulations accept, accept. If one or both of the simulations reject, reject. If both the
simulations keep on looping, the parallel simulation in Step (2) never terminates (that is, Step (3) is
never executed).

The non-deterministic choice ofβ can be replaced by all choices ofβ. In that case, the simulations on allαβ
andβ run on a time-sharing basis.

— Page 4 of 10 —



Roll no: Name:

5. Identify the types of the following two languages (recursive / non-recursive but recursively enumerable /
not recursively enumerable). Halting may be a choice of Turing machines,so do not use Rice’s theorem.
Construct appropriate Turing machines and/or supply appropriate reductions.

(a) La = {M | M is a Turing machine that halts on exactly2013 input strings}. (6)

La is not recursively enumerable .

Proof :

Solution We propose a reduction∼ HP 6m La which mapsM#α toN such thatM does not halt onα if and only ifN
halts on exactly2013 input strings. The reduction algorithms uses any2013 constant stringsγ1, γ2, . . . , γ2013
(distinct from one another). For example, we may haveγi = 0i for i = 1, 2, . . . , 2013.

N , upon inputβ, does the following:

(1) Check whetherβ = γi for somei = 1, 2, 3, . . . , 2013. If so, halt (after accepting or rejecting).

(2) SimulateM onα.

(3) If the simulation of Step (2) halts, halt (after accepting or rejecting).

It follows that ifM halts onα, thenN halts on every inputβ. On the other hand, ifM does not halt onα, then
N halts only on the2013 input stringsγ1, γ2, . . . , γ2013.

— Page 5 of 10 —



(b) Lb = {M | M is a Turing machine that halts on at least2013 input strings}. (6)

Lb is recursively enumerable but not recursive .

Proof :

Solution We can design a Turing machineK that simulatesM on all possible input strings on a time-sharing basis. If
any2013 of the simulations halt,K accepts and halts. If2013 strings are never found, the parallel simulation
of K never stops. Thus,Lb is recursively enumerable. (Alternatively,K can be a non-deterministic Turing
machine which simulatesM on2013 distinct choices of inputs. The simulations may proceed in parallel or one
after another.)

In order to prove thatLb is not recursive, we make a reductionHP 6m Lb that mapsM#α to N such thatM
halts onα if and only ifN halts on at least2013 input strings.

N , upon inputβ, does the following:

(1) SimulateM onα.

(2) If the simulation of Step (1) halts, halt (after accepting and rejecting).

It follows that if M halts onα, thenN halts on all input strings (in particular, on at least2013 input strings).
On the other hand, ifM does not halt onα, thenN does not halt on any input stringβ.

— Page 6 of 10 —



Roll no: Name:

6. Find out (with appropriate justifications) which of the following two languagesis/are recursive. Assume
that some fixed input alphabetΣ is provided for CFG’s and PDA’s. Do not use any theorem or algorithm not
covered in the lectures or tutorials.

(a) Lc = {G#α | G is a CFG,α ∈ Σ∗, andα ∈ L(G)}. (6)

Lc is recursive .

Proof :

Solution Here is a decider forLc. LetS be the start symbol ofG.

(1) If α = ǫ, find out whetherS ⇒∗ ǫ is a valid derivation. More precisely, first mark all non-terminal
symbolsA for whichA → ǫ is a rule inG. Next, keep on marking non-terminal symbolsB having rules
B → C1C2 . . . Ck with C1, C2, . . . , Ck already marked. Stop when no further marking of non-terminal
symbols is possible. If the start symbolS is marked, accept, else reject.

(2) ConvertG to the Chomsky normal form. Call this converted grammarG′.

(3) Derive all sentential forms of length6 |α| using at most2|α| − 1 derivation steps under the converted
grammarG′. If α is ever generated, accept, else reject.

Step (1) can be completed in a finite number of steps, because there are only finitely many non-terminal
symbols. Conversion ofG to G′ can again be done in a finite amount of time. The third step too finishes
in a finite amount of time, since a grammar in the Chomsky normal form guarantees increase in length of a
sentential form for each application of a production of the formA → BC. Application of a production of the
form A → a, on the other hand, replaces a non-terminal symbol by a terminal symbol. Therefore, a sentence
of lengthn does not require more than2n− 1 steps in the derivation.

— Page 7 of 10 —



(b) Ld = {G#P | G is a CFG,P is a PDA, andL(G) = L(P )}. (6)

Ld is not recursive .

Proof :

Solution We propose a reductionALLCFG 6m Ld. Given an inputG for ALLCFG, the reduction algorithm generates a
PDA P with L(P ) = Σ∗, and outputsG#P . Clearly,G ∈ ALLCFG if and only ifL(G) = L(P ) = Σ∗.

— Page 8 of 10 —



Roll no: Name:

[ Space for leftover answers and rough work ]

— Page 9 of 10 —



[ Space for leftover answers and rough work ]

— Page 10 of 10 —


