CS21004 Formal Languages and Automata Theory, Spring 2011–12

Mid-Semester Test

Maximum marks: 35	Date: February 2012	Duration: Two hours
Roll no:	Name:	

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

 Use the subset-construction procedure to convert the following NFA (over {a, b}) to an equivalent DFA. Mark the states of your DFA by subsets of {p, q, r}. Indicate which states of your DFA are accessible. No credit will be given if you design your DFA by any method other than the subset-construction procedure. (5)

Solution We have

$$\begin{split} &\Delta(p,a) = \{q\}, \quad \Delta(q,a) = \{q\}, \quad \Delta(r,a) = \emptyset, \\ &\Delta(p,b) = \emptyset, \quad \Delta(q,b) = \{q,r\}, \quad \Delta(r,b) = \emptyset. \end{split}$$

Therefore, we have

$$\begin{split} &\Delta(\{p,q\},a) = \{q\}, \quad \Delta(\{q,r\},a) = \{q\}, \quad \Delta(\{p,r\},a) = \{q\}, \quad \Delta(\{p,q,r\},a) = \{q\}, \\ &\Delta(\{p,q\},b) = \{q,r\}, \quad \Delta(\{q,r\},b) = \{q,r\}, \quad \Delta(\{p,r\},b) = \emptyset, \quad \Delta(\{p,q,r\},b) = \{q,r\}. \end{split}$$

The converted DFA is shown below. The accessible states are shaded.

— Page 1 of 4 —

2. (a) Write a context-free grammar for the language L₂ = {α ∈ {a, b, c}* | #a(α) + #b(α) = #c(α)}. Here, #d(α) means the number of occurrences of the symbol d in the string α, where d ∈ {a, b, c}. Write only the productions in your grammar, and mention which is the start symbol. (5)

Solution The following grammar with start symbol S generates L_2 .

 $\begin{array}{rcl} S & \rightarrow & \epsilon & \mid cST & \mid TSc & \mid SS \, , \\ T & \rightarrow & a & \mid b \, . \end{array}$

(b) Convert the grammar of Part (a) to Chomsky normal form. Show all the relevant steps briefly. (5)

Solution Step 1: Remove unit and ϵ productions.

There are no unit productions. The ϵ production $S \to \epsilon$ can be removed after adding the new rules $S \to cT$ and $S \to Tc$.

Step 2: Add non-terminal symbols for elements of Σ .

We add three non-terminal symbols A, B, C and the three rules $A \to a, B \to b$ and $C \to c$. We then rewrite the two rules $S \to cT$ and $S \to Tc$ respectively as $S \to CT$ and $S \to TC$. Moreover, $S \to cST$ is rewritten as $S \to CST$, and $S \to TSc$ as $S \to TSC$.

Step 3: Handle productions with more than two non-terminal symbols on the right sides.

We replace the rule $S \to CST$ by the two rules $S \to CU$ and $U \to ST$. Similarly, we replace the rule $S \to TSC$ by the two rules $S \to TV$ and $V \to SC$.

The grammar in Chomsky normal form, therefore, consists of the following rules. The non-terminal symbols A, B are redundant and not shown here.

3. Let n be a fixed positive integer, and L₃ the set of all strings over {a, b} in which the n-th last symbol is a. Prove that any NFA accepting L₃ must have at least n + 1 states. (Hint: First, show that for any NFA (Q, {a, b}, Δ, S, F) accepting L₃, and for any string α ∈ {a, b}*, we have Δ̂(S, α) ≠ Ø.) (5)

Solution Let the NFA $N = (Q, \{a.b\}, \Delta, S, F)$ accept L_3 . If $\hat{\Delta}(S, \alpha) = \emptyset$ for some α , we have $\hat{\Delta}(S, \alpha\beta) = \emptyset$ for any string β . For any choice of β of length n and starting with a, the string $\alpha\beta$ is in L_3 and must be accepted, so $\hat{\Delta}(S, \alpha\beta)$ must contain at least one final state and cannot be empty Therefore, $\hat{\Delta}(S, \alpha) \neq \emptyset$ for all strings α .

Now, suppose that N has $k \leq n$ states. There are 2^n strings of length n over $\{a, b\}$. Since $\hat{\Delta}(S, \alpha)$ can take at most $2^k - 1 \leq 2^n - 1$ possible values for any such string α , we must have two distinct strings α, β of length n such that $\hat{\Delta}(S, \alpha) = \hat{\Delta}(S, \beta)$. Let $i \in \{1, 2, ..., n\}$ be a position where α and β differ. By symmetry, we can assume that the *i*-th symbol in α is a, and the *i*-th symbol in β is b. Let γ be any string of length i - 1. Since $\hat{\Delta}(S, \alpha) = \hat{\Delta}(S, \beta)$, we must also have $\hat{\Delta}(S, \alpha\gamma) = \hat{\Delta}(S, \beta\gamma) = P$ (say). Since $\alpha\gamma \in L_3$, P must contain at least one final state. At the same time, $\beta\gamma \notin L_3$, so P must not contain any final state. This is a contradiction.

4. Using the pumping lemma, prove that $L_4 = \{a^m b^n \mid m, n \ge 1 \text{ and } gcd(m, n) = 1\}$ is not regular.

(5)

Solution Suppose that L_4 is regular, and let $k \ge 1$ be a pumping-lemma constant for L_4 . Choose any prime p > k, and feed $\alpha = \epsilon$, $\beta = a^p$ and $\gamma = b^{(p+1)(p+2)\cdots(p+k)}$ to the pumping lemma. Since p is a prime larger than k, neither of p + i is divisible by p for i = 1, 2, ..., k, so that $gcd(p, (p+1)(p+2)\cdots(p+k)) = 1$, that is, $\alpha\beta\gamma \in L_4$. The pumping lemma supplies a decomposition of the form $\beta = \beta_1\beta_2\beta_3$ with $\beta_2 = a^t$ for some t in the range $1 \le t \le k$. Pumping in one occurrences of β_2 gives the string $\alpha\beta_1\beta_2^2\beta_3\gamma = a^{p+t}b^{(p+1)(p+2)\cdots(p+k)} \in L_4$. But $gcd(p+t, (p+1)(p+2)\cdots(p+k)) = p + t \ge 3$ (since $p \ge 2$ and $t \ge 1$), a contradiction.

- **5.** Let L_5 denote the non-regular set $\{a^n b^n \mid n \ge 0\}$. Prove or disprove the following two assertions.
 - (a) Any *infinite* subset of L_5 must be non-regular.

Solution True. Let L' be an infinite subset of L_5 . Suppose that L' is regular, and let k be a pumping-lemma constant for L'. Being infinite, L' contains a string longer than any $l \ge 0$. In particular, L' contains a string $a^n b^n$ with $n \ge k$, which we feed to the pumping lemma as $\alpha = \epsilon$, $\beta = a^n$ and $\gamma = b^n$. The pumping lemma supplies a decomposition $\beta = \beta_1 \beta_2 \beta_3$ with $|\beta_2| = t$, where $1 \le t \le k$. The lemma also guarantees that $\alpha \beta_1 \beta_3 \gamma = a^{n-t} b^n$ must be in L'. But $n - t \ne n$, so $a^{n-t} b^n$ cannot be in L_5 . Finally, since $L' \subseteq L_5$, the string $a^{n-t} b^n$ cannot be in L' too, a contradiction.

(b) Any *infinite* subset of $\sim L_5 = \{a, b\}^* \setminus L_5$ must be non-regular.

(5)

(5)

Solution False. For example, take the infinite subset $L'' = \{ab^n a \mid n \ge 0\}$ of $\sim L_5$. Since L'' is the language of the regular expression ab^*a , it is regular.