CS21004 Formal Languages and Automata Theory, Spring 2011–12

Class test 2

Maximum marks: 20	Date: 09-April-2012	Duration: 1 hour		
Roll no:	Name:			

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

1. Using the pumping lemma, prove that the language $L_1 = \{a^n b^{n^2} \mid n \ge 0\}$ over $\Sigma = \{a, b\}$ is not context-free. Carefully consider all the cases. (10)

Solution Suppose that L_1 is context-free. Let k be a pumping lemma constant for L_1 . For the string $a^k b^{k^2} \in L_1$, the pumping lemma gives a decomposition $\beta = \beta_1 \beta_2 \beta_3 \beta_4 \beta_5$ with $|\beta_2 \beta_4| > 0$ and $|\beta_2 \beta_3 \beta_4| \leq k$. Moreover, for this decomposition, $\beta_1 \beta_2^i \beta_3 \beta_4^i \beta_5$ is in L_1 for all $i \ge 0$. We choose i = 2, and show that there is a contradiction in all possible cases.

Case 1: Either β_2 or β_4 contains both *a* and *b*. In this case, $\beta_1 \beta_2^2 \beta_3 \beta_4^2 \beta_5$ is not of the form a^*b^* .

Case 2: Both β_2 and β_4 are in the block of *a*'s. In this case, $\beta_1 \beta_2^2 \beta_3 \beta_4^2 \beta_5$ contains more *a*'s than the square root of the number of *b*'s.

Case 3: Both β_2 and β_4 are in the block of *b*'s. In this case, $\beta_1 \beta_2^2 \beta_3 \beta_4^2 \beta_5$ contains more *b*'s than the square of the number of *a*'s.

Case 4: β_2 belongs to the block of *a*'s, and β_4 belongs to the block of *b*'s. In this case, $\beta_1 \beta_2^2 \beta_3 \beta_4^2 \beta_5$ is of the form $a^i b^j$ with $i \ge k$ and $j \le k^2 + k < (k+1)^2$, where at least one of these inequalities (\le and \ge) is strict.

2. Design a PDA to accept the language L₂ = {α ∈ {a, b}* | #b(α) ≤ #a(α) ≤ 2#b(α)}. Mention whether your PDA accepts by empty stack or by final state or both. Explain how your PDA accepts the string *aabba*. (Hint: Give a *weight* of −1 to each *a*, and a *weight* of +1 or +2 (non-deterministic choice) to each *b*.) (10)

Solution We construct a PDA with one state q (well, we need two more states, see below) to accept L_2 by empty stack. Each occurrence of b corresponds to one or two occurrences of a in the input. When b is consumed from the input, the machine non-deterministically pushes one or two +'s to its stack. When an a appears, a single + is popped out of the stack. The only troublesome case is the occurrence of an a when the stack contains only the bottom marker \perp (or when the input has not yet supplied enough b's to match the a's seen so far). In this case, a single – is pushed. Later, when a b appears, one or two –'s at the top of the stack are to be popped out. If there is only one – at the stack and two –'s need to be popped out, the machine should replace the – by a +. When the entire input is read, the bottom marker \perp should be exposed, which is then popped out, and the machine accepts with an empty stack. So the transitions of the PDA will be the following:

$a, + / \epsilon$	[Each a has weight -1 . Neutralize a + already present in the stack.]
$a, \perp / - \perp$	[No + is present in the stack.]
a, -/	[No + is present in the stack.]
$b, \perp / + \perp$	[This b has weight $+1$.]
$b, \perp / + + \perp$	[This b has weight $+2$.]
b, +/++	[This b has weight $+1$.]
b, +/+++	[This b has weight $+2$.]
$b, - / \epsilon$	[This b has weight $+1$.]
$b,/\epsilon$	[This b has weight $+2$.]
$b, -\perp / + \perp$	[This b has weight $+2$.]
$\epsilon, \perp / \epsilon$	[The last transition to empty the stack.]

The transition $b, - - /\epsilon$ is not a true transition according to our definition. This problem can be solved by adding a temporary state r. After reading b from the input, a single – is popped from the stack, and the state changes to r. We add an ϵ -transition from state r back to state q which pops the second – from the stack. The other transition $b, -\perp /+\perp$ can be handled analogously using a second temporary state s.

The following table demonstrates two ways of accepting aabba. The two computations differ by the nondeterministic choices of giving the weights +1 and +2 to the two b's.

Input symbol read	Weight	State	Stack	Input symbol read	Weight	State	Stack
Initially		q	\perp	Initially		q	T
a	-1	q	$-\perp$	a	-1	q	$-\perp$
a	-1	q	\perp	a	-1	q	\perp
b	+2	r	$-\perp$	b	+1	q	$-\perp$
ϵ	0	q	\perp	b	+2	s	\perp
b	+1	q	$+ \perp$	ϵ	0	q	$+ \perp$
a	-1	q	\perp	a	-1	q	\perp
ϵ	0	q	Empty	ε	0	q	Empty

If we give the weight +1 to both the *b*'s, the stack continues to contain one leftover - after the entire input is read. If we give the weight +2 to both the *b*'s, the stack contains a leftover + after the entire input is read.