CS21004 Formal Languages and Automata Theory, Spring 2011–12

Class test 1

Maximum marks: 20	Date: 09-February-2012	Duration: 1 hour
Roll no:	_ Name:	

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

1. Consider the following NFA (over the alphabet $\{a, b\}$).

(a)	What is the shortest string <i>not</i> accepted by this NFA?	aab	_ (1)
(b)	Let L_1 denote the set of all strings <i>not</i> accepted by this	NFA. Write a regular expression for L_1 .	(3)

$b^*ab^*aa^*b(a+b)^*$

(c) Convert the regular expression of Part (b) to an equivalent NFA. (4)

Solution

a,b

2. Let L_2 denote the language over the alphabet $\{a, b\}$ such that $\alpha \in L_2$ if and only if $|\alpha| \ge 2$, the second symbol of α is a, and the second last symbol of α is b. Design an NFA to accept L_2 . (6)

3. Let α be a string (over some alphabet Σ). By odd(α), we refer to the string obtained by deleting symbols at all even positions of α. That is, if α = a₁a₂a₃...a_n, then odd(α) = a₁a₃a₅...a_{n'}, where n' is n or n − 1 according as whether n is odd or even. For a language L ⊆ Σ*, define odd(L) = {odd(α) | α ∈ L}. Prove that if L is regular, then odd(L) is regular too.

Solution Let $M = (Q, \Sigma, \delta, s, F)$ be a DFA accepting L. We design an ϵ -NFA $M' = (Q', \Sigma, \delta', S', F')$ to accept odd(L). Let $Q = \{p_1, p_2, \ldots, p_k\}$. Then, we take $Q' = \{p_1, p_2, \ldots, p_k, q_1, q_2, \ldots, q_k\}$, that is, we add a new state q_i for each p_i . The only start state of M' is the old start state s of M, that is, $S' = \{s\}$. All the final states of M continue to remain final in M'. Moreover, a new state q_i is marked final in M' if and only if the corresponding old state p_i is final (in M). We *replace* each transition $p_i \xrightarrow{a} p_j$ in M (where $a \in \Sigma$, and where we may have i = j) by the two transitions $p_i \xrightarrow{a} q_j$ and $q_i \xrightarrow{\epsilon} p_j$.

By construction, moves in M' alternate between the old and the new states. In essence, M' mimics M with the only exception that every second move prevents consuming a real symbol from the input.

Solution