CS21004 Formal Languages and Automata Theory, Spring 2010–11 **Mid-Semester Test**

Maximum marks: 30 Date: February 2011 Duration: 2 hours _____ Name: _ Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions. 1. From the following four NFAs and four regular expressions, identify the equivalent pairs. **(6)** b Nз N_4 $\alpha_1 = ab + (aa + b)(a + b)^*a(a + b)$ $\alpha_2 = (ab + (aa + b)(a + b)^*a(a + b))^*$ $\alpha_3 = (ab + (aa + b)(a + b)^*a(a + b))^*(aa + b)(a + b)^*$ $\alpha_4 = (ab + (aa + b)(a + b)^*a(a + b))^*(\epsilon + (aa + b)(a + b)^*)$ The NFA N_1 is equivalent to the regular expression The NFA N_2 is equivalent to the regular expression α_4 The NFA N_3 is equivalent to the regular expression $lpha_2$ The NFA N_4 is equivalent to the regular expression α_1 $S \rightarrow aSb \mid bSa \mid \epsilon$ $S \rightarrow aaS \mid Sbb \mid \epsilon$ $S \rightarrow aaSSb \mid aSSbb \mid \epsilon$ $S \rightarrow aSb \mid bSa \mid a \mid b$

2. Consider the following four context-free grammars over the alphabet $\{a,b\}$ and with the start symbol S.

For each of the following strings, there is a unique grammar among the above four, which generates the string. Identify these respective grammars. **(6)**

The string *aabbaabb* is generated by the grammar G_3

The string *aabbbbbb* is generated by the grammar

The string *aabbbaabb* is generated by the grammar G_4

The string *aabbaabbb* is generated by the grammar G_2 .

3.	Let L_1	and L_2	be regular	languages	over the	alphabet Σ	. Define the	language

$$L_3 = \{ \alpha \beta \gamma \mid \alpha \gamma \in L_1, \ \beta \in L_2 \},\$$

that is, L_3 is obtained by inserting strings in L_2 inside strings in L_1 . Prove that L_3 is regular too. (6)

Solution Let $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$ and $M_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$ be DFA with languages L_1 and L_2 , respectively. Design an ϵ -NFA $M_3=(Q_3,\Sigma,\Delta_3,S_3,F_3)$ as follows. M_3 contains two copies of M_1 , and n copies of M_2 , where $n=|Q_1|$ is the number of states of M_1 . Let $Q_1=\{q_1,q_2,\ldots,q_n\}$. The i-th copy of M_2 in M_3 is meant for making a detour from M_1 at the state q_i , follow the transitions in the i-th copy of M_2 labelled by a string in L_2 , and return back to q_i . This means that from q_i in the first copy of M_1 , we add an ϵ -transition to the start state of the i-th copy of M_2 . In addition, we add an ϵ -transition from each final state of the i-th copy of M_2 to the state q_i in the second copy of M_1 . M_3 has a unique start state, namely, the start state s_1 of the first copy of M_1 . The final states of M_3 are precisely all the final states in the second copy of M_1 .

4.	Consider the following language over $\Sigma = \frac{1}{2}$	$\{a,b,a\}$	c	
----	---	-------------	---	--

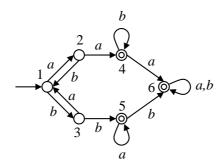
$$L = \{xcy \mid x, y \in \{a, b\}^*, \ \#a(x) = \#b(y)\}.$$

Using the pumping lemma, prove that L is not regular.

Solution Suppose that L is regular. Let n be a pumping-lemma constant for L. Take the string $\alpha\beta\gamma=a^ncb^n\in L$, where $\alpha=a^nc$, $\beta=b^n$ and $\gamma=\epsilon$. By the pumping lemma, we have a decomposition $\beta=\beta_1\beta_2\beta_3$ with $k=|\beta_2|\geqslant 1$ and $\alpha\beta_1\beta_3=a^ncb^{n-k}\in L$. But $\beta_1\beta_3=b^{n-k}$ contains less number of b's than the number of a's in a^n , a contradiction.

(6)

5. Consider the following DFA.



Use the DFA state-minimization procedure to convert this DFA to an equivalent DFA with the minimum possible number of states. Also draw the quotient automaton. (6)

Solution Initialization:

	1	2	3	4	5	6
1	_					
2	_	_				
3	_	_	_			
4	_	_	_	_		
5	_	_	_	_	_	
6	- - - -	_	_	_	_	_

Initial conflicts:

	1	2	3	4	5	6
1	_					
2	_	_				
3	_	_	_			
4	×	×	×	_ _ _		
5	×	×	×	_	_	
6	×	×	×	_	_	_

Pass 1:

	1	2	3	4	5	6
1	_					
2	×	_				
3	×	×	_			
4	×	×	×	_		
5	×	- × × ×	×	_	_	
6	×	×	×	_	_	_

No further conflicts can be found. We see that the states 4, 5, 6 are equivalent. Therefore, we collapse these three states into one, and obtain the quotient automaton as follows:

