CS21004 Formal Languages and Automata Theory, Spring 2010-11

End-Semester Test

Maximum marks: 50 Date: April 2011 DuratioB:hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precisevérall questions,

1. Let L be the language
L ={w € {a,b}" | w contains an equal number of occurrencesiondba}.

For examplegbaba € L (two occurrences afb, and two ofba), whereadbaba ¢ L (one occurrence afb,
and two ofba).

(a) Give aregular expression whose languagg.is (5)

Solution L is the language of the regular expression aa* (bb*aa™)* + bb*(aa*bb*)*.

(b) Design a DFA/NFA¢-NFA to acceptl. (5)

Solution The following DFA acceptd..

— Page1of6 —

2. Consider the following context-free grammar to generate arithmetic expneseione variable, involving
addition and multiplication operations only. Hefis the start symbol.

S—al|S+S|SxS

(a) Drawall the parse trees for the stringt- @ x a + a following this grammar.)

Solution There are five parse trees for+ a x a + a. These trees are shown below. They respectively stand éor th
following interpretations of the given expressian# (a x (a + a)), (a + a) x (a + a), ((a + a) X a) + a,
a+ ((axa)+a)and(a+ (a x a)) + a.

S S S
S/|\S I S/|\S
+ +
VAN 2 s /R
a SxS S+S S+S Sx S a
| /1N [N IINC
asS+sS a a a a IS+|Sa
a a a a
(a) First tree (b) Second tree (c) Third tre
S S
71N RN
S + S S + S
I /1IN /1IN |
a S+ S S+S a
JIN | /1IN
le]S a aSxsS
a a v
(d) Fourth tree (e) Fifth tree

(b) Design an unambiguous grammar to generate the same language. Foroer#tioopto be evaluated
from left to right (like in some digital calculators). This means theaind x are given the same precedence
and left-to-right associativity. For exampte:+ a x a + a is to be interpreted aga + a) x a) + a. (5)

Solution The following grammar generates the same language, buggdedt-to-right evaluation of the operations.

S—a| S+a| Sxa.

— Page 2 of6 —

3. Consider the following unrestricted (Type 0) grammar with the start syrfibalith non-terminal symbols
S, A, B, C, and with terminal symbols, b, c.

S — ABCS | e,
AB — BA, BA— AB, AC —-CA, CA— AC, BC—C(CB, CB— BC,
A — a, B — b, C —ec.

(&) Show a derivation of the stringibacc using this grammar. Show each individual step in the derivation,
and mention the rule used in each step. (5)

Solution A derivation ofbabacc (along with the rules used) is shown below.

s L ABcs [S — ABCS]
L ABcABcs [S — ABCS|
L aBcaBc (S —

L pacasc [AB — BA]
L paacse [CA — AC]
L paasco [CB — BC|
L papacc [AB — BA|
L paBacc (B — b]
L paBacC (A —]
L pabacc (B — b
L pavacc [A — a]
L pabacc [C— (]
L pabace [C— (]
(b) What language ovefa, b, ¢} is generated by this grammar? Justify. (5)

Solution The grammar generates all strings oyerb, ¢} with equally many:’s, b’s andc’s.

S generates an equal numberd§, B’s andC’s before becoming. Interchanging two of the adjacent symbols
A, B, C (like in the ruleAB — BA) does not change the counts 4%, B’s andC’s. Finally, eachA has to
be converted to an, eachB to ab, and eaclC to ac. Therefore, each string ifu, b, c}* generated by this
grammar has equally mamys, b’s andc’s.

Conversely, given any string € {a, b, c}* with i occurrences of each of b andc, one can generatel BO)!
from S. Subsequently, the upper-case versiomafan be obtained fromABC)? by interchanging adjacent
pairs of symbols. Finally, the rule$ — a, B — b andC — ¢ convert the upper-case versionofo .

— Page 30of6 —

4. Exactly one of the following languages is recursive, exactly one is moirseve but r.e., and exactly one is
not r.e. ldentify which one is what, and supply a corroborating proodtohease.

Here,

Li = {Mi#DM,|NSTEPSM,e) < NSTEPSM,, €)},
Lo {Mi1#M> | NSTEPSM;,€¢) < NSTEPSMy,€)},
Ly = {Ml#MQ | ﬁ(Ml) N ;C(MQ) is r.e.}.

M, and M, are (encoding of) Turing machines. For a Turing machinend for an inputv of M,

the symbol NSTEPSV/, w) stands for the number of steps thdt takes before halting, upon input. If
M loops (that is, does not halt) an, we take NSTEPSV/, w) = oo. If M’ also loops onv’, we make the
convention that NSTERS/, w) = NSTEPSM', w’) (that is, two infinities in this context are equal).

(@ Lyis r.e. but not recursive
Proof 5)
Solution A two-tape TMN can simulatel/; on e on one tape, and/; on e on the other tape in a round-robin fashion.

If the simulation of; halts before that of\f,, N accepts. If the simulation of/, halts before that ofi/;,
N rejects. If the two simulations halt after the same numbesteps,V rejects. If neither simulation halt&y
continues with the simulation (that is, loops) for ever, astler accepts. This shows that is r.e.

In order to show thal; is not recursive, we propose a reduction KR, L,. Upon inputM #z (an instance
of HP), the reduction algorithm outpuld, # M, (an instance of.;) such that)/ halts onz if and only if M,
halts in fewer steps thah/; upon inpute.

M7 upon inputy; first checks whethey; = e. If not, M; enters an infinite loop. lf; = ¢, M; simulatesM
onz, and accepts i/ halts.

Upon any inputy., the other machin@/, enters an infinite loop.

If M halts onz, M; halts one (that is, takes a finite number of steps before halting), e&®t/, loops one
(infinite steps), that is, NSTERS/;,) < NSTEPSM>, ¢). On the other hand, i#/ does not halt om:, both
M, and M, loop on inpute, that is, NSTEP&V;, ¢) = NSTEPSMs, ¢) = .

— Page4of6 —

(b) Lois notr.e.

Proof (5)

Solution The language- Ly = { M # M, | NSTEPSM;,€) > NSTEPSM>, €)} is not r.e., since if botl,; and~ L,
are r.e.,L is recursive. The simple reductienl, <,, Lo convertingM;#M; to My# M, shows thatl, is
notr.e.

Alternatively, one can propose a direct reductioRlP <,,, Lo (or equivalently, HRS,,,~ L>) to prove thatl,
is notr.e. Sincev Ly = {M;#M> | NSTEPSM;,¢) > NSTEPSM>, €)}, the same reduction as in Part (a)
(with the roles ofM; and M, interchanged) works.

— Page50f6 —

(c) Lsis recursive
Proof (5)

Solution Let K7 = £(M;) andK» = L£(M-) ber.e. languages. One can simuldfe and M, sequentially (or in parallel
on two separate tapes/tracks) on the (same) ippand accepts if both the simulations accept This shows
that r.e. languages are closed under intersection. Theteftven a valid encoding/, # M, of two TM’s M,
and M5, the decision whethef (M) N L(M,) is r.e. is trivial (always “yes”).

5. Which of the following are properties of r.e. sets? First, supply an an¥e®iNo. If the answer i¥es,
mention whether the property is trivial and/or monotone. If the answso,isupply a one-line justification.
In each case, the property is specified by a Turing machine)

(a) M accepts.

Yes, non-trivial, monotone

(b) M (explicitly) rejectse.

No. We can construct examples6fM;) = L£(Ms) with M; rejectinge, and M, looping one.

(c) M halts one.

No. We can construct examples©fM;) = L£(Mz) with M, halting one (rejection), and\/» not.

(d) L(M) s a context-free language.

Yes, non-trivial, non-monotone

(e) L(M) contains a context-free language.

Yes, trivial, monotone

— Page 6 of6 —

