
CS21004 Formal Languages and Automata Theory, Spring 2010–11

End-Semester Test

Maximum marks: 50 Date: April 2011 Duration:3 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Let L be the language

L = {w ∈ {a, b}∗ | w contains an equal number of occurrences ofab andba}.

For example,ababa ∈ L (two occurrences ofab, and two ofba), whereasbbaba /∈ L (one occurrence ofab,
and two ofba).

(a) Give a regular expression whose language isL. (5)

Solution L is the language of the regular expressionǫ + aa∗(bb∗aa∗)∗ + bb∗(aa∗bb∗)∗.

(b) Design a DFA/NFA/ǫ-NFA to acceptL. (5)

Solution The following DFA acceptsL.

b

a

ab

a

b

b
a

a

b

— Page 1 of 6 —

2. Consider the following context-free grammar to generate arithmetic expressions in one variablea, involving
addition and multiplication operations only. Here,S is the start symbol.

S → a | S + S | S × S

(a) Draw all the parse trees for the stringa + a × a + a following this grammar. (5)

Solution There are five parse trees fora + a × a + a. These trees are shown below. They respectively stand for the
following interpretations of the given expression:a + (a × (a + a)), (a + a) × (a + a), ((a + a) × a) + a,
a + ((a × a) + a) and(a + (a × a)) + a.

S

S S+

a S S

S S

S S

S

S S

S S

+

S

S S

S S

+

a+

S S

a a

a S S+

a a

S

S S

S S S S+ +

a a a a

(a) First tree (b) Second tree (c) Third tree

S S+

a a

a

a

+

S

S S+

a

a a

a a

(e) Fifth tree(d) Fourth tree

(b) Design an unambiguous grammar to generate the same language. Force the operations to be evaluated
from left to right (like in some digital calculators). This means that+ and× are given the same precedence
and left-to-right associativity. For example,a + a × a + a is to be interpreted as((a + a) × a) + a. (5)

Solution The following grammar generates the same language, but forces left-to-right evaluation of the operations.

S → a | S + a | S × a.

— Page 2 of 6 —

3. Consider the following unrestricted (Type 0) grammar with the start symbolS, with non-terminal symbols
S, A, B, C, and with terminal symbolsa, b, c.

S → ABCS | ǫ,
AB → BA, BA → AB, AC → CA, CA → AC, BC → CB, CB → BC,
A → a, B → b, C → c.

(a) Show a derivation of the stringbabacc using this grammar. Show each individual step in the derivation,
and mention the rule used in each step. (5)

Solution A derivation ofbabacc (along with the rules used) is shown below.

S →1 ABCS [S → ABCS]

→1 ABCABCS [S → ABCS]

→1 ABCABC [S → ǫ]

→1 BACABC [AB → BA]

→1 BAACBC [CA → AC]

→1 BAABCC [CB → BC]

→1 BABACC [AB → BA]

→
1

bABACC [B → b]

→
1

baBACC [A → a]

→
1

babACC [B → b]

→
1

babaCC [A → a]

→
1

babacC [C → c]

→
1

babacc [C → c]

(b) What language over{a, b, c} is generated by this grammar? Justify. (5)

Solution The grammar generates all strings over{a, b, c} with equally manya’s, b’s andc’s.

S generates an equal number ofA’s, B’s andC ’s before becomingǫ. Interchanging two of the adjacent symbols
A,B,C (like in the ruleAB → BA) does not change the counts ofA’s, B’s andC ’s. Finally, eachA has to
be converted to ana, eachB to a b, and eachC to a c. Therefore, each string in{a, b, c}∗ generated by this
grammar has equally manya’s, b’s andc’s.

Conversely, given any stringα ∈ {a, b, c}∗ with i occurrences of each ofa, b andc, one can generate(ABC)i

from S. Subsequently, the upper-case version ofα can be obtained from(ABC)i by interchanging adjacent
pairs of symbols. Finally, the rulesA → a, B → b andC → c convert the upper-case version ofα to α.

— Page 3 of 6 —

4. Exactly one of the following languages is recursive, exactly one is not recursive but r.e., and exactly one is
not r.e. Identify which one is what, and supply a corroborating proof in each case.

L1 = {M1#M2 | NSTEPS(M1, ǫ) < NSTEPS(M2, ǫ)},

L2 = {M1#M2 | NSTEPS(M1, ǫ) 6 NSTEPS(M2, ǫ)},

L3 = {M1#M2 | L(M1) ∩ L(M2) is r.e.}.

Here,M1 andM2 are (encoding of) Turing machines. For a Turing machineM and for an inputw of M ,
the symbol NSTEPS(M, w) stands for the number of steps thatM takes before halting, upon inputw. If
M loops (that is, does not halt) onw, we take NSTEPS(M, w) = ∞. If M ′ also loops onw′, we make the
convention that NSTEPS(M, w) = NSTEPS(M ′, w′) (that is, two infinities in this context are equal).

(a) L1 is r.e. but not recursive .

Proof (5)

Solution A two-tape TMN can simulateM1 on ǫ on one tape, andM2 on ǫ on the other tape in a round-robin fashion.
If the simulation ofM1 halts before that ofM2, N accepts. If the simulation ofM2 halts before that ofM1,
N rejects. If the two simulations halt after the same number ofsteps,N rejects. If neither simulation halts,N
continues with the simulation (that is, loops) for ever, andnever accepts. This shows thatL1 is r.e.

In order to show thatL1 is not recursive, we propose a reduction HP6m L1. Upon inputM#x (an instance
of HP), the reduction algorithm outputsM1#M2 (an instance ofL1) such thatM halts onx if and only if M1

halts in fewer steps thanM2 upon inputǫ.

M1 upon inputy1 first checks whethery1 = ǫ. If not, M1 enters an infinite loop. Ify1 = ǫ, M1 simulatesM
onx, and accepts ifM halts.

Upon any inputy2, the other machineM2 enters an infinite loop.

If M halts onx, M1 halts onǫ (that is, takes a finite number of steps before halting), whereasM2 loops onǫ
(infinite steps), that is, NSTEPS(M1, ǫ) < NSTEPS(M2, ǫ). On the other hand, ifM does not halt onx, both
M1 andM2 loop on inputǫ, that is, NSTEPS(M1, ǫ) = NSTEPS(M2, ǫ) = ∞.

— Page 4 of 6 —

(b) L2 is not r.e. .

Proof (5)

Solution The language∼L1 = {M1#M2 | NSTEPS(M1, ǫ) > NSTEPS(M2, ǫ)} is not r.e., since if bothL1 and∼L1

are r.e.,L1 is recursive. The simple reduction∼L1 6m L2 convertingM1#M2 to M2#M1 shows thatL2 is
not r.e.

Alternatively, one can propose a direct reduction∼HP 6m L2 (or equivalently, HP6m∼L2) to prove thatL2

is not r.e. Since∼L2 = {M1#M2 | NSTEPS(M1, ǫ) > NSTEPS(M2, ǫ)}, the same reduction as in Part (a)
(with the roles ofM1 andM2 interchanged) works.

— Page 5 of 6 —

(c) L3 is recursive .

Proof (5)

Solution Let K1 = L(M1) andK2 = L(M2) be r.e. languages. One can simulateM1 andM2 sequentially (or in parallel
on two separate tapes/tracks) on the (same) inputy, and acceptsy if both the simulations accepty. This shows
that r.e. languages are closed under intersection. Therefore, given a valid encodingM1#M2 of two TM’s M1

andM2, the decision whetherL(M1) ∩ L(M2) is r.e. is trivial (always “yes”).

5. Which of the following are properties of r.e. sets? First, supply an answerYes/No. If the answer isYes,
mention whether the property is trivial and/or monotone. If the answer isNo, supply a one-line justification.
In each case, the property is specified by a Turing machineM . (5)

(a) M acceptsǫ.

Yes, non-trivial, monotone

(b) M (explicitly) rejectsǫ.

No. We can construct examples ofL(M1) = L(M2) with M1 rejectingǫ, andM2 looping onǫ.

(c) M halts onǫ.

No. We can construct examples ofL(M1) = L(M2) with M1 halting onǫ (rejection), andM2 not.

(d) L(M) is a context-free language.

Yes, non-trivial, non-monotone

(e) L(M) contains a context-free language.

Yes, trivial, monotone

— Page 6 of 6 —

