CS21004 Formal Languages and Automata Theory, Spring 2010–11

Class test 2

Maximum marks: 20	Date: April 11, 2011	Duration: 1 hour	
Roll no:	Name:		

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

1. Consider the following language over $\Sigma = \{a, b, c\}$:

 $L_1 = \{a^i (bc)^j \mid i, j \ge 0 \text{ and } i \ge j\}.$

(a) Design a context-free grammar for L_1 . Briefly describe the substrings generated by the non-terminal symbols used in your grammar. (5)

Solution The following grammar generates L_1 .

S	\rightarrow	UV		[S is the start symbol]
U	\rightarrow	ϵ	aU	[U generates the excess of a's over (bc) 's]
V	\rightarrow	ϵ	aVbc	[V generates equal numbers of a 's and (bc) 's]

A single start symbol S itself can generate L_1 as follows:

 $S \rightarrow \epsilon \mid aS \mid aSbc$.

(b) Design a PDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ to accept L_1 . M must contain <u>at most two states</u>. Mention clearly whether your machine M accepts by final state or empty stack or both. (7)

Solution We take $Q = \{s, t\}$ with the start state s and no final states $(F = \emptyset)$. The machine accepts by empty stack. The alphabets are $\Sigma = \{a, b, c\}$ and $\Gamma = \{a, b, \bot\}$. The transitions are described in the following figure.

In the start state s, the machine reads the initial block of a's. For every a read from the input, an a is pushed to the stack. M subsequently makes an ϵ -transition to the state t to read the block of (bc)'s, that follows the block of a's. Only if a matching a is found at the top of the stack, the reading of one occurrence of bc is initiated. The a at the top of the stack is replaced by b to indicate that the reading of bc is only half-way through. Only if a c is available at the input at this stage, this c is consumed, and the intermediate marker b is popped out of the stack exposing the next a to be matched against the next occurrence of bc.

When an input of L_1 is fully read by M, the stack contains i - j occurrences of a and the bottom marker \bot . M uses the transitions $\epsilon, a / \epsilon$ and $\epsilon, \bot / \epsilon$ against the loop at the state t, in order to pop the excess a's and the bottom marker \bot . If M uses the transition $\epsilon, a / \epsilon$ more than i - j times before reading all the j occurrences of bc, the machine gets stuck before reading the entire input.

2. Consider the following language over $\Sigma = \{a, b, c\}$:

$$L_2 = \{a^i b^j c^j \mid i, j \ge 0 \text{ and } i \ge j\}.$$

Prove that L_2 is not context-free.

Solution We prove that L_2 is not context-free, using the pumping lemma for CFL's. Suppose that L_2 is context-free. Let k be a pumping-lemma constant for L_2 . By definition of L_2 , the string $\beta = a^k b^k c^k$ belongs to L_2 and is of length $\geq k$. The pumping lemma gives a decomposition $\beta = \beta_1 \beta_2 \beta_3 \beta_4 \beta_5$ such that

(i) $|\beta_2\beta_4| > 0$,

(ii) $|\beta_2\beta_3\beta_4| \leq k$, and

(iii) $\beta_1 \beta_2^i \beta_3 \beta_4^i \beta_5 \in L_2$ for all $i \ge 0$.

We consider all possible cases for β_2 and β_4 , and show that in each case, there is a contradiction. Condition (ii) implies that β_2 and β_4 belong either to the same block or to two adjacent blocks.

Case 1: β_2 or β_4 (or both) contain different symbols. In this case, $\beta_1 \beta_2^2 \beta_3 \beta_4^2 \beta_5$ is not of the form $a^* b^* c^*$.

Case 2: Both β_2 and β_4 belong to the block of *a*'s. In this case, $\beta_1\beta_3\beta_5$ contains less *a*'s than *b*'s or *c*'s.

Case 3: Both β_2 and β_4 belong to the block of *b*'s. In this case, $\beta_1 \beta_2^2 \beta_3 \beta_4^2 \beta_5$ contains more *b*'s than *a*'s.

Case 4: Both β_2 and β_4 belong to the block of *c*'s. In this case, $\beta_1 \beta_2^2 \beta_3 \beta_4^2 \beta_5$ contains more *c*'s than *a*'s.

Case 5: β_2 belongs to the block of *a*'s, and β_4 belongs to the block of *b*'s. If $\beta_4 \neq \epsilon$, consider the string $\beta_1\beta_2^2\beta_3\beta_4^2\beta_5$ which contains more *b*'s than *c*'s. If $\beta_4 = \epsilon$, then $\beta_2 \neq \epsilon$, and $\beta_1\beta_3\beta_5$ contains less *a*'s than *c*'s.

Case 6: β_2 belongs to the block of b's, and β_4 belongs to the block of c's. In this case, $\beta_1 \beta_2^2 \beta_3 \beta_4^2 \beta_5$ contains more b's or c's (or both) than a's.