
CS21004 Formal Languages and Automata Theory, Spring 2010–11 Class test 1

	Maximum marks: 20	Date: February 10, 2011	Duration: 1 hour
	Roll no:	Name:	
	Write your answe	rs in the question paper itself. Be brief and precise	e. Answer <u>all</u> questions.]
1.	Let L_1 be the language of	the regular expression $a^*b^* + b^*a^*$.	
	(a) Give an example of a string $\{a,b\}^*$ which is <u>not</u> in L_1 .		(1)
	(b) Design an NFA with	(b) Design an NFA with four states to accept L_1 . You may use ϵ -transitions.	
	(c) Design a DFA with s	ix states to accept L_1 .	(5)

- **2.** A string $\beta \in \Sigma^*$ is called a *prefix* of a string $\alpha \in \Sigma^*$ if $\alpha = \beta \gamma$ for some $\gamma \in \Sigma^*$. For example, all the prefixes of abaa are $\epsilon, a, ab, aba, abaa$. Let $L \subseteq \Sigma^*$ be a language. By $\operatorname{prefix}(L)$, we denote the set of all prefixes of all strings in L.
 - (a) If $L = \{aab, bab, abab\}$, what is prefix(L)?

______(1)

(b) Let L_2 be the language over $\Sigma = \{a, b\}$, accepted by the NFA of Part (i) in the following figure.

 L_2 consists of strings that _______. (1)

- (c) The NFA of Part (ii) in the above figure is obtained by converting each state of the NFA of Part (i) to a final state. State whether the converted NFA accepts $prefix(L_2)$. _______(Write Yes/No) (1)
- (d) Let $N=(Q,\Sigma,\Delta,S,F)$ be an NFA, and $N'=(Q,\Sigma,\Delta,S,Q)$ be the NFA obtained from N by converting every state of N to a final state. Prove or disprove: We must have $\mathcal{L}(N')=\operatorname{prefix}(\mathcal{L}(N))$. (5)