CS21004 Formal Languages and Automata Theory, Spring 2010–11

Class test 1

Maximum marks: 20	Date: February 10, 2011	Duration: 1 hour
Roll no:	Name:	

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

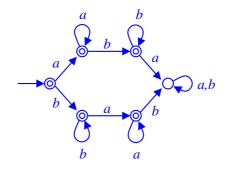
1. Let L_1 be the language of the regular expression $a^*b^* + b^*a^*$.

- (a) Give an example of a string $\{a, b\}^*$ which is <u>not</u> in L_1 . <u>aba</u> (1)
- (b) Design an NFA with four states to accept L_1 . You may use ϵ -transitions.

 $a \qquad b$ $\epsilon \qquad b$

(i) An NFA with epsilon transitions

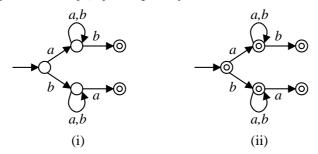
(ii) An NFA without epsilon transitions


Solution

(c) Design a DFA with six states to accept L_1 .

(5)

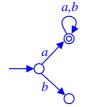
(5)


Solution

- 2. A string β ∈ Σ* is called a *prefix* of a string α ∈ Σ* if α = βγ for some γ ∈ Σ*. For example, all the prefixes of *abaa* are ε, a, ab, aba, abaa. Let L ⊆ Σ* be a language. By prefix(L), we denote the set of all prefixes of all strings in L.
 - (a) If $L = \{aab, bab, abab\}$, what is prefix(L)?

 $\{\epsilon, a, b, aa, ab, ba, aab, aba, bab, abab\}$

(b) Let L_2 be the language over $\Sigma = \{a, b\}$, accepted by the NFA of Part (i) in the following figure.


L_2 consists of strings the	start and end with different symbols	. (1)
$\operatorname{prefix}(L_2)$ consists of	all strings in $\{a, b\}^*$. (1)

(c) The NFA of Part (ii) in the above figure is obtained by converting each state of the NFA of Part (i) to a

final state. State whether the converted NFA accepts $prefix(L_2)$. Yes (Write Yes/No) (1)

(d) Let $N = (Q, \Sigma, \Delta, S, F)$ be an NFA, and $N' = (Q, \Sigma, \Delta, S, Q)$ be the NFA obtained from N by converting every state of N to a final state. Prove or disprove: We must have $\mathcal{L}(N') = \operatorname{prefix}(\mathcal{L}(N))$. (5)

Solution The statement is false. A counterexample is given below.

This NFA accepts all strings starting with *a*

The prefix of this language is the set of all strings starting with *a* and the empty string

(1)

This NFA accepts *b* which is not in the prefix language

Remark: The corrected construction goes like this: Convert a state $q \in Q$ of N to a final state if and only if there is a path from q to any final state of N, that is, if and only if $\hat{\Delta}(q, \alpha) \cap F \neq \emptyset$ for some $\alpha \in \Sigma^*$.