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CS21201/CS21001 Discrete Structures, Autumn 2022–2023

23-Sep-2022, 09:00am–11:00am Mid-Semester Test Maximum marks: 60

Instructions

• Write your answers in the question paper itself. Be brief and precise. Answer all questions.

• Write the answers only in the respective spaces provided. The last three blank pages may be used for

rough work.

• If you use any theorem/result/formula covered in the class, just mention it, do not elaborate.

• Write all the proofs in mathematically precise language. Unclear and/or dubious statements would be

severely penalized.

Do not write anything on this page.

Questions start from the next page.



1. Let P(x) and Q(y) be open statements with the variables x and y coming from their respective non-empty

universes. Using only a counterexample, establish the claim in each of the following two parts. There is no

need to mention how you came up with the counterexample. Mention only the universes for x and y, what

the open statements P(x) and Q(y) are, and how this example establishes logical non-equivalence.

(a) ∀x[P(x)]→∀y[Q(y)] is logically not equivalent to ∀x
[

P(x)→∀y[Q(y)]
]

. (5)

Solution Let the universes of x and y be the set of positive integers, P(x) the open statement “x is even”, and Q(y) the open

statement “y is odd”. But then, both ∀x[P(x)] and ∀y[Q(y)] are false, so the implication ∀x[P(x)]→∀y[Q(y)] is

true. But for any even x, the implication P(x)→∀y[Q(y)] is false, and so ∀x
[

P(x)→∀y[Q(y)]
]

is false.
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(b) ∃x[P(x)]→∃y[Q(y)] is logically not equivalent to ∃x
[

P(x)→∃y[Q(y)]
]

. (5)

Solution Let again the universe for x and y be the set of positive integers. Take P(x) to be the open statement “x is even”,

and Q(y) to be the open statement “both y and y+1 are odd”. But then, ∃x[P(x)] is true, and ∃y[Q(y)] is false, so

the implication ∃x[P(x)]→∃y[Q(y)] is false. On the other hand, for any odd x, the implication P(x)→∃y[Q(y)]

is true, that is, ∃x
[

P(x)→∃y[Q(y)]
]

is true.
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2. Let n be a non-negative integer. Consider all paths in the grid from (0,0) to (n,n), that never go above the

main diagonal y = x, and that consist of the following three types of moves:

R : Move one step right (from (x,y) to (x+1,y)),

U : Move one step up (from (x,y) to (x,y+1)), and

D : If the current position is on the main diagonal, then move along the diagonal for one step (from (x,x)
to (x+1,x+1)). A diagonal move from (x,y) to (x+1,y+1) is not allowed if x 6= y.

Let D(n) be the number of such paths from (0,0) to (n,n). Prove that D(n) = C(n+ 1), where C(n+ 1) is

the (n+1)-th Catalan number. (Hint: First derive a recurrence for D(n). Then proceed by induction on n.) (10)

Solution Consider a path P of the given type. If P never takes a diagonal move, there are C(n) possibilities. Otherwise

P makes the first diagonal move at (k,k) for some k ∈ {0,1,2, . . . ,n− 1}. There are C(k) possibilities for

reaching from (0,0) to (k,k) (no diagonal movements up to this time). Then the diagonal move takes the path

to (k+1,k+1). From there, we can reach (n,n) in D(n− k−1) ways. We therefore have

D(n) =C(n)+
n−1

∑
k=0

C(k)D(n−1− k).

We now proceed by strong induction on n. The basis case corresponds to n = 0. It is easy to see that D(0) = 1

and C(1) = 1. So take some n > 1, and assume that D(i) = C(i+1) for all i = 1,2,3, . . . ,n−1. But then, the

above recursion gives

D(n) =C(n)+
n−1

∑
k=0

C(k)C(n−1) =C(n)C(0)+
n−1

∑
k=0

C(k)C(n− k) =
n

∑
k=0

C(k)C(n− k) =C(n+1).

In these calculations, we use the fact that C(0) = 1. We also use the recurrence for Catalan numbers.
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3. In the following C function, you supply two non-negative integers a,b as arguments.

int f ( int a, int b )

{

int x, y, t;

x = a; y = b; t = 0;

while (x > 0) {

--x; t -= x;

t += y; ++y;

}

return t;

}

Using an invariance (involving the variables a,b,x,y, t only) of the loop in the function, determine what

f (a,b) returns as a function of a and b. Give a closed-form formula. There is no need to mention how you

came up with the invariance. Instead show clearly (a) what the invariance is, (b) initially the invariance is

true, (c) the loop maintains the invariance, and (d) how the invariance gives the formula for the return value.

No credit for any deduction not based on loop invariance. (10)

Solution The loop maintains the invariance

t + xy = ab.

This is true initially: 0+ ab = ab. Suppose that at the start of one iteration, we have t + xy = ab. In the loop

body, x changes to x−1, t changes to t − (x−1)+ y, and y changes to y+1. We therefore have

[t − (x−1)+ y]+ (x−1)(y+1) = t − x+ y+1+ xy+ x− y−1 = t + xy = ab.

The loop terminates when x = 0. At that time, the invariance t + xy = ab implies t = ab.
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4. Let n > 2 be an integer. You choose n distinct integers from the set {1,2,3, . . . ,n2 − 1}. Prove that there

must be two of the chosen integers (call them x and y) satisfying 0 <
√

x−√
y < 1. (10)

Solution This follows from a direct application of the pigeon-hole principle. The n−1 holes are

{1,2,3},

{4,5,6,7,8},

{9,10,11,12,13,14,15},

. . . ,
{(n−1)2,(n−1)2 +1,(n−1)2 +2, . . . ,n2 −1}.

The pigeons are the n chosen integers.
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5. Let A be a set, and f ,g,h three functions A → A such that h◦g◦ f is the identity function 1A of A. Assume

that neither of f ,g,h is the identity function of A.

(a) Prove that f must be injective (one-one), and h must be surjective (onto). (4)

Solution Take a1,a2 ∈ A. If f (a1) = f (a2), then (h◦g)( f (a1)) = (h◦g)( f (a2)), that is, a1 = a2.

Then, take any b ∈ A. We have (h◦g◦ f )(b) = b, But then, h(a) = b, where a = g( f (b)).
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(b) Demonstrate by an explicit example that g may be neither injective nor surjective. Do not just argue

that such a g is possible. (Hint: A must be an infinite set.) (6)

Solution Take A =N (the set of positive integers). Take the three functions as follows.

• f (a) = a+2 for all a ∈N.

• g(1) = g(2) = 2, and g(a) = a−1 for all a > 3.

• h(1) = 1, and h(a) = a−1 for all a > 2.

Neither of f ,g,h is the identity function. For all a ∈N, we have f (a) = a+2 > 3, so g( f (a)) = (a+2)−1 =
a+1 > 2, and therefore h(g( f (a))) = (a+1)−1 = a. The function g is not injective, because g(1) = g(2). It

is not surjective too, because 1 /∈ g(N).
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6. Let A be a (non-empty) set, and E the set of all equivalence relations on A. Take two equivalence relations

R1 and R2 from E. We say that R1 refines R2 if x R1 y implies x R2 y for all x,y ∈ A.

(a) Prove that E is a poset under refinement. (Hint: Every binary relation on A is a subset of A×A.) (6)

Solution Every binary relation on A is a subset of A×A. Therefore R1 refines R2 if and only if R1 ⊆ R2.

Let R,R1,R2,R3 ∈ E.

[Reflexive] R ⊆ R.

[Antisymmetric] Let R1 refine R2, and R2 refine R1. But then, R1 ⊆ R2 and R2 ⊆ R1. Therefore R1 = R2.

[Transitive] Let R1 refine R2, and R2 refine R3. This means R1 ⊆ R2 and R2 ⊆ R3. But then, R1 ⊆ R3, that is, R1

refines R3.
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(b) Does E always contain a least element under refinement? If so, what is it, and why? If not, supply an

explicit counterexample. (4)

Solution The equality relation is an equivalence relation. Moreover, every equivalence relation R is reflexive. Therefore

x = y implies x R y, that is, = refines R. Consequently, = is the least element of E.
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