Divide-and-Conquer Recurrences

- General form: $T_{N}=a T_{N / b}+c N^{d}$.
- Involves floor and ceiling because N / b need not be an integer for all N.
- Examples
- Binary search: $a=1, b=2, d=0$.
- Merge sort: $a=2, b=2, d=1$.
- Strassen's matrix multiplication: $a=7, b=2, d=2$.
- This does not look like a recurrence of finite order.
- We can convert it to a recurrence of finite order for specific values of N.
- We assume that T_{N} is increasing, that is, $M \leqslant N$ implies $T_{M} \leqslant T_{N}$.
- We can supply a big- Θ bound for T_{N} for a general N.
- $T_{N}=a T_{N / b}+c N^{d}$ whenever N is a power of b.
- Assume that T_{N} is an increasing function of N. This is usually true, and can be proved by (strong) induction on N using the recurrence (with floors and/or ceilings).
- Let $\delta=\log _{b} a$.
- Then, we have

$$
T_{N}= \begin{cases}\Theta\left(N^{\delta}\right) & \text { if } \delta>d \\ \Theta\left(N^{d}\right) & \text { if } d>\delta \\ \Theta\left(N^{d} \log N\right)=\Theta\left(N^{\delta} \log N\right) & \text { if } d=\delta\end{cases}
$$

Proof for the Special Case

- Let $N=b^{n}$.
- Define $t_{n}=T_{b^{n}}$.
- The recurrence gives

$$
t_{n}=a t_{n-1}+c s^{n}
$$

where

$$
s=b^{d}
$$

- The characteristic equation is $r-a=0$, that is, $r=a$.
- The solution of this recurrence is of the form

$$
t_{n}= \begin{cases}A a^{n}+U s^{n} & \text { if } s \neq a, \\ A a^{n}+U n s^{n} & \text { if } s=a,\end{cases}
$$

where A and U are constants.

- Case 1: $a>s$
- $a>b^{d}$ implies $\log _{b} a>d$, that is, $\delta>d$.
- $T_{N}=t_{n}=\Theta\left(a^{n}\right)$.
- $a^{n}=b^{n \log _{b} a}=b^{n \delta}=N^{\delta}$.
- Case 2: $a<s$
- $a<b^{d}$ implies $\log _{b} a<d$, that is, $\delta<d$.
- $T_{N}=t_{n}=\Theta\left(s^{n}\right)$.
- $s^{n}=\left(b^{d}\right)^{n}=\left(b^{n}\right)^{d}=N^{d}$.
- Case 3: $a=s$
- $a=b^{d}$ implies $\log _{b} a=d$, that is, $\delta=d$.
- $a^{n}=s^{n}$.
- $T_{N}=t_{n}=\Theta\left(n s^{n}\right)$.
- $n s^{n}=n N^{d}=N^{d} \log _{b} N=N^{\delta} \log _{b} n$.
- Take $b^{n-1}<N \leqslant b^{n}$.
- By the increasing property, we have $T_{b^{n-1}} \leqslant T_{N} \leqslant T_{b^{n}}$.
- As an example, consider Case 1.
- $T_{N} \leqslant T_{b^{n}}$, and $\left(b^{n}\right)^{\delta}<(N b)^{\delta}=N^{\delta} b^{\delta}$.
- $T_{N} \geqslant T_{b^{n-1}}$, and $\left(b^{n-1}\right)^{\delta}=\left(b^{n}\right)^{\delta} / b^{\delta} \geqslant N^{\delta} / b^{\delta}$.
- b^{δ} is a constant, so $T_{N}=\Theta\left(N^{\delta}\right)$.

