Divide-and-Conquer Recurrences

- General form: $T_N = aT_{N/b} + cN^d$.
- Involves floor and ceiling because N/b need not be an integer for all N.
- Examples
 - Binary search: a = 1, b = 2, d = 0.
 - Merge sort: a = 2, b = 2, d = 1.
 - Strassen's matrix multiplication: a = 7, b = 2, d = 2.
- This does not look like a recurrence of finite order.
- We can convert it to a recurrence of finite order for specific values of *N*.
- We assume that T_N is increasing, that is, $M \leq N$ implies $T_M \leq T_N$.
- We can supply a big- Θ bound for T_N for a general N.

- $T_N = aT_{N/b} + cN^d$ whenever N is a power of b.
- Assume that T_N is an increasing function of N. This is usually true, and can be proved by (strong) induction on N using the recurrence (with floors and/or ceilings).
- Let $\delta = \log_b a$.
- Then, we have

$$T_N = \begin{cases} \Theta(N^{\delta}) & \text{if } \delta > d, \\ \Theta(N^d) & \text{if } d > \delta, \\ \Theta(N^d \log N) = \Theta(N^{\delta} \log N) & \text{if } d = \delta. \end{cases}$$

Proof for the Special Case

- Let $N = b^n$.
- Define $t_n = T_{b^n}$.
- The recurrence gives

$$t_n = at_{n-1} + cs^n,$$

where

$$s = b^d$$
.

- The characteristic equation is r a = 0, that is, r = a.
- The solution of this recurrence is of the form

$$t_n = \begin{cases} Aa^n + Us^n & \text{if } s \neq a, \\ Aa^n + Uns^n & \text{if } s = a, \end{cases}$$

where A and U are constants.

Proof for the Special Case

- Case 1: a > s
 - $a > b^d$ implies $\log_b a > d$, that is, $\delta > d$.

•
$$T_N = t_n = \Theta(a^n).$$

•
$$a^n = b^{n\log_b a} = b^{n\delta} = N^\delta$$
.

- Case 2: *a* < *s*
 - $a < b^d$ implies $\log_b a < d$, that is, $\delta < d$.

• Case 3: a = s

• $a = b^d$ implies $\log_b a = d$, that is, $\delta = d$.

•
$$a^n = s^n$$
.

•
$$T_N = t_n = \Theta(ns^n).$$

•
$$ns^n = nN^d = N^d \log_b N = N^\delta \log_b n.$$

Proof for the General Case

- Take $b^{n-1} < N \leq b^n$.
- By the increasing property, we have $T_{b^{n-1}} \leq T_N \leq T_{b^n}$.
- As an example, consider Case 1.
- $T_N \leqslant T_{b^n}$, and $(b^n)^{\delta} < (Nb)^{\delta} = N^{\delta} b^{\delta}$.
- $T_N \ge T_{b^{n-1}}$, and $(b^{n-1})^{\delta} = (b^n)^{\delta}/b^{\delta} \ge N^{\delta}/b^{\delta}$.
- b^{δ} is a constant, so $T_N = \Theta(N^{\delta})$.