Rings

Definitions and Basic Properties

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 5, 2020

Definitions

• A set *R* with two binary operations + : *R* × *R* → *R* and · : *R* × *R* → *R* is called a **ring** if for all *a*,*b*,*c* ∈ *R*, the following conditions are satisfied.

(1)
$$a+b=b+a$$
[+ is commutative](2) $(a+b)+c=a+(b+c)$ [+ is associative](3) There exists $0 \in R$ such that $0+a=a+0=a$ [additive identity](4) There exists $-a \in R$ such that $a+(-a) = (-a)+a=0$ [additive inverse](5) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ [\cdot is associative](6) $a \cdot (b+c) = a \cdot b+a \cdot c$ and $(a+b) \cdot c = a \cdot c+b \cdot c$ [\cdot is distributive over +]

A ring (R,+,·) is called **commutative** if for all a, b ∈ R, we have: (7) a ⋅ b = b ⋅ a [· is commutative]

A ring (R,+,·) is called a ring with identity (or a ring with unity) if
(8) there exists 1 ∈ R such that 1 ⋅ a = a ⋅ 1 = a for all a ∈ R. [multiplicative identity]

Examples

- Z, Q, R, C under standard addition and multiplication are commutative rings with identity.
- Let n ∈ N, n ≥ 2. Denote by M_n(Z) (resp. M_n(Q), M_n(R), M_n(C)) the set of all n × n matrices with integer (resp. rational, real, complex) entries. These sets are rings under matrix addition and multiplication. These rings are not commutative, but contains the identity element (the n × n identity matrix).
- Let S be a set with at least two elements (S may be infinite). 𝒫(S) is a commutative ring with identity under the operations Δ (symmetric difference) and ∩ (intersection). The additive identity is Ø, and the multiplicative identity is S. The additive inverse of A ⊆ S is A itself.
- Let $n \in \mathbb{N}$, $n \ge 2$. The set $\{0,1\}^n$ of *n*-bit vectors is a commutative ring with identity under bit-wise XOR and AND operations. The zero vector is the additive identity, and the all-1 vector is the multiplicative identity. The additive inverse of a bit vector *v* is *v*.

Examples

 $\ensuremath{\mathbb{Z}}$ under the two operations

$$a \oplus b = a+b-1$$
$$a \odot b = a+b-ab$$

is a commutative ring with identity.

- Check associativity of \oplus and \odot : $(a \oplus b) \oplus c = a \oplus (b \oplus c) = a + b + c - 2,$ $(a \odot b) \odot c = a \odot (b \odot c) = a + b + c - ab - bc - ca + abc.$
- Check distributivity of \odot over \oplus : $(a \oplus b) \odot c = (a \odot c) \oplus (b \odot c) = a + b + 2c - ac - bc - 1.$
- 1 is the additive identity because $a \oplus 1 = 1 \oplus a = a + 1 1 = a$ for all $a \in \mathbb{Z}$.
- The additive inverse of a is 2-a because $a \oplus (2-a) = a + (2-a) 1 = 1$.
- 0 is the multiplicative identity because $a \odot 0 = 0 \odot a = a + 0 a \times 0 = a$ for all $a \in \mathbb{Z}$.

Zero Divisors

An element $a \in R$ is called a **zero divisor** if $a \cdot b = 0$ for some $b \neq 0$. 0 is always a zero divisor.

We are interested in non-zero (or proper) zero divisors.

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ under standard operations do not contain non-zero zero divisors.
- The matrix rings contain non-zero zero divisors. For example, $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$
- 𝒫(S) contains non-zero zero divisors. Take any non-empty proper subset A of S. Then A ∩ (S \ A) = Ø.
- The ring $(\mathbb{Z}, \oplus, \odot)$ does not contain non-zero zero divisors, because $a \odot b = a + b ab = 1$ implies (a 1)(b 1) = 0, that is, either a = 1 or b = 1.

Units

Let *R* be a ring with identity.

An element $a \in R$ is called a **unit** if there exists $b \in R$ such that ab = ba = 1 (so *b* is also a unit). We say *a* and *b* are **multiplicative inverses** of one another.

We write $b = a^{-1}$ and $a = b^{-1}$.

- The only units of $(\mathbb{Z}, +, \cdot)$ are ± 1 .
- All non-zero elements of \mathbb{Q} , \mathbb{R} and \mathbb{C} are units.
- The units of $M_n(\mathbb{Z})$ are precisely those matrices with determinant ± 1 .
- The units of $M_n(\mathbb{Q})$, $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ are the invertible matrices.
- The only unit in $\mathcal{P}(S)$ is *S*.
- Consider $(\mathbb{Z}, \oplus, \odot)$. $a \odot b = 0$ implies a + b ab = 0, that is, $b = \frac{a}{a-1}$. Since *b* is an integer, the only possibilities for *a* are 0 and 2. These are the only units, and are equal to their respective inverses.

Definitions

Let R be a commutative ring with identity.

R is called an **integral domain** if *R* contains no non-zero zero divisors.

R is called a **field** if every non-zero element of R is a unit.

- $(\mathbb{Z}, +, \cdot)$ is an integral domain but not a field.
- \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields.
- The matrix rings are neither integral domains nor fields.
- $\mathscr{P}(S)$ is neither an integral domain nor a field.
- $(\mathbb{Z}, \oplus, \odot)$ is an integral domain but not a field.

Theorem: In a ring *R*, the additive identity is unique. Moreover, for every $a \in R$, the additive inverse -a is unique.

Proof Let 0 and 0' be additive indentities. Then 0 = 0 + 0' = 0'. If b and c are additive inverses of a, we have b = b + 0 = b + (a + c) = (b + a) + c = 0 + c = c.

Theorem: In a ring *R* with identity, the multiplicative identity is unique. Moreover, for every unit *a* in *R*, the multiplicative inverse a^{-1} is unique.

Elementary Properties of Rings

Theorem: (*Cancellation laws of addition*) Let a, b, c be elements in a ring R. (i) If a + b = a + c, then b = c. (ii) If a + c = b + c, then a = b. *Proof* $a + b = a + c \Rightarrow -a + (a + b) = -a + (a + c) \Rightarrow (-a + a) + b = (-a + a) + c \Rightarrow 0 + b = 0 + c \Rightarrow b = c$.

Theorem: (*Cancellation laws of multiplication*) Let R be a ring with identity. Let a be a unit in R, and b, c any elements in R.

(i) If *ab* = *ac*, then *b* = *c*.
(ii) If *ba* = *ca*, then *b* = *c*.

Elementary Properties of Rings

Theorem: Let *R* be a ring, and $a, b, c \in R$.

(i)
$$a \cdot 0 = 0$$
.
(ii) $-(-a) = a$.
(iii) $(-a)b = a(-b) = -(ab)$.
(iv) $(-a)(-b) = ab$.

Proof (i) $0 + 0 = 0 \Rightarrow a \cdot (0 + 0) = a \cdot 0 \Rightarrow a \cdot 0 + a \cdot 0 = a \cdot 0 = a \cdot 0 + 0$. Now use cancellation.

(ii)
$$(-a) + a = a + (-a) = 0 \Rightarrow -(-a) = a.$$

(iii) $(-a)b + ab = (-a + a)b = 0b = 0$, so $-(ab) = (-a)b$. Likewise, $-(ab) = a(-b)$.
(iv) $(-a)(-b) = -(a(-b)) = -(-(ab)) = ab.$

Elementary Properties of Rings

Theorem: Let *R* be an integral domain. Let *a*, *b*, *c* be elements of *R* with $a \neq 0$. Then ab = ac implies b = c. *Proof* $ab = ac \Rightarrow ab - ac = 0 \Rightarrow a(b - c) = 0 \Rightarrow b - c = 0$ (since *R* does not contain non-zero zero divisors) $\Rightarrow b = c$.

Theorem: Every field is an integral domain.

Proof Let *F* be a field. Take $a, b \in F$ such that ab = 0. We have to show that either a = 0 or b = 0. Suppose that $a \neq 0$. Then *a* is a unit. We can use cancellation from $ab = 0 = a \cdot 0$ to get b = 0.

Theorem: Every *finite* integral domain is a field.

Proof Let *R* be an integral domain consisting of only finitely many elements. Take any non-zero $a \in R$. The map $R \to R$ taking $x \mapsto ax$ is injective and so bijective. In particular, there exists *x* such that ax = 1. Thus *a* is a unit.

Definition: Let $(R, +, \cdot)$ be a ring. A non-empty subset *S* of *R* is called a **subring** of *R* if *S* is a ring under the operations + and \cdot inherited from *R*.

Theorem: *S* is a subring of *R* if for all $a, b \in S$, we have $a - b, ab \in S$.

Proof Commutativity of addition, associativity of addition and multiplication, and distributivity of multiplication over addition are inherited from *R*. Since *S* is non-empty, there exists $a \in S$, so $a - a = 0 \in S$. Therefore $0 - a = -a \in S$. Finally, for $a, b \in S$, we have $a + b = a - (-b) \in S$. So *S* is closed under addition and multiplication.

- Z is a subring of Q, R, C.
 Q is a subring of R, C.
 R is a subring of C.
- Let $n \in \mathbb{N}$. $n\mathbb{Z} = \{na \mid a \in \mathbb{Z}\}$ is a subring of \mathbb{Z} .

• Let
$$S = \left\{ \begin{pmatrix} x & x+y \\ x+y & x \end{pmatrix} \mid x, y \in \mathbb{Z} \right\}$$
 is a subring of $M_2(\mathbb{Z})$.
• $\begin{pmatrix} x & x+y \\ x+y & x \end{pmatrix} - \begin{pmatrix} u & u+v \\ u+v & u \end{pmatrix} = \begin{pmatrix} x-u & (x-u)+(y-v) \\ (x-u)+(y-v) & x-u \end{pmatrix}$.
• $\begin{pmatrix} x & x+y \\ x+y & x \end{pmatrix} \begin{pmatrix} u & u+v \\ u+v & u \end{pmatrix} = \begin{pmatrix} (2u+v)x+(u+v)y & (2u+v)x+(u+v)y+(-vy) \\ (2u+v)x+(u+v)+(-vy) & (2u+v)x+(u+v) \end{pmatrix}$.

Ring Homomorphisms and Isomorphisms

Definition: Let $(R, +, \cdot)$ and (S, \oplus, \odot) be rings. A function $f : R \to S$ is called a **homomorphism** if for all $a, b \in R$, we have:

(1) $f(a+b) = f(a) \oplus f(b)$, and (2) $f(a+b) = f(a) \oplus f(b)$, and

(2) $f(a \cdot b) = f(a) \odot f(b)$.

A bijective homomorphism is called an isomorphism.

- The map $\mathbb{C} \to \mathbb{C}$ taking a + ib to a ib is an isomorphism of fields.
- The map $\mathbb{R} \to M_2(\mathbb{R})$ taking *a* to $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ is a homomorphism of rings.

• The map
$$\mathbb{C} \to M_2(\mathbb{R})$$
 taking $a + ib$ to $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is a homomorphism of rings

Ring Homomorphisms and Isomorphisms

- $(\mathbb{Z}, +, \cdot)$ is a ring.
- $(\mathbb{Z}, \oplus, \odot)$ is a ring, where $a \oplus b = a + b 1$, and $a \odot b = a + b ab$.
- Define a map $f : \mathbb{Z} \to \mathbb{Z}$ taking *a* to 1 a.
- f(a+b) = 1-a-b, whereas $f(a) \oplus f(b) = (1-a) \oplus (1-b) = 1-a+1-b-1 = 1-a-b$.
- f(ab) = 1 ab, whereas $f(a) \odot f(b) = (1 a) \odot (1 b) = (1 a) + (1 b) (1 a)(1 b) = 2 a b 1 + a + b ab = 1 ab$.
- *f* is clearly bijective.
- f is therefore an isomorphism from $(\mathbb{Z}, +, \cdot)$ to $(\mathbb{Z}, \oplus, \odot)$.

Properties of Homomorphisms

Theorem: Let $f: (R, +, \cdot) \to (S, \oplus, \odot)$ be a ring homomorphism. (i) $f(0_R) = 0_S$. (ii) f(-a) = -f(a) for all $a \in R$. (iii) f(na) = nf(a) for all $a \in R$ and $n \in \mathbb{Z}$. (iv) $f(a^n) = f(a)^n$ for all $a \in R$ and $n \in \mathbb{N}$. (v) If A is a subring of R, then f(A) is a subring of S. *Proof* (i) $0_R + 0_R = 0_R \Rightarrow 0_S \oplus f(0_R) = f(0_R) = f(0_R + 0_R) = f(0_R) \oplus f(0_R)$. (ii) $f(a + (-a)) = f(0_R) = 0_S$, that is, $f(a) \oplus f(-a) = 0_S$.

(iii) and (iv) Use induction on *n* and (ii).

(v) Since A is non-empty, f(A) is non-empty too. Let $u, v \in f(A)$. Then u = f(a) and v = f(b) for some $a, b \in A$. $a - b \in A$ (since A is a subring of R). So $f(a-b) = f(a) \ominus f(b) = u \ominus v \in f(A)$. Likewise, show that $u \odot v \in f(A)$.

Theorem: Let $f : (R, +, \cdot) \to (S, \oplus, \odot)$ be a *surjective* ring homomorphism, where |S| > 1. (i) If *R* has the identity 1_R , then $f(1_R)$ is the identity of *S*. (ii) If *a* is a unit in *R*, then f(a) is a unit in *S*, and $f(a^{-1}) = f(a)^{-1}$. (iii) If *R* is commutative, then *S* is commutative.

Proof (i) Take any $u \in S$. Since f is surjective, u = f(a) for some $a \in R$. But then $u = f(a) = f(a \cdot 1_R) = f(a) \odot f(1_R) = u \odot f(1_R)$. Likewise, $u = f(1_R) \odot u$.

Modular Arithmetic

Applications to Cryptography

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 5, 2020

- Take $n \in \mathbb{N}$ (preferable to have $n \ge 2$).
- Two integers $a, b \in \mathbb{Z}$ are said to be **congruent** modulo *n* if n|(a-b).
- We denote this as $a \equiv b \pmod{n}$.
- Congruence modulo n is an equivalence relation on \mathbb{Z} .
- There are *n* equivalence classes: $[0], [1], [2], \ldots, [n-1]$.

Integers Modulo n

- Define $\mathbb{Z}_n = \{0, 1, 2, 3, \dots, n-1\}.$
- You may view \mathbb{Z}_n as the set of remainders of Euclidean division by *n*.
- You can also view the elements of \mathbb{Z}_n as representatives of the equivalence classes under congruence modulo *n*.
- There is also an algebraic description (not covered). \mathbb{Z}_n is quotient $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ with respect to the ideal $n\mathbb{Z}$ of \mathbb{Z} .
- For $a, b \in \mathbb{Z}_n$, define the following operations.

•
$$a +_n b = \begin{cases} a+b & \text{if } a+b < n, \\ a+b-n & \text{if } a+b \ge n. \end{cases}$$

• $a \cdot_n b = (ab) \operatorname{rem} n.$

• \mathbb{Z}_n is a *commutative ring with identity* under these two operations.

Units of \mathbb{Z}_n

Theorem: $a \in \mathbb{Z}_n$ is a unit if and only if gcd(a, n) = 1.

Proof [If] There exist integers u, v such that ua + vn = 1. We can choose u such that $0 \le u < n$. But then $ua \equiv 1 \pmod{n}$. [Only if] If a is a unit of \mathbb{Z}_n , then $ua \equiv 1 \pmod{n}$ for some $u \in \mathbb{Z}_n$, that is, ua = 1 + vn for

[Only if] If *a* is a unit of \mathbb{Z}_n , then $ua \equiv 1 \pmod{n}$ for some $u \in \mathbb{Z}_n$, that is, ua = 1 + vn for some *v*. Since gcd(a,n) divides *a* (and so *ua*) and *n* (and so *vn*), it divides 1, that is, gcd(a,n) = 1.

- $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid \gcd(a,n) = 1\}.$
- $|\mathbb{Z}_n^*| = \phi(n)$ (Euler totient function).
- Since \mathbb{Z}_n^* is a group, we have $a^{\phi(n)} \equiv 1 \pmod{n}$ for any $a \in \mathbb{Z}_n^*$ (Euler's theorem).
- For a prime *p*, we have $\mathbb{Z}_p^* = \{1, 2, 3, ..., p-1\}$, and $\phi(p) = p-1$.
- For $a \in \mathbb{Z}_p^*$, we have $a^{p-1} \equiv 1 \pmod{p}$ (Fermat's little theorem).

Modular Exponentiation

Given $a \in \mathbb{Z}_n$ and $e \in \mathbb{N}_0$, to compute $a^e \pmod{n}$.

The square-and-multiply algorithm

modexp (a, e, n){ If (e = 0), return 1. Write e = 2f + r with $f = \lfloor e/2 \rfloor$ and $r \in \{0, 1\}$. Set t = modexp(a, f, n). Set $t = t^2 \pmod{n}$. If (r = 1), set $t = ta \pmod{n}$. Return t.

Modular Exponentiation: Iterative Version

Let $e = (e_{l-1}e_{l-2} \dots e_2e_1e_0)_2$ be the binary expansion of e.

```
 \begin{array}{l} \operatorname{modexp} (a, e, n) \\ \{ & \\ & \text{Initialize } t = 1. \\ & \text{For } i = l - 1, l - 2, \dots, 2, 1, 0, \text{ repeat:} \\ & \text{Set } t = t^2 \pmod{n}. \\ & \text{If } (e_i = 1), \text{ set } t = ta \pmod{n}. \\ & \text{Return } t. \\ \} \end{array}
```

For e < n, the running time is $O(\log^3 n)$.

Diffie–Hellman Key Agreement

- First known public-key algorithm (1976).
- Alice and Bob want to share a secret.
- They use an insecure communication channel.
- They agree upon a suitable finite group G (say, multiplicative). Let n = |G|.
- Suppose that G is cyclic. They publicly decide a generator g of G.
- Alice generates $a \in_R \{0, 1, 2, ..., n-1\}$, and computes and sends g^a to Bob.
- Bob generates $b \in_R \{0, 1, 2, ..., n-1\}$, and computes and sends g^b to Alice.
- Alice computes $g^{ab} = (g^b)^a$.
- Bob computes $g^{ab} = (g^a)^b$.

Security of the Protocol

- How difficult is it for an eavesdropper to obtain g^{ab} from g, g^a, g^b ?
- This is called the computational Diffie-Hellman problem (CDHP).
- a (resp. b) is called the discrete logarithm of g^a (resp. g^b) to the base g.
- Computing a or b enables an eavesdropper to get the shared secret.
- This is called the discrete-logarithm problem (DLP).
- If DLP is easy, then CDHP is easy.
- The converse is not known (but is believed to be true).
- A related problem: Given $g, g^a, g^b, h \in G$, decide whether $h = g^{ab}$.
- This is the decisional Diffie–Hellman problem (DDHP).
- For some groups, all these problems are assumed to be difficult.

A Candidate Group

- Take a large prime *p*.
- $G = \mathbb{Z}_p^*$ is cyclic.
- But computing a generator of \mathbb{Z}_p^* requires complete factorization of p-1.
- So we generate a large prime p such that p-1 has a large prime factor q.
- Generate random $h \in G$, and compute $g \equiv h^{(p-1)/q} \pmod{p}$.
- If $g \not\equiv 1 \pmod{p}$, than g has order q.
- We can work in the subgroup of \mathbb{Z}_p^* , generated by g.
- The discrete-logarithm problem for \mathbb{Z}_p^* is difficult for suitable choices of p.
- Only subexponential algorithms are known.

RSA Cryptosystem

- Invented by Rivest, Shamir, and Adleman (1978).
- The first public-key encryption algorithm.
- Alice wants to send a secret message to Bob.
- Bob chooses two large primes p, q, and computes n = pq and $\phi(n) = (p-1)(q-1)$.
- Bob chooses an *e* such that $gcd(e, \phi(n)) = 1$.
- Bob computes $d \equiv e^{-1} \pmod{\phi(n)}$.
- Bob publishes (n, e), and keeps d secret.
- Alice encodes her secret message to $m \in \mathbb{Z}_n$.
- Alice sends $c \equiv m^e \pmod{n}$ to Bob.
- Bob recovers $m \equiv c^d \pmod{n}$.

Correctness

- We have $ed = 1 + k\phi(n) = 1 + k(p-1)(q-1)$.
- If $p \not\mid m$, then by Fermat's little theorem, $m^{p-1} \equiv 1 \pmod{p}$.
- But then $m^{ed} \equiv m^{1+k(p-1)(q-1)} \equiv m \times (m^{p-1})^{k(q-1)} \equiv m \pmod{p}$.
- If p|m, we have $m^{ed} \equiv m \equiv 0 \pmod{p}$.
- In all cases, $m^{ed} \equiv m \pmod{p}$.
- Likewise, $m^{ed} \equiv m \pmod{q}$.
- By the Chinese remainder theorem, $m^{ed} \equiv m \pmod{n}$.

- RSA key-inversion problem: Compute d from (n, e).
- This is as difficult as factoring *n*.
- RSA problem: Given (n, e, c), compute m.
- This is believed to be as difficult as factoring *n*.
- Factoring large *n* is very difficult.
- Only some subexponential algorithms are known.

- Polynomial-time algorithms are known for quantum computers
- for both the factoring and the discrete-log problems.
- Peter Shor, 1994-1995.
- Diffie-Hellman and RSA are unsafe in the quantum world.
- But building quantum computers is very challenging.
- So far, quantum computers could factor 15 and 21.
- Time will tell who will win.