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Definitions

• A set R with two binary operations + : R×R → R and · : R×R → R
is called a ring if for all a,b,c ∈ R, the following conditions are satisfied.

(1) a+b = b+a [+ is commutative]

(2) (a+b)+ c = a+(b+ c) [+ is associative]

(3) There exists 0 ∈ R such that 0+a = a+0 = a [additive identity]

(4) There exists −a ∈ R such that a+(−a) = (−a)+a = 0 [additive inverse]

(5) (a ·b) · c = a · (b · c) [· is associative]

(6) a · (b+ c) = a ·b+a · c and (a+b) · c = a · c+b · c [· is distributive over +]

• A ring (R,+, ·) is called commutative if for all a,b ∈ R, we have:

(7) a ·b = b ·a [· is commutative]

• A ring (R,+, ·) is called a ring with identity (or a ring with unity) if

(8) there exists 1 ∈ R such that 1 ·a = a ·1 = a for all a ∈ R. [multiplicative identity]
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Examples

• Z, Q, R, C under standard addition and multiplication are

commutative rings with identity.

• Let n ∈ N, n > 2. Denote by Mn(Z) (resp. Mn(Q), Mn(R), Mn(C)) the set of all n×n

matrices with integer (resp. rational, real, complex) entries. These sets are rings under

matrix addition and multiplication. These rings are not commutative, but contains the

identity element (the n×n identity matrix).

• Let S be a set with at least two elements (S may be infinite). P(S) is a commutative

ring with identity under the operations ∆ (symmetric difference) and ∩ (intersection).

The additive identity is /0, and the multiplicative identity is S. The additive inverse of

A ⊆ S is A itself.

• Let n ∈ N, n > 2. The set {0,1}n of n-bit vectors is a commutative ring with identity

under bit-wise XOR and AND operations. The zero vector is the additive identity, and

the all-1 vector is the multiplicative identity. The additive inverse of a bit vector v is v.
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Examples

Z under the two operations

a⊕b = a+b−1

a⊙b = a+b−ab

is a commutative ring with identity.

• Check associativity of ⊕ and ⊙:

(a⊕b)⊕ c = a⊕ (b⊕ c) = a+b+ c−2,

(a⊙b)⊙ c = a⊙ (b⊙ c) = a+b+ c−ab−bc− ca+abc.

• Check distributivity of ⊙ over ⊕:

(a⊕b)⊙ c = (a⊙ c)⊕ (b⊙ c) = a+b+2c−ac−bc−1.

• 1 is the additive identity because a⊕1 = 1⊕a = a+1−1 = a for all a ∈ Z.

• The additive inverse of a is 2−a because a⊕ (2−a) = a+(2−a)−1 = 1.

• 0 is the multiplicative identity because a⊙0 = 0⊙a = a+0−a×0 = a for all a ∈ Z.
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Zero Divisors

An element a ∈ R is called a zero divisor if a ·b = 0 for some b 6= 0.

0 is always a zero divisor.

We are interested in non-zero (or proper) zero divisors.

• Z,Q,R,C under standard operations do not contain non-zero zero divisors.

• The matrix rings contain non-zero zero divisors. For example,
(

1 1

−1 −1

)(

2 2

−2 −2

)

=

(

0 0

0 0

)

.

• P(S) contains non-zero zero divisors. Take any non-empty proper subset A of S.

Then A∩ (S\A) = /0.

• The ring (Z,⊕,⊙) does not contain non-zero zero divisors, because

a⊙b = a+b−ab = 1 implies (a−1)(b−1) = 0, that is, either a = 1 or b = 1.
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Units

Let R be a ring with identity.

An element a ∈ R is called a unit if there exists b ∈ R such that ab = ba = 1

(so b is also a unit). We say a and b are multiplicative inverses of one another.

We write b = a−1 and a = b−1.

• The only units of (Z,+, ·) are ±1.

• All non-zero elements of Q, R and C are units.

• The units of Mn(Z) are precisely those matrices with determinant ±1.

• The units of Mn(Q), Mn(R) and Mn(C) are the invertible matrices.

• The only unit in P(S) is S.

• Consider (Z,⊕,⊙). a⊙b = 0 implies a+b−ab = 0, that is, b = a
a−1

. Since b is an

integer, the only possibilities for a are 0 and 2. These are the only units, and are equal

to their respective inverses.
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Definitions

Let R be a commutative ring with identity.

R is called an integral domain if R contains no non-zero zero divisors.

R is called a field if every non-zero element of R is a unit.

• (Z,+, ·) is an integral domain but not a field.

• Q, R, and C are fields.

• The matrix rings are neither integral domains nor fields.

• P(S) is neither an integral domain nor a field.

• (Z,⊕,⊙) is an integral domain but not a field.
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Elementary Properties of Rings

Theorem: In a ring R, the additive identity is unique. Moreover, for every a ∈ R, the

additive inverse −a is unique.

Proof Let 0 and 0′ be additive indentities. Then 0 = 0+0′ = 0′.

If b and c are additive inverses of a, we have

b = b+0 = b+(a+ c) = (b+a)+ c = 0+ c = c. ◭

Theorem: In a ring R with identity, the multiplicative identity is unique. Moreover, for

every unit a in R, the multiplicative inverse a−1 is unique. ◭
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Elementary Properties of Rings

Theorem: (Cancellation laws of addition) Let a,b,c be elements in a ring R.

(i) If a+b = a+ c, then b = c.

(ii) If a+ c = b+ c, then a = b.

Proof a+b = a+ c ⇒−a+(a+b) =−a+(a+ c)⇒ (−a+a)+b = (−a+a)+ c ⇒
0+b = 0+ c ⇒ b = c. ◭

Theorem: (Cancellation laws of multiplication) Let R be a ring with identity. Let a be a

unit in R, and b,c any elements in R.

(i) If ab = ac, then b = c.

(ii) If ba = ca, then b = c. ◭
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Elementary Properties of Rings

Theorem: Let R be a ring, and a,b,c ∈ R.

(i) a ·0 = 0.

(ii) −(−a) = a.

(iii) (−a)b = a(−b) =−(ab).
(iv) (−a)(−b) = ab.

Proof (i) 0+0 = 0 ⇒ a · (0+0) = a ·0 ⇒ a ·0+a ·0 = a ·0 = a ·0+0. Now use

cancellation.

(ii) (−a)+a = a+(−a) = 0 ⇒−(−a) = a.

(iii) (−a)b+ab = (−a+a)b = 0b = 0, so −(ab) = (−a)b. Likewise, −(ab) = a(−b).

(iv) (−a)(−b) =−(a(−b)) =−(−(ab)) = ab. ◭

Discrete Structures, Autumn 2020 Abhijit Das



Elementary Properties of Rings

Theorem: Let R be an integral domain. Let a,b,c be elements of R

with a 6= 0. Then ab = ac implies b = c.

Proof ab = ac ⇒ ab−ac = 0 ⇒ a(b− c) = 0 ⇒ b− c = 0 (since R does not contain

non-zero zero divisors) ⇒ b = c. ◭

Theorem: Every field is an integral domain.

Proof Let F be a field. Take a,b ∈ F such that ab = 0. We have to show that either a = 0

or b = 0. Suppose that a 6= 0. Then a is a unit. We can use cancellation from ab = 0 = a ·0
to get b = 0. ◭

Theorem: Every finite integral domain is a field.

Proof Let R be an integral domain consisting of only finitely many elements. Take any

non-zero a ∈ R. The map R → R taking x 7→ ax is injective and so bijective. In particular,

there exists x such that ax = 1. Thus a is a unit. ◭
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Subrings

Definition: Let (R,+, ·) be a ring. A non-empty subset S of R is called a subring of R if S

is a ring under the operations + and · inherited from R.

Theorem: S is a subring of R if for all a,b ∈ S, we have a−b,ab ∈ S.

Proof Commutativity of addition, associativity of addition and multiplication, and

distributivity of multiplication over addition are inherited from R.

Since S is non-empty, there exists a ∈ S, so a−a = 0 ∈ S. Therefore 0−a =−a ∈ S.

Finally, for a,b ∈ S, we have a+b = a− (−b) ∈ S. So S is closed under addition and

multiplication. ◭
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Subrings: Examples

• Z is a subring of Q,R,C.

Q is a subring of R,C.

R is a subring of C.

• Let n ∈ N. nZ= {na | a ∈ Z} is a subring of Z.

• Let S =

{(

x x+ y

x+ y x

)

| x,y ∈ Z

}

is a subring of M2(Z).

•

(

x x+ y

x+ y x

)

−

(

u u+ v

u+ v u

)

=

(

x−u (x−u)+(y− v)
(x−u)+(y− v) x−u

)

.

•

(

x x+ y

x+ y x

)(

u u+ v

u+ v u

)

=

(

(2u+ v)x+(u+ v)y (2u+ v)x+(u+ v)y+(−vy)
(2u+ v)x+(u+ v)+(−vy) (2u+ v)x+(u+ v)

)

.
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Ring Homomorphisms and Isomorphisms

Definition: Let (R,+, ·) and (S,⊕,⊙) be rings. A function f : R → S is called

a homomorphism if for all a,b ∈ R, we have:

(1) f (a+b) = f (a)⊕ f (b), and

(2) f (a ·b) = f (a)⊙ f (b).
A bijective homomorphism is called an isomorphism.

• The map C→ C taking a+ ib to a− ib is an isomorphism of fields.

• The map R→ M2(R) taking a to

(

a 0

0 a

)

is a homomorphism of rings.

• The map C→ M2(R) taking a+ ib to

(

a b

−b a

)

is a homomorphism of rings.
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Ring Homomorphisms and Isomorphisms

• (Z,+, ·) is a ring.

• (Z,⊕,⊙) is a ring, where a⊕b = a+b−1, and a⊙b = a+b−ab.

• Define a map f : Z→ Z taking a to 1−a.

• f (a+b) = 1−a−b, whereas

f (a)⊕ f (b) = (1−a)⊕ (1−b) = 1−a+1−b−1 = 1−a−b.

• f (ab) = 1−ab, whereas f (a)⊙ f (b) = (1−a)⊙ (1−b) =
(1−a)+(1−b)− (1−a)(1−b) = 2−a−b−1+a+b−ab = 1−ab.

• f is clearly bijective.

• f is therefore an isomorphism from (Z,+, ·) to (Z,⊕,⊙).
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Properties of Homomorphisms

Theorem: Let f : (R,+, ·)→ (S,⊕,⊙) be a ring homomorphism.

(i) f (0R) = 0S.

(ii) f (−a) =−f (a) for all a ∈ R.

(iii) f (na) = nf (a) for all a ∈ R and n ∈ Z.

(iv) f (an) = f (a)n for all a ∈ R and n ∈ N.

(v) If A is a subring of R, then f (A) is a subring of S.

Proof (i) 0R +0R = 0R ⇒ 0S ⊕ f (0R) = f (0R) = f (0R +0R) = f (0R)⊕ f (0R).
(ii) f (a+(−a)) = f (0R) = 0S, that is, f (a)⊕ f (−a) = 0S.

(iii) and (iv) Use induction on n and (ii).

(v) Since A is non-empty, f (A) is non-empty too. Let u,v ∈ f (A). Then u = f (a) and

v = f (b) for some a,b ∈ A. a−b ∈ A (since A is a subring of R). So

f (a−b) = f (a)⊖ f (b) = u⊖ v ∈ f (A). Likewise, show that u⊙ v ∈ f (A).
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Properties of Homomorphisms

Theorem: Let f : (R,+, ·)→ (S,⊕,⊙) be a surjective ring homomorphism, where |S|> 1.

(i) If R has the identity 1R, then f (1R) is the identity of S.

(ii) If a is a unit in R, then f (a) is a unit in S, and f (a−1) = f (a)−1.

(iii) If R is commutative, then S is commutative.

Proof (i) Take any u ∈ S. Since f is surjective, u = f (a) for some a ∈ R. But then

u = f (a) = f (a ·1R) = f (a)⊙ f (1R) = u⊙ f (1R). Likewise, u = f (1R)⊙u. ◭
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Modular Arithmetic
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Congruence Modulo n

• Take n ∈ N (preferable to have n > 2).

• Two integers a,b ∈ Z are said to be congruent modulo n if n|(a−b).

• We denote this as a ≡ b (mod n).

• Congruence modulo n is an equivalence relation on Z.

• There are n equivalence classes: [0], [1], [2], . . . , [n−1].
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Integers Modulo n

• Define Zn = {0,1,2,3, . . . ,n−1}.

• You may view Zn as the set of remainders of Euclidean division by n.

• You can also view the elements of Zn as representatives of the equivalence classes

under congruence modulo n.

• There is also an algebraic description (not covered). Zn is quotient Zn = Z/nZ with

respect to the ideal nZ of Z.

• For a,b ∈ Zn, define the following operations.

• a+n b =

{

a+b if a+b < n,

a+b−n if a+b > n.

• a ·n b = (ab) rem n.

• Zn is a commutative ring with identity under these two operations.
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Units of Zn

Theorem: a ∈ Zn is a unit if and only if gcd(a,n) = 1.

Proof [If] There exist integers u,v such that ua+ vn = 1. We can choose u such that

0 6 u < n. But then ua ≡ 1 (mod n).
[Only if] If a is a unit of Zn, then ua ≡ 1 (mod n) for some u ∈ Zn, that is, ua = 1+ vn for

some v. Since gcd(a,n) divides a (and so ua) and n (and so vn), it divides 1, that is,

gcd(a,n) = 1.

• Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

• |Z∗
n|= φ(n) (Euler totient function).

• Since Z∗
n is a group, we have aφ(n) ≡ 1 (mod n) for any a ∈ Z∗

n (Euler’s theorem).

• For a prime p, we have Z∗
p = {1,2,3, . . . ,p−1}, and φ(p) = p−1.

• For a ∈ Z∗
p, we have ap−1 ≡ 1 (mod p) (Fermat’s little theorem).
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Modular Exponentiation

Given a ∈ Zn and e ∈ N0, to compute ae (mod n).

The square-and-multiply algorithm

modexp (a,e,n)
{

If (e = 0), return 1.

Write e = 2f + r with f = ⌊e/2⌋ and r ∈ {0,1}.

Set t = modexp(a, f ,n).
Set t = t2 (mod n).
If (r = 1), set t = ta (mod n).
Return t.

}
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Modular Exponentiation: Iterative Version

Let e = (el−1el−2 . . .e2e1e0)2 be the binary expansion of e.

modexp (a,e,n)
{

Initialize t = 1.

For i = l−1, l−2, . . . ,2,1,0, repeat:

Set t = t2 (mod n).
If (ei = 1), set t = ta (mod n).

Return t.

}

For e < n, the running time is O(log3 n).
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Diffie–Hellman Key Agreement

• First known public-key algorithm (1976).

• Alice and Bob want to share a secret.

• They use an insecure communication channel.

• They agree upon a suitable finite group G (say, multiplicative). Let n = |G|.

• Suppose that G is cyclic. They publicly decide a generator g of G.

• Alice generates a ∈R {0,1,2, . . . ,n−1}, and computes and sends ga to Bob.

• Bob generates b ∈R {0,1,2, . . . ,n−1}, and computes and sends gb to Alice.

• Alice computes gab = (gb)a.

• Bob computes gab = (ga)b.
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Security of the Protocol

• How difficult is it for an eavesdropper to obtain gab from g,ga,gb?

• This is called the computational Diffie–Hellman problem (CDHP).

• a (resp. b) is called the discrete logarithm of ga (resp. gb) to the base g.

• Computing a or b enables an eavesdropper to get the shared secret.

• This is called the discrete-logarithm problem (DLP).

• If DLP is easy, then CDHP is easy.

• The converse is not known (but is believed to be true).

• A related problem: Given g,ga,gb,h ∈ G, decide whether h = gab.

• This is the decisional Diffie–Hellman problem (DDHP).

• For some groups, all these problems are assumed to be difficult.
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A Candidate Group

• Take a large prime p.

• G = Z∗
p is cyclic.

• But computing a generator of Z∗
p requires complete factorization of p−1.

• So we generate a large prime p such that p−1 has a large prime factor q.

• Generate random h ∈ G, and compute g ≡ h(p−1)/q (mod p).

• If g 6≡ 1 (mod p), than g has order q.

• We can work in the subgroup of Z∗
p, generated by g.

• The discrete-logarithm problem for Z∗
p is difficult for suitable choices of p.

• Only subexponential algorithms are known.
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RSA Cryptosystem

• Invented by Rivest, Shamir, and Adleman (1978).

• The first public-key encryption algorithm.

• Alice wants to send a secret message to Bob.

• Bob chooses two large primes p,q, and computes n = pq and φ(n) = (p−1)(q−1).

• Bob chooses an e such that gcd(e,φ(n)) = 1.

• Bob computes d ≡ e−1 (mod φ(n)).

• Bob publishes (n,e), and keeps d secret.

• Alice encodes her secret message to m ∈ Zn.

• Alice sends c ≡ me (mod n) to Bob.

• Bob recovers m ≡ cd (mod n).
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Correctness

• We have ed = 1+ kφ(n) = 1+ k(p−1)(q−1).

• If p6 |m, then by Fermat’s little theorem, mp−1 ≡ 1 (mod p).

• But then med ≡ m1+k(p−1)(q−1) ≡ m× (mp−1)k(q−1) ≡ m (mod p).

• If p|m, we have med ≡ m ≡ 0 (mod p).

• In all cases, med ≡ m (mod p).

• Likewise, med ≡ m (mod q).

• By the Chinese remainder theorem, med ≡ m (mod n).
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Security

• RSA key-inversion problem: Compute d from (n,e).

• This is as difficult as factoring n.

• RSA problem: Given (n,e,c), compute m.

• This is believed to be as difficult as factoring n.

• Factoring large n is very difficult.

• Only some subexponential algorithms are known.
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But. . .

• Polynomial-time algorithms are known for quantum computers

• for both the factoring and the discrete-log problems.

• Peter Shor, 1994-1995.

• Diffie–Hellman and RSA are unsafe in the quantum world.

• But building quantum computers is very challenging.

• So far, quantum computers could factor 15 and 21.

• Time will tell who will win.
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