Rings

Definitions and Basic Properties

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 5, 2020

- A set R with two binary operations $+: R \times R \rightarrow R$ and $\cdot: R \times R \rightarrow R$ is called a ring if for all $a, b, c \in R$, the following conditions are satisfied.
(1) $a+b=b+a$
(2) $(a+b)+c=a+(b+c)$
(3) There exists $0 \in R$ such that $0+a=a+0=a$
(4) There exists $-a \in R$ such that $a+(-a)=(-a)+a=0$
(5) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
[+ is commutative]
[+ is associative] [additive identity] [additive inverse]
(6) $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$
[• is associative]
- A ring $(R,+, \cdot)$ is called commutative if for all $a, b \in R$, we have:
(7) $a \cdot b=b \cdot a$
[\cdot is commutative]
- A ring $(R,+, \cdot)$ is called a ring with identity (or a ring with unity) if
(8) there exists $1 \in R$ such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$.
[multiplicative identity]

Examples

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ under standard addition and multiplication are commutative rings with identity.
- Let $n \in \mathbb{N}, n \geqslant 2$. Denote by $M_{n}(\mathbb{Z})\left(\operatorname{resp} . M_{n}(\mathbb{Q}), M_{n}(\mathbb{R}), M_{n}(\mathbb{C})\right)$ the set of all $n \times n$ matrices with integer (resp. rational, real, complex) entries. These sets are rings under matrix addition and multiplication. These rings are not commutative, but contains the identity element (the $n \times n$ identity matrix).
- Let S be a set with at least two elements (S may be infinite). $\mathscr{P}(S)$ is a commutative ring with identity under the operations Δ (symmetric difference) and \cap (intersection). The additive identity is \emptyset, and the multiplicative identity is S. The additive inverse of $A \subseteq S$ is A itself.
- Let $n \in \mathbb{N}, n \geqslant 2$. The set $\{0,1\}^{n}$ of n-bit vectors is a commutative ring with identity under bit-wise XOR and AND operations. The zero vector is the additive identity, and the all- 1 vector is the multiplicative identity. The additive inverse of a bit vector v is v.

Examples

\mathbb{Z} under the two operations

$$
\begin{aligned}
& a \oplus b=a+b-1 \\
& a \odot b=a+b-a b
\end{aligned}
$$

is a commutative ring with identity.

- Check associativity of \oplus and \odot :

$$
\begin{aligned}
& (a \oplus b) \oplus c=a \oplus(b \oplus c)=a+b+c-2 \\
& (a \odot b) \odot c=a \odot(b \odot c)=a+b+c-a b-b c-c a+a b c .
\end{aligned}
$$

- Check distributivity of \odot over \oplus :

$$
(a \oplus b) \odot c=(a \odot c) \oplus(b \odot c)=a+b+2 c-a c-b c-1
$$

- 1 is the additive identity because $a \oplus 1=1 \oplus a=a+1-1=a$ for all $a \in \mathbb{Z}$.
- The additive inverse of a is $2-a$ because $a \oplus(2-a)=a+(2-a)-1=1$.
- 0 is the multiplicative identity because $a \odot 0=0 \odot a=a+0-a \times 0=a$ for all $a \in \mathbb{Z}$.

Zero Divisors

An element $a \in R$ is called a zero divisor if $a \cdot b=0$ for some $b \neq 0$.
0 is always a zero divisor.
We are interested in non-zero (or proper) zero divisors.

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ under standard operations do not contain non-zero zero divisors.
- The matrix rings contain non-zero zero divisors. For example,
$\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)\left(\begin{array}{cc}2 & 2 \\ -2 & -2\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
- $\mathscr{P}(S)$ contains non-zero zero divisors. Take any non-empty proper subset A of S. Then $A \cap(S \backslash A)=\emptyset$.
- The ring $(\mathbb{Z}, \oplus, \odot)$ does not contain non-zero zero divisors, because $a \odot b=a+b-a b=1$ implies $(a-1)(b-1)=0$, that is, either $a=1$ or $b=1$.

Units

Let R be a ring with identity.
An element $a \in R$ is called a unit if there exists $b \in R$ such that $a b=b a=1$
(so b is also a unit). We say a and b are multiplicative inverses of one another.
We write $b=a^{-1}$ and $a=b^{-1}$.

- The only units of $(\mathbb{Z},+, \cdot)$ are ± 1.
- All non-zero elements of \mathbb{Q}, \mathbb{R} and \mathbb{C} are units.
- The units of $M_{n}(\mathbb{Z})$ are precisely those matrices with determinant ± 1.
- The units of $M_{n}(\mathbb{Q}), M_{n}(\mathbb{R})$ and $M_{n}(\mathbb{C})$ are the invertible matrices.
- The only unit in $\mathscr{P}(S)$ is S.
- Consider $(\mathbb{Z}, \oplus, \odot) . a \odot b=0$ implies $a+b-a b=0$, that is, $b=\frac{a}{a-1}$. Since b is an integer, the only possibilities for a are 0 and 2 . These are the only units, and are equal to their respective inverses.

Definitions

Let R be a commutative ring with identity.
R is called an integral domain if R contains no non-zero zero divisors.
R is called a field if every non-zero element of R is a unit.

- $(\mathbb{Z},+, \cdot)$ is an integral domain but not a field.
- \mathbb{Q}, \mathbb{R}, and \mathbb{C} are fields.
- The matrix rings are neither integral domains nor fields.
- $\mathscr{P}(S)$ is neither an integral domain nor a field.
- $(\mathbb{Z}, \oplus, \odot)$ is an integral domain but not a field.

Elementary Properties of Rings

Theorem: In a ring R, the additive identity is unique. Moreover, for every $a \in R$, the additive inverse $-a$ is unique.
Proof Let 0 and 0^{\prime} be additive indentities. Then $0=0+0^{\prime}=0^{\prime}$.
If b and c are additive inverses of a, we have
$b=b+0=b+(a+c)=(b+a)+c=0+c=c$.
Theorem: In a ring R with identity, the multiplicative identity is unique. Moreover, for every unit a in R, the multiplicative inverse a^{-1} is unique.

Elementary Properties of Rings

Theorem: (Cancellation laws of addition) Let a, b, c be elements in a ring R.
(i) If $a+b=a+c$, then $b=c$.
(ii) If $a+c=b+c$, then $a=b$.

Proof $a+b=a+c \Rightarrow-a+(a+b)=-a+(a+c) \Rightarrow(-a+a)+b=(-a+a)+c \Rightarrow$ $0+b=0+c \Rightarrow b=c$.

Theorem: (Cancellation laws of multiplication) Let R be a ring with identity. Let a be a unit in R, and b, c any elements in R.
(i) If $a b=a c$, then $b=c$.
(ii) If $b a=c a$, then $b=c$.

Elementary Properties of Rings

Theorem: Let R be a ring, and $a, b, c \in R$.
(i) $a \cdot 0=0$.
(ii) $-(-a)=a$.
(iii) $(-a) b=a(-b)=-(a b)$.
(iv) $(-a)(-b)=a b$.

Proof (i) $0+0=0 \Rightarrow a \cdot(0+0)=a \cdot 0 \Rightarrow a \cdot 0+a \cdot 0=a \cdot 0=a \cdot 0+0$. Now use cancellation.
(ii) $(-a)+a=a+(-a)=0 \Rightarrow-(-a)=a$.
(iii) $(-a) b+a b=(-a+a) b=0 b=0$, so $-(a b)=(-a) b$. Likewise, $-(a b)=a(-b)$.
(iv) $(-a)(-b)=-(a(-b))=-(-(a b))=a b$.

Elementary Properties of Rings

Theorem: Let R be an integral domain. Let a, b, c be elements of R with $a \neq 0$. Then $a b=a c$ implies $b=c$.
Proof $a b=a c \Rightarrow a b-a c=0 \Rightarrow a(b-c)=0 \Rightarrow b-c=0$ (since R does not contain non-zero zero divisors) $\Rightarrow b=c$.

Theorem: Every field is an integral domain.
Proof Let F be a field. Take $a, b \in F$ such that $a b=0$. We have to show that either $a=0$ or $b=0$. Suppose that $a \neq 0$. Then a is a unit. We can use cancellation from $a b=0=a \cdot 0$ to get $b=0$.

Theorem: Every finite integral domain is a field.
Proof Let R be an integral domain consisting of only finitely many elements. Take any non-zero $a \in R$. The map $R \rightarrow R$ taking $x \mapsto a x$ is injective and so bijective. In particular, there exists x such that $a x=1$. Thus a is a unit.

Subrings

Definition: Let $(R,+, \cdot)$ be a ring. A non-empty subset S of R is called a subring of R if S is a ring under the operations + and \cdot inherited from R.

Theorem: S is a subring of R if for all $a, b \in S$, we have $a-b, a b \in S$.
Proof Commutativity of addition, associativity of addition and multiplication, and distributivity of multiplication over addition are inherited from R.
Since S is non-empty, there exists $a \in S$, so $a-a=0 \in S$. Therefore $0-a=-a \in S$. Finally, for $a, b \in S$, we have $a+b=a-(-b) \in S$. So S is closed under addition and multiplication.

Subrings: Examples

- \mathbb{Z} is a subring of $\mathbb{Q}, \mathbb{R}, \mathbb{C}$. \mathbb{Q} is a subring of \mathbb{R}, \mathbb{C}.
\mathbb{R} is a subring of \mathbb{C}.
- Let $n \in \mathbb{N}$. $n \mathbb{Z}=\{n a \mid a \in \mathbb{Z}\}$ is a subring of \mathbb{Z}.
- Let $S=\left\{\left.\left(\begin{array}{cc}x & x+y \\ x+y & x\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}\right\}$ is a subring of $M_{2}(\mathbb{Z})$.
- $\left(\begin{array}{cc}x & x+y \\ x+y & x\end{array}\right)-\left(\begin{array}{cc}u & u+v \\ u+v & u\end{array}\right)=\left(\begin{array}{cc}x-u & (x-u)+(y-v) \\ (x-u)+(y-v) & x-u\end{array}\right)$.
- $\left(\begin{array}{cc}x & x+y \\ x+y & x\end{array}\right)\left(\begin{array}{cc}u & u+v \\ u+v & u\end{array}\right)=\left(\begin{array}{c}(2 u+v) x+(u+v) y \\ (2 u+v) x+(u+v)+(-v y)\end{array}\right.$

$$
\left.\begin{array}{c}
(2 u+v) x+(u+v) y+(-v y) \\
(2 u+v) x+(u+v)
\end{array}\right) .
$$

Ring Homomorphisms and Isomorphisms

Definition: Let $(R,+, \cdot)$ and (S, \oplus, \odot) be rings. A function $f: R \rightarrow S$ is called a homomorphism if for all $a, b \in R$, we have:
(1) $f(a+b)=f(a) \oplus f(b)$, and
(2) $f(a \cdot b)=f(a) \odot f(b)$.

A bijective homomorphism is called an isomorphism.

- The map $\mathbb{C} \rightarrow \mathbb{C}$ taking $a+\mathrm{i} b$ to $a-\mathrm{i} b$ is an isomorphism of fields.
- The map $\mathbb{R} \rightarrow M_{2}(\mathbb{R})$ taking a to $\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$ is a homomorphism of rings.
- The map $\mathbb{C} \rightarrow M_{2}(\mathbb{R})$ taking $a+\mathrm{i} b$ to $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ is a homomorphism of rings.

Ring Homomorphisms and Isomorphisms

- $(\mathbb{Z},+, \cdot)$ is a ring.
- $(\mathbb{Z}, \oplus, \odot)$ is a ring, where $a \oplus b=a+b-1$, and $a \odot b=a+b-a b$.
- Define a $\operatorname{map} f: \mathbb{Z} \rightarrow \mathbb{Z}$ taking a to $1-a$.
- $f(a+b)=1-a-b$, whereas

$$
f(a) \oplus f(b)=(1-a) \oplus(1-b)=1-a+1-b-1=1-a-b .
$$

- $f(a b)=1-a b$, whereas $f(a) \odot f(b)=(1-a) \odot(1-b)=$ $(1-a)+(1-b)-(1-a)(1-b)=2-a-b-1+a+b-a b=1-a b$.
- f is clearly bijective.
- f is therefore an isomorphism from $(\mathbb{Z},+, \cdot)$ to $(\mathbb{Z}, \oplus, \odot)$.

Properties of Homomorphisms

Theorem: Let $f:(R,+, \cdot) \rightarrow(S, \oplus, \odot)$ be a ring homomorphism.
(i) $f\left(0_{R}\right)=0_{S}$.
(ii) $f(-a)=-f(a)$ for all $a \in R$.
(iii) $f(n a)=n f(a)$ for all $a \in R$ and $n \in \mathbb{Z}$.
(iv) $f\left(a^{n}\right)=f(a)^{n}$ for all $a \in R$ and $n \in \mathbb{N}$.
(v) If A is a subring of R, then $f(A)$ is a subring of S.

Proof (i) $0_{R}+0_{R}=0_{R} \Rightarrow 0_{S} \oplus f\left(0_{R}\right)=f\left(0_{R}\right)=f\left(0_{R}+0_{R}\right)=f\left(0_{R}\right) \oplus f\left(0_{R}\right)$.
(ii) $f(a+(-a))=f\left(0_{R}\right)=0_{S}$, that is, $f(a) \oplus f(-a)=0_{S}$.
(iii) and (iv) Use induction on n and (ii).
(v) Since A is non-empty, $f(A)$ is non-empty too. Let $u, v \in f(A)$. Then $u=f(a)$ and $v=f(b)$ for some $a, b \in A . a-b \in A$ (since A is a subring of R). So $f(a-b)=f(a) \ominus f(b)=u \ominus v \in f(A)$. Likewise, show that $u \odot v \in f(A)$.

Properties of Homomorphisms

Theorem: Let $f:(R,+, \cdot) \rightarrow(S, \oplus, \odot)$ be a surjective ring homomorphism, where $|S|>1$.
(i) If R has the identity 1_{R}, then $f\left(1_{R}\right)$ is the identity of S.
(ii) If a is a unit in R, then $f(a)$ is a unit in S, and $f\left(a^{-1}\right)=f(a)^{-1}$.
(iii) If R is commutative, then S is commutative.

Proof (i) Take any $u \in S$. Since f is surjective, $u=f(a)$ for some $a \in R$. But then $u=f(a)=f\left(a \cdot 1_{R}\right)=f(a) \odot f\left(1_{R}\right)=u \odot f\left(1_{R}\right)$. Likewise, $u=f\left(1_{R}\right) \odot u$.

Modular Arithmetic

Applications to Cryptography

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 5, 2020

Congruence Modulo n

- Take $n \in \mathbb{N}$ (preferable to have $n \geqslant 2$).
- Two integers $a, b \in \mathbb{Z}$ are said to be congruent modulo n if $n \mid(a-b)$.
- We denote this as $a \equiv b(\bmod n)$.
- Congruence modulo n is an equivalence relation on \mathbb{Z}.
- There are n equivalence classes: $[0],[1],[2], \ldots,[n-1]$.

Integers Modulo n

- Define $\mathbb{Z}_{n}=\{0,1,2,3, \ldots, n-1\}$.
- You may view \mathbb{Z}_{n} as the set of remainders of Euclidean division by n.
- You can also view the elements of \mathbb{Z}_{n} as representatives of the equivalence classes under congruence modulo n.
- There is also an algebraic description (not covered). \mathbb{Z}_{n} is quotient $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ with respect to the ideal $n \mathbb{Z}$ of \mathbb{Z}.
- For $a, b \in \mathbb{Z}_{n}$, define the following operations.
- $a+{ }_{n} b= \begin{cases}a+b & \text { if } a+b<n, \\ a+b-n & \text { if } a+b \geqslant n .\end{cases}$
- $a \cdot{ }_{n} b=(a b)$ rem n.
- \mathbb{Z}_{n} is a commutative ring with identity under these two operations.

Units of \mathbb{Z}_{n}

Theorem: $a \in \mathbb{Z}_{n}$ is a unit if and only if $\operatorname{gcd}(a, n)=1$.
Proof [If] There exist integers u, v such that $u a+v n=1$. We can choose u such that $0 \leqslant u<n$. But then $u a \equiv 1(\bmod n)$.
[Only if] If a is a unit of \mathbb{Z}_{n}, then $u a \equiv 1(\bmod n)$ for some $u \in \mathbb{Z}_{n}$, that is, $u a=1+v n$ for some v. Since $\operatorname{gcd}(a, n)$ divides a (and so $u a$) and n (and so $v n$), it divides 1 , that is, $\operatorname{gcd}(a, n)=1$.

- $\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}$.
- $\left|\mathbb{Z}_{n}^{*}\right|=\phi(n)$ (Euler totient function).
- Since \mathbb{Z}_{n}^{*} is a group, we have $a^{\phi(n)} \equiv 1(\bmod n)$ for any $a \in \mathbb{Z}_{n}^{*}$ (Euler's theorem).
- For a prime p, we have $\mathbb{Z}_{p}^{*}=\{1,2,3, \ldots, p-1\}$, and $\phi(p)=p-1$.
- For $a \in \mathbb{Z}_{p}^{*}$, we have $a^{p-1} \equiv 1(\bmod p)($ Fermat's little theorem).

Modular Exponentiation

Given $a \in \mathbb{Z}_{n}$ and $e \in \mathbb{N}_{0}$, to compute $a^{e}(\bmod n)$.
The square-and-multiply algorithm

```
modexp (a,e,n)
{
    If (e=0), return 1.
    Write e=2f+r with f=\lfloore/2\rfloor and r\in{0,1}.
    Set t= modexp (a,f,n).
    Set t=\mp@subsup{t}{}{2}(\operatorname{mod}n).
    If (r=1), set t=ta(mod}n)
    Return t.
}
```


Modular Exponentiation: Iterative Version

Let $e=\left(e_{l-1} e_{l-2} \ldots e_{2} e_{1} e_{0}\right)_{2}$ be the binary expansion of e.

```
modexp (a,e,n)
{
    Initialize t=1.
    For i=l-1,l-2,\ldots,2,1,0, repeat:
        Set t= tr (mod}n)
        If (e}\mp@subsup{e}{i}{=1), set t=ta(mod n).
```

 Return \(t\).
 \}

For $e<n$, the running time is $\mathrm{O}\left(\log ^{3} n\right)$.

Diffie-Hellman Key Agreement

- First known public-key algorithm (1976).
- Alice and Bob want to share a secret.
- They use an insecure communication channel.
- They agree upon a suitable finite group G (say, multiplicative). Let $n=|G|$.
- Suppose that G is cyclic. They publicly decide a generator g of G.
- Alice generates $a \in_{R}\{0,1,2, \ldots, n-1\}$, and computes and sends g^{a} to Bob.
- Bob generates $b \in_{R}\{0,1,2, \ldots, n-1\}$, and computes and sends g^{b} to Alice.
- Alice computes $g^{a b}=\left(g^{b}\right)^{a}$.
- Bob computes $g^{a b}=\left(g^{a}\right)^{b}$.

Security of the Protocol

- How difficult is it for an eavesdropper to obtain $g^{a b}$ from g, g^{a}, g^{b} ?
- This is called the computational Diffie-Hellman problem (CDHP).
- a (resp. b) is called the discrete logarithm of g^{a} (resp. g^{b}) to the base g.
- Computing a or b enables an eavesdropper to get the shared secret.
- This is called the discrete-logarithm problem (DLP).
- If DLP is easy, then CDHP is easy.
- The converse is not known (but is believed to be true).
- A related problem: Given $g, g^{a}, g^{b}, h \in G$, decide whether $h=g^{a b}$.
- This is the decisional Diffie-Hellman problem (DDHP).
- For some groups, all these problems are assumed to be difficult.

A Candidate Group

- Take a large prime p.
- $G=\mathbb{Z}_{p}^{*}$ is cyclic.
- But computing a generator of \mathbb{Z}_{p}^{*} requires complete factorization of $p-1$.
- So we generate a large prime p such that $p-1$ has a large prime factor q.
- Generate random $h \in G$, and compute $g \equiv h^{(p-1) / q}(\bmod p)$.
- If $g \not \equiv 1(\bmod p)$, than g has order q.
- We can work in the subgroup of \mathbb{Z}_{p}^{*}, generated by g.
- The discrete-logarithm problem for \mathbb{Z}_{p}^{*} is difficult for suitable choices of p.
- Only subexponential algorithms are known.

RSA Cryptosystem

- Invented by Rivest, Shamir, and Adleman (1978).
- The first public-key encryption algorithm.
- Alice wants to send a secret message to Bob.
- Bob chooses two large primes p, q, and computes $n=p q$ and $\phi(n)=(p-1)(q-1)$.
- Bob chooses an e such that $\operatorname{gcd}(e, \phi(n))=1$.
- Bob computes $d \equiv e^{-1}(\bmod \phi(n))$.
- Bob publishes (n, e), and keeps d secret.
- Alice encodes her secret message to $m \in \mathbb{Z}_{n}$.
- Alice sends $c \equiv m^{e}(\bmod n)$ to Bob.
- Bob recovers $m \equiv c^{d}(\bmod n)$.
- We have $e d=1+k \phi(n)=1+k(p-1)(q-1)$.
- If $p \nmid m$, then by Fermat's little theorem, $m^{p-1} \equiv 1(\bmod p)$.
- But then $m^{e d} \equiv m^{1+k(p-1)(q-1)} \equiv m \times\left(m^{p-1}\right)^{k(q-1)} \equiv m(\bmod p)$.
- If $p \mid m$, we have $m^{e d} \equiv m \equiv 0(\bmod p)$.
- In all cases, $m^{e d} \equiv m(\bmod p)$.
- Likewise, $m^{e d} \equiv m(\bmod q)$.
- By the Chinese remainder theorem, $m^{e d} \equiv m(\bmod n)$.

Security

- RSA key-inversion problem: Compute d from (n, e).
- This is as difficult as factoring n.
- RSA problem: Given (n, e, c), compute m.
- This is believed to be as difficult as factoring n.
- Factoring large n is very difficult.
- Only some subexponential algorithms are known.

But. . .

- Polynomial-time algorithms are known for quantum computers
- for both the factoring and the discrete-log problems.
- Peter Shor, 1994-1995.
- Diffie-Hellman and RSA are unsafe in the quantum world.
- But building quantum computers is very challenging.
- So far, quantum computers could factor 15 and 21.
- Time will tell who will win.

