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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 Y



Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})

@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})

@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
@ Cardinality: Number of elements in a set  (Ex: |S| =9)
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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})

@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
@ Cardinality: Number of elements in a set  (Ex: |S| =9)
@ Finite Set: Set having finite cardinality ~ (Ex: The set, S)
@ |Infinite Set: Set having infinite (co) cardinality
(Ex: T ={1,2,4,8,16,...} = {2” | y is integer and y > 0})
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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})

@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
@ Cardinality: Number of elements in a set  (Ex: |S| =9)
@ Finite Set: Set having finite cardinality ~ (Ex: The set, S)
@ |Infinite Set: Set having infinite (co) cardinality
(Ex: T ={1,2,4,8,16,...} = {2” | y is integer and y > 0})

Subset: A set (A) is a subset of another set (B) iff each element of A is also a
member of B. Formally, A C B iff Vx [x € A = x € B].
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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})

@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
@ Cardinality: Number of elements in a set  (Ex: |S| =9)
@ Finite Set: Set having finite cardinality ~ (Ex: The set, S)
@ |Infinite Set: Set having infinite (co) cardinality
(Ex: T ={1,2,4,8,16,...} = {2” | y is integer and y > 0})
Subset: A set (A) is a subset of another set (B) iff each element of A is also a
member of B. Formally, A C B iff Vx [x € A = x € B].
Hence, AZ Biff "Vx [x e A=>xeBl=3x[x e AAXx &B].
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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})
@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
@ Cardinality: Number of elements in a set  (Ex: |S| =9)
@ Finite Set: Set having finite cardinality ~ (Ex: The set, S)
@ |Infinite Set: Set having infinite (co) cardinality
(Ex: T ={1,2,4,8,16,...} = {2” | y is integer and y > 0})
Subset: A set (A) is a subset of another set (B) iff each element of A is also a
member of B. Formally, A C B iff Vx [x € A = x € B].
Hence, AZ Biff "Vx [x e A=>xeBl=3x[x e AAXx &B].
(Ex: Let R = {z | z is composite integer and 2 < z < 100}, so S C R)
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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})
@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
@ Cardinality: Number of elements in a set  (Ex: |S| =9)
@ Finite Set: Set having finite cardinality ~ (Ex: The set, S)
@ |Infinite Set: Set having infinite (co) cardinality
(Ex: T ={1,2,4,8,16,...} = {2” | y is integer and y > 0})
Subset: A set (A) is a subset of another set (B) iff each element of A is also a
member of B. Formally, A C B iff Vx [x € A = x € B].
Hence, AZ Biff "Vx [x e A=>xeBl=3x[x e AAXx &B].
(Ex: Let R = {z | z is composite integer and 2 < z < 100}, so S C R)
Equal Sets: A=Biff (ACB)A(BC A)]=Vx[x € A& x € B
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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})
@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
@ Cardinality: Number of elements in a set  (Ex: |S| =9)
@ Finite Set: Set having finite cardinality ~ (Ex: The set, S)
@ |Infinite Set: Set having infinite (co) cardinality
(Ex: T ={1,2,4,8,16,...} = {2” | y is integer and y > 0})
Subset: A set (A) is a subset of another set (B) iff each element of A is also a
member of B. Formally, A C B iff Vx [x € A = x € B].
Hence, AZ Biff "Vx [x e A=>xeBl=3x[x e AAXx &B].
(Ex: Let R = {z | z is composite integer and 2 < z < 100}, so S C R)
Equal Sets: A=Biff (ACB)A(BC A)]=Vx[x € A& x € B
Proper Subset: AC Biff [Vx (xc A=xeB)AJy (ye BAy &€ A)]
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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})

@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
@ Cardinality: Number of elements in a set  (Ex: |S| =9)
@ Finite Set: Set having finite cardinality ~ (Ex: The set, S)
@ |Infinite Set: Set having infinite (co) cardinality
(Ex: T ={1,2,4,8,16,...} = {2” | y is integer and y > 0})
Subset: A set (A) is a subset of another set (B) iff each element of A is also a
member of B. Formally, A C B iff Vx [x € A = x € B].
Hence, AZ Biff "Vx [x e A=>xeBl=3x[x e AAXx &B].
(Ex: Let R = {z | z is composite integer and 2 < z < 100}, so S C R)
Equal Sets: A=Biff (ACB)A(BC A)]=Vx[x € A& x € B
Proper Subset: AC Biff [Vx (xc A=xeB)AJy (ye BAy &€ A)]
Null Set: Set containing NO element, denoted using ¢ or {}
(Ex: Q={z | x+y=2zandall x,y,z are odd} = ¢)
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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S =1{4,9,16...,81,100} = {x* | x is integer and 1 < x < 10})
@ Membership: Element belonging to (or a member of) a set
(Ex: 25,64 € S and 50,72 ¢ S)
@ Cardinality: Number of elements in a set  (Ex: |S| =9)
@ Finite Set: Set having finite cardinality ~ (Ex: The set, S)
@ |Infinite Set: Set having infinite (co) cardinality
(Ex: T ={1,2,4,8,16,...} = {2” | y is integer and y > 0})
Subset: A set (A) is a subset of another set (B) iff each element of A is also a
member of B. Formally, A C B iff Vx [x € A = x € B].
Hence, AZ Biff "Vx [x e A=>xeBl=3x[x e AAXx &B].
(Ex: Let R = {z | z is composite integer and 2 < z < 100}, so S C R)
Equal Sets: A=Biff (ACB)A(BC A)]=Vx[x € A& x € B
Proper Subset: AC Biff [Vx (xc A=xeB)AJy (ye BAy &€ A)]
Null Set: Set containing NO element, denoted using ¢ or {}
(Ex: Q={z | x+y=2zandall x,y,z are odd} = ¢)
Note: [¢] = 0, but ¢ # {0} and 6 # {¢} (since, |{0}] = [{#}| = 1)
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Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {¢,{1},{2}, {3}, {1,2},{1,3},{2,3},{1,2,3}})
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Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {6, {1}, {2}, {3}, {1.2}, {1,3}, 2,3}, {1,2,3}})
Cardinality: [P(A)| = 24! (Why?)
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Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {9, {1}, {2}, {3}, {1, 2}, {1,3},{2,3},{1,2,3}})
Cardinality: [P(A)| = 24! (Why?)
Proof. Let | A| = n. There are (}) subsets of size k possible (for any k,

k

0 < k < n). So, the total number of subsets = >_7_ (}) = 2"
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Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {6, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}})
Cardinality: [P(A)| = 24! (Why?)
Proof. Let | A| = n. There are (}) subsets of size k possible (for any k,
0 < k < n). So, the total number of subsets = >_7_ (}) = 2"
Properties: For sets A, B,C, we have the following:
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Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {6, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}})
Cardinality: [P(A)| = 24! (Why?)
Proof. Let | A| = n. There are (}) subsets of size k possible (for any k,
0 < k < n). So, the total number of subsets = >_7_ (}) = 2"
Properties: For sets A, B,C, we have the following:

@ ACB=ACB, butACBAACBE.
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Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {¢,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}})
Cardinality: [P(A)| = 24! (Why?)
Proof. Let | A| = n. There are (}) subsets of size k possible (for any k,
0 < k < n). So, the total number of subsets = >_7_ (}) = 2"
Properties: For sets A, B,C, we have the following:
@ ACB=ACB, butACBAACBE.
@ (A CB)if and only if [(A C B) A (A # B)].

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3/11



Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {6, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}})
Cardinality: [P(A)| = 24! (Why?)
Proof. Let | A| = n. There are (}) subsets of size k possible (for any k,
0 < k < n). So, the total number of subsets = >_7_ (}) = 2"
Properties: For sets A, B,C, we have the following:
@ ACB=ACB, butACBAACBE.
@ (A CB)if and only if [(A C B) A (A # B)].
@ (A#B)ifandonly if (AZ B)V (B Z A).
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Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {6, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}})
Cardinality: [P(A)| = 24! (Why?)
Proof. Let | A| = n. There are (}) subsets of size k possible (for any k,
0 < k < n). So, the total number of subsets = >_7_ (}) = 2"
Properties: For sets A, B,C, we have the following:
@ ACB=ACB, butACBAACBE.
@ (A CB)if and only if [(A C B) A (A # B)].
@ (A#B)ifandonly if (AZ B)V (B Z A).
@ 9 C A If A# ¢, then ¢ C A. ACA and AeP(A).
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Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {6, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}})
Cardinality: [P(A)| = 24! (Why?)
Proof. Let | A| = n. There are (}) subsets of size k possible (for any k,
0 < k < n). So, the total number of subsets = >_7_ (}) = 2"
Properties: For sets A, B,C, we have the following:

ACB=ACB, butACB#AACDE.

(A C B) if and only if [(A C B) A (A # B)].
(A#B)ifandonly if (AZ B)V (B¢ A).

¢ C A If A# ¢, then ¢ C A ACA and AeP(A).
If (A C B), then |A] < |B].

If (A C B), then |A] < |B].

If (A= B), then |A| = |B|.

© 66 0 ¢

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3/11



Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 24
(Ex: Let A ={1,2,3},
Thus, P(A) = {6, {1}, {2}, {3}, {12}, {1, 3}, {2,3}, {1,2,3}})
Cardinality: [P(A)| = 24! (Why?)
Proof. Let | A| = n. There are (}) subsets of size k possible (for any k,
0 < k < n). So, the total number of subsets = >_7_ (}) = 2"
Properties: For sets A, B,C, we have the following:

@ ACB=ACB, butACBAACBE.
@ (A CB)if and only if [(A C B) A (A # B)].
@ (A#B)ifandonly if (AZ B)V (B Z A).
@ 9 C A If A# ¢, then ¢ C A. ACA and AeP(A).
9 If (A C B), then |A] < |B.

If (A C B), then |A] < |B].

If (A= B), then |A| = |B|.
@ If (AC B) and (B CC), then (A CC).

If (A C B) and (B CC), then (A CC).

If (AC B) and (B CC), then (A CC)

If (AC B) and (B C (), then (A C ()
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Frequently-Used Set Examples and Notations

Popular Set Examples:
N = Set of Non-negative natural numbers = {0,1,2,...}
Z = Set of Integers = {...,-2,—-1,0,1,2,...}
7" = Set of Positive Integers = {x € Z | x > 0}
Q = Set of Rational Numbers = {Z | a,b € Z, b # 0}
QT = Set of Positive Rational Numbers = {r € Q | r > 0}
Q" = Set of Non-zero Rational Numbers = {r € Q | r # 0}
R = Set of Real Numbers
Rt = Set of Positive Real Numbers
R* = Set of Non-zero Real Numbers
C = Set of Complex Numbers = {a+ib| a,be R,/ = -1}
C* = Set of Non-zero Complex Numbers = {c € C | ¢ # 0}
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Frequently-Used Set Examples and Notations

Popular Set Examples:
N = Set of Non-negative natural numbers = {0,1,2,...}
Z = Set of Integers = {...,-2,—-1,0,1,2,...}
7" = Set of Positive Integers = {x € Z | x > 0}
Q = Set of Rational Numbers = {Z | a,b € Z, b # 0}
QT = Set of Positive Rational Numbers = {r € Q | r > 0}
Q" = Set of Non-zero Rational Numbers = {r € Q | r # 0}
R = Set of Real Numbers
R™ = Set of Positive Real Numbers
R* = Set of Non-zero Real Numbers
C = Set of Complex Numbers = {a+ib| a,be R,/ = -1}
C* = Set of Non-zero Complex Numbers = {c € C | ¢ # 0}
Frequently-Used Notations:
® Foreachne Z*, Z,=1{0,1,2,...,n—1}
@ For real numbers, a, b with a < b, we define intervals as follows:
(Closed) [a,b] = {x | a < x < b} (Open) (a,b) ={x | a< x < b}
(Half-Open) (a,b] = {x | a<x < b} and [a,b)={x]|a<x< b}
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Counting using Set Theory

Prove that, (,;) = 2 (")
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Counting using Set Theory

Prove that, (,;) = 2 (")

Counting: Total number of (r + 1)-element subsets, formed from all r-element

subsets by adding an element from (n— r) remaining elements, is, m = (n—r)(").
Ex: Let n=4 and S = {1,2,3,4}. All 2-element subsets are, 4; = {1,2}, A, = {1, 3},
As = {1,4}, Ay = {2,3}, As = {2,4}, As = {3,4}. From each A;s, a 3-element subset

can be formed in two ways. So, total possibilities = 2 x () = 12.
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Counting using Set Theory

Prove that, (,;) = 2 (")

Counting: Total number of (r + 1)-element subsets, formed from all r-element

subsets by adding an element from (n— r) remaining elements, is, m = (n—r)(").
Ex: Let n=4 and S = {1,2,3,4}. All 2-element subsets are, 4; = {1,2}, A, = {1, 3},
As = {1,4}, Ay = {2,3}, As = {2,4}, As = {3,4}. From each A;s, a 3-element subset

can be formed in two ways. So, total possibilities = 2 x () = 12.

Repetition: Each (r + 1) element subset can be formed from (r + 1) different
r-element subsets. So, the total choice reduces to, (rJ'r’l) =t = (7).

Ex: 3-element subset {1, 2,3} can formed from A1, A2, As by adding an element to

each. So, reduced number of possibilities = % =4 = (‘3‘)
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Counting using Set Theory

Prove that, (,;) = 2 (")

Counting: Total number of (r 4 1)-element subsets, formed from all r-element
subsets by adding an element from (n— r) remaining elements, is, m = (n—r)(").
Ex: Let n=4 and S = {1,2,3,4}. All 2-element subsets are, 4; = {1,2}, A, = {1, 3},
As = {1,4}, Ay = {2,3}, As = {2,4}, As = {3,4}. From each A;s, a 3-element subset
can be formed in two ways. So, total possibilities = 2 x () = 12.

Repetition: Each (r + 1) element subset can be formed from (r + 1) different
r-element subsets. So, the total choice reduces to, (rJ’r’l) =t = (7).

Ex: 3-element subset {1, 2,3} can formed from A1, A2, As by adding an element to

each. So, reduced number of possibilities = % =4 = (‘3‘)

Prove that, (1) + (’+1

r
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Counting using Set Theory

Prove that, (,;) = 2 (")

Counting: Total number of (r 4 1)-element subsets, formed from all r-element
subsets by adding an element from (n— r) remaining elements, is, m = (n—r)(").
Ex: Let n=4 and S = {1,2,3,4}. All 2-element subsets are, 4; = {1,2}, A, = {1, 3},
As = {1,4}, Ay = {2,3}, As = {2,4}, As = {3,4}. From each A;s, a 3-element subset
can be formed in two ways. So, total possibilities = 2 X (g) = 12
Repetition: Each (r + 1) element subset can be formed from (r + 1) different
r-element subsets. So, the total choice reduces to, (rJ’r’l) =t = (7).
Ex: 3-element subset {1, 2,3} can formed from A1, A2, As by adding an element to

12

each. So, reduced number of possibilities = 5 = 4 = (;‘)

Prove that, (1) + ("t") + -+ (") + () = (I11

r r

Let the (n + 1)-element set be = {1,2,...,n,n+ 1} From (n + 1)-element set,
choosing (r + 1)-element subsets with smallest element i can be done in ("""

ways. So, all such possible choice leads to, Zﬁg”*(r*” (" = (',’E)

implying the proof.
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Counting using Set Theory

Prove that, >°7 i(7) = n.2"1
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Counting using Set Theo

Prove that, Y7 o i(7) = n.2"7!

From an n-element set, Size of a subset with i elements + Size of its complement
subset = i + (n— i) = n and there are (}) number of these each.
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Counting using Set Theory

Prove that, Y7 o i(7) = n.2"7!

From an n-element set, Size of a subset with i elements + Size of its complement
subset = i+ (n— i) = n and there are (}) number of these each.
Therefore, 23" (i(7) = nY_", (7) = n.2", implying the proof.
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Counting using Set Theory

Prove that, Y7 o i(7) = n.2"7!

From an n-element set, Size of a subset with i elements + Size of its complement
subset = i+ (n— i) = n and there are (}) number of these each.
Therefore, 23" (i(7) = nY_", (7) = n.2", implying the proof.

Prove that, Number of Summands of n is 27 1.
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Counting using Set Theory

Prove that, Y7 o i(7) = n.2"7!

From an n-element set, Size of a subset with i elements + Size of its complement
subset = i+ (n— i) = n and there are (}) number of these each.
Therefore, 23" (i(7) = nY_", (7) = n.2", implying the proof.

v

Prove that, Number of Summands of n is 27 1.

Consider, n = 4.

Summand Subset Correspondence

1414141=14+14+1+1 10}
24+1+1=(1+1)+1+1 {1}
1+2+1=1+(1+1)+1 {2}
1+14+2=1+1+(1+1) {3}

3+1=(1+1+1)+1 {1,2}

242 =(1+1) + (1+1) {1,3}

1+3=1+(1+1+1) {2,3}

4 = (1+1+1+1) {1,2,3}

y,
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Counting using Set Theory

Prove that, Y7 o i(7) = n.2"7!

From an n-element set, Size of a subset with i elements + Size of its complement
subset = i+ (n— i) = n and there are (}) number of these each.
Therefore, 23" (i(7) = nY_", (7) = n.2", implying the proof.

v

Prove that, Number of Summands of n is 271,

Consider, n = 4.

Summand Subset Correspondence

1414141=14+14+1+1 10}
24+1+1=(1+1)+1+1 {1}
1+2+1=1+(1+1)+1 {2}
1+14+2=1+1+(1+1) {3}

3+1=(1+1+1)+1 {1,2}

242 =(1+1) + (1+1) {1,3}

1+3=1+(1+1+1) {2,3}

4 = (1+1+1+1) {1,2,3}

*. Number of summands of n = Number of subsets of an (n — 1)-element set = 2"~ *.
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Set Operations

For two sets, A, B € U (universal set), the following operations are defined:
(Ex: Let, A={1,2,3} and B ={2,3,4})
Union: AUB={x|x€ AV xe€ B} (Ex: AuB=1{1,2,3,4})
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Set Operations

For two sets, A, B € U (universal set), the following operations are defined:
(Ex: Let, A={1,2,3} and B ={2,3,4})
Union: AUB={x|x€ AV xe€ B} (Ex: AuB=1{1,2,3,4})
Intersection: ANB={x|xe€ AAxeB} (Ex: ANB=1{2,3})

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 7/11



Set Operations

For two sets, A, B € U (universal set), the following operations are defined:
(Ex: Let, A={1,2,3} and B ={2,3,4})
Union: AUB={x|x€ AV xe€ B} (Ex: AuB=1{1,2,3,4})
Intersection: ANB={x|xe€ AAxeB} (Ex: ANB=1{2,3})
Complement: A= {x | x€UAx¢g A}

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 7/11



Set Operations

For two sets, A, B € U (universal set), the following operations are defined:
(Ex: Let, A={1,2,3} and B ={2,3,4})
Union: AUB={x|x€ AV xe€ B} (Ex: AuB=1{1,2,3,4})
Intersection: ANB={x|xe€ AAxeB} (Ex: ANB=1{2,3})
Complement: A= {x | x€UAx¢g A}
Relative Complement: A—B={x|x€ AAx¢gB}=ANB (Ex: A—B={1})
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Set Operations

For two sets, A, B € U (universal set), the following operations are defined:
(Ex: Let, A={1,2,3} and B ={2,3,4})
Union: AUB={x|x€ AV xe€ B} (Ex: AuB=1{1,2,3,4})
Intersection: ANB={x|xe€ AAxeB} (Ex: ANB=1{2,3})
Complement: A= {x | x€UAx¢g A}
Relative Complement: A—B={x|x€ AAx¢gB}=ANB (Ex: A—B={1})
Symmetric Difference:
AAB = {x|(xeAvxeB)Ax¢g ANB}
{x|xe AUBAx¢Z€ ANB} =(AUB) - (ANDB)
{x|xe ANBAx€ ANB} =(ANB)U(ANAB)
= (A-B)UuB-A)=BAA (Ex: A A B={1,4})
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Set Operations

For two sets, A, B € U (universal set), the following operations are defined:
(Ex: Let, A={1,2,3} and B ={2,3,4})
Union: AUB={x|x€ AV xe€ B} (Ex: AuB=1{1,2,3,4})
Intersection: ANB={x|xe€ AAxeB} (Ex: ANB=1{2,3})
Complement: A= {x|xcUAx¢g A}
Relative Complement: A—B={x|x€ AAx¢gB}=ANB (Ex: A—B={1})
Symmetric Difference:
AAB = {x|(xeAvxeB)Ax¢g ANB}
{x|x€e AUBAx¢Z ANB} =(AUB) - (ANDB)
{x|xe ANBAx€ ANB} =(ANB)U(ANAB)
= (A-B)UuB-A)=BAA (Ex: A A B={1,4})

Mutual Disjoint: Sets, .A and B, are mutually disjoint (or disjoint), when AN B = ¢.
Insuch acase, AAB=AUB, ANB=Aand ANB=28.
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Set Operations

For two sets, A, B € U (universal set), the following operations are defined:
(Ex: Let, A={1,2,3} and B ={2,3,4})
Union: AUB={x|x€ AVvxeB} (Ex: AuB=1{1,2,3,4})
Intersection: ANB={x|xe€ AAxeB} (Ex: ANB=1{2,3})
Complement: A= {x | x€UAx¢g A}
Relative Complement: A—B={x|x€ AAx¢gB}=ANB (Ex: A—B={1})
Symmetric Difference:
AAB = {x|(xe AvxeB)Ax¢ANDB}
{x|x€e AUBAx¢Z ANB} =(AUB) - (ANDB)
{x|xe ANBAx€ ANB} =(ANB)U(ANAB)
= (A-B)UuB-A)=BAA (Ex: A A B={1,4})

Mutual Disjoint: Sets, .A and B, are mutually disjoint (or disjoint), when AN B = ¢.
Insuch acase, AAB=AUB, ANB=Aand ANB=28.

(aACB, (b)) AUB=B,  ()ANB=A  ()BCHA

The following statements are equivalent: (Proof Left as an Exercise!)J
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Laws of Set Theory

For three sets, A, B,C € U, the rules given as follows:

Name of the Law Mathematical Expressions

Double Complement: A=A
DeMorgan's Laws: AUB=ANB, ANB=AUB
Commutative Laws: AUB=BUA, ANB=BNA
Associative Laws: AU (BUC)=(AUB)UC, AnNBNC)=(ANB)NC
Distributive Laws:  AU(BNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC)
Idempotent Laws: AUA=A4A, ANA=A
Identity Laws: AU¢p=A, ANU=A
Inverse Laws: AUA=U, ANA=¢
Domination Laws: AUU=U, AN¢d=0¢
Absorption Laws: AU(ANB)=A, AN(AUB)=A
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Laws of Set Theory

For three sets, A, B,C € U, the rules given as follows:

Name of the Law

Mathematical Expressions

Double Complement:
DeMorgan's Laws:
Commutative Laws:
Associative Laws:
Distributive Laws:
Idempotent Laws:
Identity Laws:
Inverse Laws:
Domination Laws:
Absorption Laws:

A=A

AUB=ANB, AnB=AUB

AUB=BUA, ANB=BnNnA
AU(BUC)=(AuB)UC, AnBNC)=(ANB)NC
AUBNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC)
AUA=A AnA=A

Aup=A, AnU=A

AUAd=U, AnA=¢

AuU=U, AN¢o=2¢

Au(ANB)=A, ANn(AUB)=A

An Example Proof Sketch: AU (BNC)=(AUB)N(AUC)

xeAU(BNC) &
=
=

(xeA)VvV(xeBNC) < (xeAV((xeB)A(xel))
(xeAV(xeB)A((xe AV (xel))
(xe AUB)A(x€e AUC) & xe(AUB)N(AUC)
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Some Derived Laws and Observations

A=A U(AnA)Uu(AindnA)U(ANANnANA)U--- (Vi, Ai eld)
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Some Derived Laws and Observations

Ai=AU(AinA)u(AnAnA)U(AinAnNAznA)U--- (Vi, Ai eU)
Proof: A; U (.Al n .Az) = A, (.Al Q.Az) U (.Al N A ﬂfla) = (.Al n .Az),
(AinAnNnA)U (AN AN AsNAs) = (AN A N A3), and so on ...
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Some Derived Laws and Observations

Ai=AU(AinA)u(AnAnA)U(AinAnNAznA)U--- (Vi, Ai eld)

Proof: A; U (.Al n .Az) = A, (.Al Q.Az) U (.Al N A ﬂfla) = (.Al n .Az),
(AnAnA)U(AinNnAnNAsnAs) = (AN A N A3z), and so on

Similarly, A1 = A1 N (A1 U A) N (AU A UA) N (AU A UAzUA) N -
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Some Derived Laws and Observations

A=A U(AnA)Uu(AindnA)U(ANANnANA)U--- (Vi, Ai eld)

Proof: A; U (.Al n .Az) = A, (.A1 ﬂAz) U (.Al N A ﬂfb) = (.Al n .Az),
(AnAnA)U(AinAnAsnA) = (AN AN A3z), and so on ...

Similarly, A1 = AiN(AUAL)N(AUAUAB)N(AAUALUAZUA)N---

AAB=AAB=AAB
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Some Derived Laws and Observations

Ai=AU(AinA)u(AnAnA)U(AinAnNAznA)U--- (Vi, Ai eld)

Proof: A;U(A1NA)=A;, (AinNA)U(ANANA) = (AN A),
(AinAnNnA)U (AN AN AsNAs) = (AN A N A3), and so on ...

Similarly, A1 = A N(AUAL)N(AUALUA)N(AUALUASUA)N---

AAB=AAB=AAB

Proof: As, AAB=(AUB)—(ANB)and AAB=(ANB)U(ANB), so
AAB=ANBUANB)=(AUB)NANB)=(AUB)—(ANB)=A A B and
AAB=(ANBUANB)=(AUB)N(ANB)=(AUB)—(ANB)=AAB
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Some Derived Laws and Observations

A=A U(AnA)Uu(AindnA)U(ANANnANA)U--- (Vi, Ai eld)
Proof: A; U (.Al n .Az) = A, (.A1 N .Az) U (.Al NnNAN ./43) = (.Al n .Az),

(AinAnNnA)U (AN AN AsNAs) = (AN A N A3), and so on ...
Similarly, A1 = A1 N (A1 U A) N (A1 U A UAz) N (AU A U Az U Az) N

AAB=AAB=AAB

Proof: As, AAB=(AUB)—(ANB)and AAB=(ANB)U(ANDB), s
AAB=(ANBUANB) =(AUB N(ANB)=(AUB) - (AN B) = AABam
ADB=(ANB)U(ANB) = (AUB)N(ANB)=(AUB)- (ANB)=AAB |
A—(BUC)=(A-B)n(A-20C) (AUB)—C=(A—-C)U(B-C)
A—(BNC)=(A-B)U(A-20C) (ANB)—C=(A-C)N(B-C)
(ANB)—(ANC)=AN(B-C)
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Some Derived Laws and Observations

A=A U(AnA)Uu(AindnA)U(ANANnANA)U--- (Vi, Ai eld)

Proof: A;U(A1NA)=A;, (AinNA)U(ANANA) = (AN A),
(AinAnNnA)U (AN AN AsNAs) = (AN A N A3), and so on ...

Similarly, A1 = AiN(AUAL)N(AUAUAB)N(AAUALUAZUA)N---

AAB=AAB=AAB
Proof: As, AA B=(AUB)—(ANB) and A A B=(ANB)U (AN B), so

AAB=(ANBUANB)=(AUB)N(ANB)=(AUB)— (A
A

ADAB=(ANB)U(ANB)=(AUB)N(ANB) = (AUB) — (4

A—(BUC)=(A-B)N(A-0C) (AUB)—C=(A—-C)U(B-C)
A—(BNC)=(A-B)U(A-0C) (ANB)—C=(A-C)n(B-C)
(ANB)—(ANC)=AN(B-C) )
AANB=AAB=BAA=BAA
AA(BAC)=(AAB)AC AN(BAC)=(ANB) A (ANC)
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Index Set and Partitions

Definition: Let Z # ¢ and Vi € Z, let A; C U (universal set). Then, Z is called an
index set, and each i € Z is an index.
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Index Set and Partitions

Definition: Let Z # ¢ and Vi € Z, let A; C U (universal set). Then, Z is called an
index set, and each i € Z is an index.
Set Operations: (Union) ;e Ai = {x | 3 € Z, x € A}
(Intersection) N;cz Ai = {x | Vi € Z, x € A}
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Index Set and Partitions

Definition: Let Z # ¢ and Vi € Z, let A; C U (universal set). Then, Z is called an
index set, and each i € Z is an index.

Set Operations: (Union) ;e Ai = {x | 3 € Z, x € A}
(Intersection) N;cz Ai = {x | Vi € Z, x € A}

Generalized DeMorgan's Law: J;cz Ai =Niez Ai and  Niez Ai = Uiez Ai

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020



Index Set and Partitions

Index Set

Definition: Let Z # ¢ and Vi € Z, let A; C U (universal set). Then, Z is called an
index set, and each i € 7 is an index.
Set Operations: (Union) ;. Ai = {x | 3i € Z, x € A;}
(Intersection) ;e Ai = {x | Vi € Z, x € A;}

Generalized DeMorgan's Law: |J;c7 Ai = ﬂiezxf and  Niez Ai = U,-EIE

Partition of a Set

Definition: Let S be a non-empty set. A family of non-empty subsets, {S; | i € 7}
(Z being the index set) is said to form a partition of S if the following
two condition holds:

® U;cz Si = S (Complete Set Cover), and
@ SiNSj=¢,Vi,j €T and i # j (Pairwise Disjoint).

v
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Index Set and Partitions

Index Set

Definition: Let Z # ¢ and Vi € Z, let A; C U (universal set). Then, Z is called an
index set, and each i € 7 is an index.
Set Operations: (Union) ;. Ai = {x | 3i € Z, x € A;}
(Intersection) ;e Ai = {x | Vi € Z, x € A;}

Generalized DeMorgan's Law: |J;c7 Ai = ﬂiezzf and  Niez Ai = U,-EIE

Partition of a Set

Definition: Let S be a non-empty set. A family of non-empty subsets, {S; | i € 7}
(Z being the index set) is said to form a partition of S if the following
two condition holds:

® U;cz Si = S (Complete Set Cover), and
@ SiNSj=¢,Vi,j €T and i # j (Pairwise Disjoint).
Example: Let Zy = {3m | m is an integer} = {0,+3,+6,...},
Z1={3m+1| misan integer} = {...,—8,—-5,—-2,+1,+4,+7,...}
Z,={3m+2| misan integer} = {...,—7,—4,—1,+2,+5,48,...}
Now, Zo U Z1 U Z, = Z and ZoﬂZ1ZZlﬂZ2:ZQI'TZo:¢)

v
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Thank You!
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