

Aritra Hazra

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Set: Well-defined collection of distinct objects (Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)

- Set: Well-defined collection of distinct objects (Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)
 - Membership: Element belonging to (or a member of) a set (Ex: 25,64 ∈ S and 50,72 ∉ S)

Set: Well-defined collection of distinct objects

(Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)

 Membership: Element belonging to (or a member of) a set (Ex: 25,64 ∈ S and 50,72 ∉ S)

• Cardinality: Number of elements in a set (Ex: |S| = 9)

- Set: Well-defined collection of distinct objects $(F_{22}, S_{22}, f_{22}, f_$
 - (Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)
 - Membership: Element belonging to (or a member of) a set (Ex: 25,64 ∈ S and 50,72 ∉ S)
 - Cardinality: Number of elements in a set (Ex: |S| = 9)
 - Finite Set: Set having finite cardinality (Ex: The set, S)
 - Infinite Set: Set having infinite (∞) cardinality (Ex: $\mathcal{T} = \{1, 2, 4, 8, 16, \ldots\} = \{2^{y} \mid y \text{ is integer and } y \ge 0\}$)

Set: Well-defined collection of distinct objects

(Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)

- Membership: Element belonging to (or a member of) a set (Ex: 25,64 ∈ S and 50,72 ∉ S)
- Cardinality: Number of elements in a set (Ex: |S| = 9)
- Finite Set: Set having finite cardinality (Ex: The set, S)
- Infinite Set: Set having infinite (∞) cardinality (Ex: T = {1, 2, 4, 8, 16, ...} = {2^y | y is integer and y ≥ 0})
- **Subset:** A set (A) is a subset of another set (B) <u>iff</u> each element of A is also a member of B. Formally, $A \subseteq B$ iff $\forall x \ [x \in A \Rightarrow x \in B]$.

Set: Well-defined collection of distinct objects

(Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)

- Membership: Element belonging to (or a member of) a set (Ex: 25,64 ∈ S and 50,72 ∉ S)
- Cardinality: Number of elements in a set (Ex: |S| = 9)
- Finite Set: Set having finite cardinality (Ex: The set, S)
- Infinite Set: Set having infinite (∞) cardinality (Ex: T = {1, 2, 4, 8, 16, ...} = {2^y | y is integer and y ≥ 0})

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B} . Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \not\subseteq \mathcal{B}$ iff $\neg \forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x \ [x \in \mathcal{A} \land x \notin \mathcal{B}].$

- Set: Well-defined collection of distinct objects (Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)
 - Membership: Element belonging to (or a member of) a set (Ex: 25, 64 ∈ S and 50, 72 ∉ S)
 - Cardinality: Number of elements in a set (Ex: |S| = 9)
 - Finite Set: Set having finite cardinality (Ex: The set, S)
 - Infinite Set: Set having infinite (∞) cardinality (Ex: T = {1, 2, 4, 8, 16, ...} = {2^y | y is integer and y ≥ 0})

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) <u>iff</u> each element of \mathcal{A} is also a member of \mathcal{B} . Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \not\subseteq \mathcal{B}$ iff $\neg \forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x \ [x \in \mathcal{A} \land x \notin \mathcal{B}].$

(Ex: Let $\mathcal{R} = \{z \mid z \text{ is composite integer and } 2 \le z \le 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$)

- Set: Well-defined collection of distinct objects (Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)
 - Membership: Element belonging to (or a member of) a set (Ex: 25, 64 ∈ S and 50, 72 ∉ S)
 - Cardinality: Number of elements in a set (Ex: |S| = 9)
 - Finite Set: Set having finite cardinality (Ex: The set, S)
 - Infinite Set: Set having infinite (∞) cardinality (Ex: T = {1, 2, 4, 8, 16, ...} = {2^y | y is integer and y ≥ 0})

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B} . Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \not\subseteq \mathcal{B}$ iff $\neg \forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x \ [x \in \mathcal{A} \land x \notin \mathcal{B}].$

(Ex: Let $\mathcal{R} = \{z \mid z \text{ is composite integer and } 2 \le z \le 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$) Equal Sets: $\mathcal{A} = \mathcal{B}$ iff $[(\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{B} \subseteq \mathcal{A})] \equiv \forall x [x \in \mathcal{A} \Leftrightarrow x \in \mathcal{B}]$

- Set: Well-defined collection of distinct objects (Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)
 - Membership: Element belonging to (or a member of) a set (Ex: 25, 64 ∈ S and 50, 72 ∉ S)
 - Cardinality: Number of elements in a set (Ex: |S| = 9)
 - Finite Set: Set having finite cardinality (Ex: The set, S)
 - Infinite Set: Set having infinite (∞) cardinality (Ex: T = {1, 2, 4, 8, 16, ...} = {2^y | y is integer and y ≥ 0})

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B} . Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \not\subseteq \mathcal{B}$ iff $\neg \forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x \ [x \in \mathcal{A} \land x \notin \mathcal{B}].$

(Ex: Let $\mathcal{R} = \{z \mid z \text{ is composite integer and } 2 \le z \le 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$) Equal Sets: $\mathcal{A} = \mathcal{B}$ iff $[(\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{B} \subseteq \mathcal{A})] \equiv \forall x [x \in \mathcal{A} \Leftrightarrow x \in \mathcal{B}]$ Proper Subset: $\mathcal{A} \subset \mathcal{B}$ iff $[\forall x (x \in \mathcal{A} \Rightarrow x \in \mathcal{B}) \land \exists y (y \in \mathcal{B} \land y \notin \mathcal{A})]$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

- Set: Well-defined collection of distinct objects (Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)
 - Membership: Element belonging to (or a member of) a set (Ex: 25,64 ∈ S and 50,72 ∉ S)
 - Cardinality: Number of elements in a set (Ex: |S| = 9)
 - Finite Set: Set having finite cardinality (Ex: The set, S)
 - Infinite Set: Set having infinite (∞) cardinality (Ex: T = {1, 2, 4, 8, 16, ...} = {2^y | y is integer and y ≥ 0})

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B} . Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \not\subseteq \mathcal{B}$ iff $\neg \forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x \ [x \in \mathcal{A} \land x \notin \mathcal{B}].$

(Ex: Let $\mathcal{R} = \{z \mid z \text{ is composite integer and } 2 \le z \le 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$) Equal Sets: $\mathcal{A} = \mathcal{B}$ iff $[(\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{B} \subseteq \mathcal{A})] \equiv \forall x [x \in \mathcal{A} \Leftrightarrow x \in \mathcal{B}]$ Proper Subset: $\mathcal{A} \subset \mathcal{B}$ iff $[\forall x (x \in \mathcal{A} \Rightarrow x \in \mathcal{B}) \land \exists y (y \in \mathcal{B} \land y \notin \mathcal{A})]$

Null Set: Set containing NO element, denoted using
$$\phi$$
 or {}
(Ex: $Q = \{z \mid x + y = z \text{ and all } x, y, z \text{ are odd}\} = \phi$)

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Set: Well-defined collection of distinct objects (Ex: $S = \{4, 9, 16..., 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\}$)
 - Membership: Element belonging to (or a member of) a set (Ex: 25,64 ∈ S and 50,72 ∉ S)
 - Cardinality: Number of elements in a set (Ex: |S| = 9)
 - Finite Set: Set having finite cardinality (Ex: The set, S)
 - Infinite Set: Set having infinite (∞) cardinality (Ex: T = {1, 2, 4, 8, 16, ...} = {2^y | y is integer and y ≥ 0})

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B} . Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \not\subseteq \mathcal{B}$ iff $\neg \forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x \ [x \in \mathcal{A} \land x \notin \mathcal{B}].$

(Ex: Let $\mathcal{R} = \{z \mid z \text{ is composite integer and } 2 \le z \le 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$) Equal Sets: $\mathcal{A} = \mathcal{B}$ iff $[(\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{B} \subseteq \mathcal{A})] \equiv \forall x [x \in \mathcal{A} \Leftrightarrow x \in \mathcal{B}]$ Proper Subset: $\mathcal{A} \subset \mathcal{B}$ iff $[\forall x (x \in \mathcal{A} \Rightarrow x \in \mathcal{B}) \land \exists y (y \in \mathcal{B} \land y \notin \mathcal{A})]$

Null Set: Set containing NO element, denoted using ϕ or {} (Ex: $Q = \{z \mid x + y = z \text{ and all } x, y, z \text{ are odd}\} = \phi$) Note: $|\phi| = 0$, but $\phi \neq \{0\}$ and $\phi \neq \{\phi\}$ (since, $|\{0\}| = |\{\phi\}| = 1$)

Power Set: Set of all possible subsets of a set (A), denoted as $\mathcal{P}(A)$ or 2^A (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, Thus, $\mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$)

 $\begin{array}{l} \text{Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}($\mathcal{A}$) or $2^{\mathcal{A}}$ \\ (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, \\ Thus, $\mathcal{P}($\mathcal{A}$) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\})$ \\ \textbf{Cardinality: } |\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|}$ (Why?) \\ \end{array}$

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, Thus, $\mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$) Cardinality: $|\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|}$ (Why?) Proof. Let $|\mathcal{A}| = n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \le k \le n$). So, the total number of subsets $= \sum_{i=0}^{n} \binom{n}{k} = 2^{n}$.

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, Thus, $\mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$) Cardinality: $|\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|}$ (Why?) *Proof.* Let $|\mathcal{A}| = n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \le k \le n$). So, the total number of subsets $= \sum_{i=0}^{n} \binom{n}{k} = 2^{n}$.

Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, Thus, $\mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$) Cardinality: $|\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|}$ (Why?) *Proof.* Let $|\mathcal{A}| = n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \le k \le n$). So, the total number of subsets $= \sum_{i=0}^{n} \binom{n}{k} = 2^{n}$.

Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

• $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$, but $\mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subset \mathcal{B}$.

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, Thus, $\mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$) Cardinality: $|\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|}$ (Why?) Proof. Let $|\mathcal{A}| = n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \le k \le n$). So, the total number of subsets $= \sum_{i=0}^{n} \binom{n}{k} = 2^{n}$.

Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

•
$$\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$$
, but $\mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subset \mathcal{B}$.
• $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{A} \neq \mathcal{B})]$.

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, Thus, $\mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$) Cardinality: $|\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|}$ (Why?) Proof. Let $|\mathcal{A}| = n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \le k \le n$). So, the total number of subsets $= \sum_{i=0}^{n} \binom{n}{k} = 2^{n}$.

Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

• $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$, but $\mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subset \mathcal{B}$. • $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{A} \neq \mathcal{B})]$. • $(\mathcal{A} \neq \mathcal{B})$ if and only if $(\mathcal{A} \not\subseteq \mathcal{B}) \lor (\mathcal{B} \not\subseteq \mathcal{A})$.

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, Thus, $\mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$) Cardinality: $|\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|}$ (Why?) Proof. Let $|\mathcal{A}| = n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \le k \le n$). So, the total number of subsets $= \sum_{i=0}^{n} \binom{n}{k} = 2^{n}$.

Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

•
$$\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$$
, but $\mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subset \mathcal{B}$.
• $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{A} \neq \mathcal{B})]$.
• $(\mathcal{A} \neq \mathcal{B})$ if and only if $(\mathcal{A} \not\subseteq \mathcal{B}) \lor (\mathcal{B} \not\subseteq \mathcal{A})$.
• $\phi \subseteq \mathcal{A}$. If $\mathcal{A} \neq \phi$, then $\phi \subset \mathcal{A}$. $\mathcal{A} \subseteq \mathcal{A}$ and $\mathcal{A} \in \mathcal{P}(\mathcal{A})$.

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, Thus, $\mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$) Cardinality: $|\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|}$ (Why?) Proof. Let $|\mathcal{A}| = n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \le k \le n$). So, the total number of subsets $= \sum_{i=0}^{n} \binom{n}{k} = 2^{n}$.

Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

•
$$\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$$
, but $\mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subset \mathcal{B}$.
• $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{A} \neq \mathcal{B})]$.
• $(\mathcal{A} \neq \mathcal{B})$ if and only if $(\mathcal{A} \not\subseteq \mathcal{B}) \lor (\mathcal{B} \not\subseteq \mathcal{A})$.
• $\phi \subseteq \mathcal{A}$. If $\mathcal{A} \neq \phi$, then $\phi \subset \mathcal{A}$. $\mathcal{A} \subseteq \mathcal{A}$ and $\mathcal{A} \in \mathcal{P}(\mathcal{A})$.
• If $(\mathcal{A} \subseteq \mathcal{B})$, then $|\mathcal{A}| \leq |\mathcal{B}|$.
If $(\mathcal{A} \subset \mathcal{B})$, then $|\mathcal{A}| < |\mathcal{B}|$.
If $(\mathcal{A} = \mathcal{B})$, then $|\mathcal{A}| = |\mathcal{B}|$.

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A} = \{1, 2, 3\}$, Thus, $\mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$) Cardinality: $|\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|}$ (Why?) Proof. Let $|\mathcal{A}| = n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \le k \le n$). So, the total number of subsets $= \sum_{i=0}^{n} \binom{n}{k} = 2^{n}$.

Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

•
$$\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}$$
, but $\mathcal{A} \subseteq \mathcal{B} \not\Rightarrow \mathcal{A} \subset \mathcal{B}$.
• $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \land (\mathcal{A} \neq \mathcal{B})]$.
• $(\mathcal{A} \neq \mathcal{B})$ if and only if $(\mathcal{A} \not\subseteq \mathcal{B}) \lor (\mathcal{B} \not\subseteq \mathcal{A})$.
• $\phi \subseteq \mathcal{A}$. If $\mathcal{A} \neq \phi$, then $\phi \subset \mathcal{A}$. $\mathcal{A} \subseteq \mathcal{A}$ and $\mathcal{A} \in \mathcal{P}(\mathcal{A})$.
• If $(\mathcal{A} \subseteq \mathcal{B})$, then $|\mathcal{A}| \leq |\mathcal{B}|$.
If $(\mathcal{A} \subset \mathcal{B})$, then $|\mathcal{A}| = |\mathcal{B}|$.
• If $(\mathcal{A} \subseteq \mathcal{B})$ and $(\mathcal{B} \subseteq \mathcal{C})$, then $(\mathcal{A} \subseteq \mathcal{C})$.
If $(\mathcal{A} \subseteq \mathcal{B})$ and $(\mathcal{B} \subseteq \mathcal{C})$, then $(\mathcal{A} \subset \mathcal{C})$.
If $(\mathcal{A} \subseteq \mathcal{B})$ and $(\mathcal{B} \subseteq \mathcal{C})$, then $(\mathcal{A} \subset \mathcal{C})$.
If $(\mathcal{A} \subseteq \mathcal{B})$ and $(\mathcal{B} \subseteq \mathcal{C})$, then $(\mathcal{A} \subset \mathcal{C})$.
If $(\mathcal{A} \subset \mathcal{B})$ and $(\mathcal{B} \subseteq \mathcal{C})$, then $(\mathcal{A} \subset \mathcal{C})$.

Aritra Hazra (CSE, IITKGP)

Frequently-Used Set Examples and Notations

Popular Set Examples:

- $\mathbb{N}=\mbox{ Set of Non-negative natural numbers}=\{0,1,2,\ldots\}$
- $\mathbb{Z}=\ \mathsf{Set}\ \mathsf{of}\ \mathsf{Integers}=\{\ldots,-2,-1,0,1,2,\ldots\}$
- $\mathbb{Z}^+ =$ Set of Positive Integers = $\{x \in \mathbb{Z} \mid x > 0\}$
 - $\mathbb{Q} =$ Set of Rational Numbers = $\{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}$
- $\mathbb{Q}^+ =$ Set of Positive Rational Numbers = $\{r \in \mathbb{Q} \mid r > 0\}$
- $\mathbb{Q}^* =$ Set of Non-zero Rational Numbers = $\{r \in \mathbb{Q} \mid r \neq 0\}$
 - $\mathbb{R} =$ Set of Real Numbers

$$\mathbb{R}^+ =$$
 Set of Positive Real Numbers

- $\mathbb{R}^* =$ Set of Non-zero Real Numbers
 - $\mathbb{C} =$ Set of Complex Numbers $= \{a + ib \mid a, b \in \mathbb{R}, i^2 = -1\}$
- $\mathbb{C}^* =$ Set of Non-zero Complex Numbers $= \{ c \in \mathbb{C} \mid c \neq 0 \}$

Frequently-Used Set Examples and Notations

Popular Set Examples:

 $\mathbb{N}=\mbox{ Set of Non-negative natural numbers}=\{0,1,2,\ldots\}$

$$\mathbb{Z} =$$
 Set of Integers $= \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

$$\mathbb{Z}^+=$$
 Set of Positive Integers $=\{x\in\mathbb{Z}\mid x>0\}$

$$\mathbb{Q} =$$
 Set of Rational Numbers = $\{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}$

$$\mathbb{Q}^+=$$
 Set of Positive Rational Numbers $=\{r\in\mathbb{Q}\mid r>0\}$

$$\mathbb{Q}^* = \text{ Set of Non-zero Rational Numbers} = \{r \in \mathbb{Q} \mid r \neq 0\}$$

$$\mathbb{R} =$$
 Set of Real Numbers

$$\mathbb{R}^* =$$
 Set of Non-zero Real Numbers

$$\mathbb{C} =$$
 Set of Complex Numbers = $\{a + ib \mid a, b \in \mathbb{R}, i^2 = -1\}$

 $\mathbb{C}^* =$ Set of Non-zero Complex Numbers = { $c \in \mathbb{C} | c \neq 0$ }

Frequently-Used Notations:

• For each
$$n \in \mathbb{Z}^+$$
, $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$

• For real numbers, a, b with a < b, we define intervals as follows: (Closed) $[a, b] = \{x \mid a \le x \le b\}$ (Open) $(a, b) = \{x \mid a < x < b\}$ (Half-Open) $(a, b] = \{x \mid a < x \le b\}$ and $[a, b) = \{x \mid a \le x < b\}$

Aritra Hazra (CSE, IITKGP)

Prove that, $\binom{n}{r+1} = \frac{n-r}{r+1} \binom{n}{r}$

Aritra Hazra (CSE, IITKGP)

Counting: Total number of (r + 1)-element subsets, formed from all *r*-element subsets by adding an element from (n - r) remaining elements, is, $m = (n - r)\binom{n}{r}$. Ex: Let n = 4 and $S = \{1, 2, 3, 4\}$. All 2-element subsets are, $A_1 = \{1, 2\}$, $A_2 = \{1, 3\}$, $A_3 = \{1, 4\}$, $A_4 = \{2, 3\}$, $A_5 = \{2, 4\}$, $A_6 = \{3, 4\}$. From each A_i s, a 3-element subset can be formed in *two* ways. So, total possibilities $= 2 \times \binom{4}{2} = 12$.

Counting: Total number of (r + 1)-element subsets, formed from all *r*-element subsets by adding an element from (n - r) remaining elements, is, $m = (n - r) \binom{n}{r}$. Ex: Let n = 4 and $S = \{1, 2, 3, 4\}$. All 2-element subsets are, $A_1 = \{1, 2\}$, $A_2 = \{1, 3\}$, $A_3 = \{1, 4\}$, $A_4 = \{2, 3\}$, $A_5 = \{2, 4\}$, $A_6 = \{3, 4\}$. From each A_i s, a 3-element subset can be formed in *two* ways. So, total possibilities $= 2 \times \binom{4}{2} = 12$. **Repetition:** Each (r + 1) element subset can be formed from (r + 1) different *r*-element subsets. So, the total choice reduces to, $\binom{n}{r+1} = \frac{m-r}{r+1} \binom{n}{r}$. Ex: 3-element subset $\{1, 2, 3\}$ can formed from A_1, A_2, A_4 by adding an element to each. So, reduced number of possibilities $= \frac{12}{3} = 4 = \binom{4}{3}$

Counting: Total number of (r + 1)-element subsets, formed from all *r*-element subsets by adding an element from (n - r) remaining elements, is, $m = (n - r) \binom{n}{r}$. Ex: Let n = 4 and $S = \{1, 2, 3, 4\}$. All 2-element subsets are, $A_1 = \{1, 2\}$, $A_2 = \{1, 3\}$, $A_3 = \{1, 4\}$, $A_4 = \{2, 3\}$, $A_5 = \{2, 4\}$, $A_6 = \{3, 4\}$. From each A_i s, a 3-element subset can be formed in *two* ways. So, total possibilities $= 2 \times \binom{4}{2} = 12$. **Repetition:** Each (r + 1) element subset can be formed from (r + 1) different *r*-element subsets. So, the total choice reduces to, $\binom{n}{r+1} = \frac{m-r}{r+1} \binom{n}{r}$. Ex: 3-element subset $\{1, 2, 3\}$ can formed from A_1, A_2, A_4 by adding an element to each. So, reduced number of possibilities $= \frac{12}{3} = 4 = \binom{4}{3}$

Prove that, $\binom{r}{r} + \binom{r+1}{r} + \cdots + \binom{n-1}{r} + \binom{n}{r} = \binom{n+1}{r+1}$

Counting: Total number of (r + 1)-element subsets, formed from all *r*-element subsets by adding an element from (n - r) remaining elements, is, $m = (n - r) \binom{n}{r}$. Ex: Let n = 4 and $S = \{1, 2, 3, 4\}$. All 2-element subsets are, $A_1 = \{1, 2\}$, $A_2 = \{1, 3\}$, $A_3 = \{1, 4\}$, $A_4 = \{2, 3\}$, $A_5 = \{2, 4\}$, $A_6 = \{3, 4\}$. From each A_r s, a 3-element subset can be formed in *two* ways. So, total possibilities $= 2 \times \binom{4}{2} = 12$. **Repetition:** Each (r + 1) element subset can be formed from (r + 1) different *r*-element subsets. So, the total choice reduces to, $\binom{n}{r+1} = \frac{m-r}{r+1} \binom{n}{r}$. Ex: 3-element subset $\{1, 2, 3\}$ can formed from A_1, A_2, A_4 by adding an element to each. So, reduced number of possibilities $= \frac{12}{3} = 4 = \binom{4}{3}$

Prove that, $\binom{r}{r} + \binom{r+1}{r} + \cdots + \binom{n-1}{r} + \binom{n}{r} = \binom{n+1}{r+1}$

Let the (n + 1)-element set be = $\{1, 2, ..., n, n + 1\}$ From (n + 1)-element set, choosing (r + 1)-element subsets with smallest element *i* can be done in $\binom{n+1-i}{r}$ ways. So, all such possible choice leads to, $\sum_{i=1}^{(n+1)-(r+1)} \binom{n+1-i}{r} = \binom{n+1}{r+1}$, implying the proof.

Aritra Hazra (CSE, IITKGP)

Prove that,
$$\sum_{i=0}^{n} i\binom{n}{i} = n.2^{n-1}$$

Prove that, $\sum_{i=0}^{n} i\binom{n}{i} = n.2^{n-1}$

From an *n*-element set, Size of a subset with *i* elements + Size of its complement subset = i + (n - i) = n and there are $\binom{n}{i}$ number of these each.

Prove that, $\sum_{i=0}^{n} i\binom{n}{i} = n \cdot 2^{n-1}$

From an *n*-element set, Size of a subset with *i* elements + Size of its complement subset = i + (n - i) = n and there are $\binom{n}{i}$ number of these each. Therefore, $2\sum_{i=0}^{n} i\binom{n}{i} = n\sum_{i=0}^{n} \binom{n}{i} = n.2^{n}$, implying the proof.

Prove that, $\sum_{i=0}^{n} i\binom{n}{i} = n \cdot 2^{n-1}$

From an *n*-element set, Size of a subset with *i* elements + Size of its complement subset = i + (n - i) = n and there are $\binom{n}{i}$ number of these each. Therefore, $2\sum_{i=0}^{n} i\binom{n}{i} = n\sum_{i=0}^{n} \binom{n}{i} = n.2^{n}$, implying the proof.

Prove that, Number of Summands of n is 2^{n-1} .

Prove that, $\sum_{i=0}^{n} i\binom{n}{i} = n \cdot 2^{n-1}$

From an *n*-element set, Size of a subset with *i* elements + Size of its complement subset = i + (n - i) = n and there are $\binom{n}{i}$ number of these each. Therefore, $2\sum_{i=0}^{n} i\binom{n}{i} = n\sum_{i=0}^{n} \binom{n}{i} = n.2^{n}$, implying the proof.

Prove that, Number of Summands of n is 2^{n-1} .

Consider, n = 4.

Summand	Subset Correspondence
1 + 1 + 1 + 1 = 1 + 1 + 1 + 1	ϕ
2 + 1 + 1 = (1+1) + 1 + 1	$\{1\}$
1 + 2 + 1 = 1 + (1+1) + 1	{2}
$1 + 1 + \frac{2}{2} = 1 + 1 + (1 + 1)$	{3}
3 + 1 = (1 + 1 + 1) + 1	$\{1, 2\}$
2 + 2 = (1+1) + (1+1)	$\{1, 3\}$
1 + 3 = 1 + (1 + 1 + 1)	{2,3}
4 = (1 + 1 + 1 + 1)	$\{1, 2, 3\}$

Prove that, $\sum_{i=0}^{n} i\binom{n}{i} = n \cdot 2^{n-1}$

From an *n*-element set, Size of a subset with *i* elements + Size of its complement subset = i + (n - i) = n and there are $\binom{n}{i}$ number of these each. Therefore, $2\sum_{i=0}^{n} i\binom{n}{i} = n\sum_{i=0}^{n} \binom{n}{i} = n.2^{n}$, implying the proof.

Prove that, Number of Summands of n is 2^{n-1} .

Consider, n = 4.

Summand	Subset Correspondence
1 + 1 + 1 + 1 = 1 + 1 + 1 + 1	ϕ
2 + 1 + 1 = (1+1) + 1 + 1	$\{1\}$
1 + 2 + 1 = 1 + (1+1) + 1	{2}
1 + 1 + 2 = 1 + 1 + (1 + 1)	{3}
3 + 1 = (1 + 1 + 1) + 1	$\{1, 2\}$
2 + 2 = (1+1) + (1+1)	{1,3}
1 + 3 = 1 + (1 + 1 + 1)	{2,3}
4 = (1 + 1 + 1 + 1)	$\{1, 2, 3\}$

 \therefore Number of summands of n = Number of subsets of an (n - 1)-element set $= 2^{n-1}$.

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A} = \{1, 2, 3\}$ and $\mathcal{B} = \{2, 3, 4\}$) Union: $\mathcal{A} \cup \mathcal{B} = \{x \mid x \in \mathcal{A} \lor x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cup \mathcal{B} = \{1, 2, 3, 4\}$)

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A} = \{1, 2, 3\}$ and $\mathcal{B} = \{2, 3, 4\}$) Union: $\mathcal{A} \cup \mathcal{B} = \{x \mid x \in \mathcal{A} \lor x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cup \mathcal{B} = \{1, 2, 3, 4\}$) Intersection: $\mathcal{A} \cap \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cap \mathcal{B} = \{2, 3\}$)

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A} = \{1, 2, 3\}$ and $\mathcal{B} = \{2, 3, 4\}$) Union: $\mathcal{A} \cup \mathcal{B} = \{x \mid x \in \mathcal{A} \lor x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cup \mathcal{B} = \{1, 2, 3, 4\}$) Intersection: $\mathcal{A} \cap \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cap \mathcal{B} = \{2, 3, 4\}$) Complement: $\overline{\mathcal{A}} = \{x \mid x \in \mathcal{U} \land x \notin \mathcal{A}\}$

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A} = \{1, 2, 3\}$ and $\mathcal{B} = \{2, 3, 4\}$) Union: $\mathcal{A} \cup \mathcal{B} = \{x \mid x \in \mathcal{A} \lor x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cup \mathcal{B} = \{1, 2, 3, 4\}$) Intersection: $\mathcal{A} \cap \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cap \mathcal{B} = \{2, 3, 4\}$) Complement: $\overline{\mathcal{A}} = \{x \mid x \in \mathcal{U} \land x \notin \mathcal{A}\}$ Relative Complement: $\mathcal{A} - \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \notin \mathcal{B}\} = \mathcal{A} \cap \overline{\mathcal{B}}$ (Ex: $\mathcal{A} - \mathcal{B} = \{1\}$)

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A} = \{1, 2, 3\}$ and $\mathcal{B} = \{2, 3, 4\}$) Union: $\mathcal{A} \cup \mathcal{B} = \{x \mid x \in \mathcal{A} \lor x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cup \mathcal{B} = \{1, 2, 3, 4\}$) Intersection: $\mathcal{A} \cap \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cap \mathcal{B} = \{2, 3, 4\}$) Complement: $\overline{\mathcal{A}} = \{x \mid x \in \mathcal{U} \land x \notin \mathcal{A}\}$ Relative Complement: $\mathcal{A} - \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \notin \mathcal{B}\} = \mathcal{A} \cap \overline{\mathcal{B}}$ (Ex: $\mathcal{A} - \mathcal{B} = \{1\}$) Symmetric Difference:

$$\mathcal{A} \Delta \mathcal{B} = \{ x \mid (x \in \mathcal{A} \lor x \in \mathcal{B}) \land x \notin \mathcal{A} \cap \mathcal{B} \}$$

= $\{ x \mid x \in \mathcal{A} \cup \mathcal{B} \land x \notin \mathcal{A} \cap \mathcal{B} \} = (\mathcal{A} \cup \mathcal{B}) - (\mathcal{A} \cap \mathcal{B})$
= $\{ x \mid x \in \mathcal{A} \cap \overline{\mathcal{B}} \land x \in \overline{\mathcal{A}} \cap \mathcal{B} \} = (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\overline{\mathcal{A}} \cap \mathcal{B})$
= $(\mathcal{A} - \mathcal{B}) \cup (\mathcal{B} - \mathcal{A}) = \mathcal{B} \Delta \mathcal{A}$ (Ex: $\mathcal{A} \Delta \mathcal{B} = \{1, 4\})$

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A} = \{1, 2, 3\}$ and $\mathcal{B} = \{2, 3, 4\}$) Union: $\mathcal{A} \cup \mathcal{B} = \{x \mid x \in \mathcal{A} \lor x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cup \mathcal{B} = \{1, 2, 3, 4\}$) Intersection: $\mathcal{A} \cap \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cap \mathcal{B} = \{2, 3, 4\}$) Complement: $\overline{\mathcal{A}} = \{x \mid x \in \mathcal{U} \land x \notin \mathcal{A}\}$ Relative Complement: $\mathcal{A} - \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \notin \mathcal{B}\} = \mathcal{A} \cap \overline{\mathcal{B}}$ (Ex: $\mathcal{A} - \mathcal{B} = \{1\}$) Symmetric Difference:

$$\mathcal{A} \Delta \mathcal{B} = \{ x \mid (x \in \mathcal{A} \lor x \in \mathcal{B}) \land x \notin \mathcal{A} \cap \mathcal{B} \}$$

= $\{ x \mid x \in \mathcal{A} \cup \mathcal{B} \land x \notin \mathcal{A} \cap \mathcal{B} \} = (\mathcal{A} \cup \mathcal{B}) - (\mathcal{A} \cap \mathcal{B})$
= $\{ x \mid x \in \mathcal{A} \cap \overline{\mathcal{B}} \land x \in \overline{\mathcal{A}} \cap \mathcal{B} \} = (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\overline{\mathcal{A}} \cap \mathcal{B})$
= $(\mathcal{A} - \mathcal{B}) \cup (\mathcal{B} - \mathcal{A}) = \mathcal{B} \Delta \mathcal{A}$ (Ex: $\mathcal{A} \Delta \mathcal{B} = \{1, 4\}$)

Mutual Disjoint: Sets, A and B, are mutually disjoint (or disjoint), when $A \cap B = \phi$. In such a case, $A \Delta B = A \cup B$, $A \cap \overline{B} = A$ and $\overline{A} \cap B = B$.

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A} = \{1, 2, 3\}$ and $\mathcal{B} = \{2, 3, 4\}$) Union: $\mathcal{A} \cup \mathcal{B} = \{x \mid x \in \mathcal{A} \lor x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cup \mathcal{B} = \{1, 2, 3, 4\}$) Intersection: $\mathcal{A} \cap \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \in \mathcal{B}\}$ (Ex: $\mathcal{A} \cap \mathcal{B} = \{2, 3, 4\}$) Complement: $\overline{\mathcal{A}} = \{x \mid x \in \mathcal{U} \land x \notin \mathcal{A}\}$ Relative Complement: $\mathcal{A} - \mathcal{B} = \{x \mid x \in \mathcal{A} \land x \notin \mathcal{B}\} = \mathcal{A} \cap \overline{\mathcal{B}}$ (Ex: $\mathcal{A} - \mathcal{B} = \{1\}$) Symmetric Difference:

$$\mathcal{A} \Delta \mathcal{B} = \{ x \mid (x \in \mathcal{A} \lor x \in \mathcal{B}) \land x \notin \mathcal{A} \cap \mathcal{B} \}$$

= $\{ x \mid x \in \mathcal{A} \cup \mathcal{B} \land x \notin \mathcal{A} \cap \mathcal{B} \} = (\mathcal{A} \cup \mathcal{B}) - (\mathcal{A} \cap \mathcal{B})$
= $\{ x \mid x \in \mathcal{A} \cap \overline{\mathcal{B}} \land x \in \overline{\mathcal{A}} \cap \mathcal{B} \} = (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\overline{\mathcal{A}} \cap \mathcal{B})$
= $(\mathcal{A} - \mathcal{B}) \cup (\mathcal{B} - \mathcal{A}) = \mathcal{B} \Delta \mathcal{A}$ (Ex: $\mathcal{A} \Delta \mathcal{B} = \{1, 4\}$)

Mutual Disjoint: Sets, \mathcal{A} and \mathcal{B} , are mutually disjoint (or disjoint), when $\mathcal{A} \cap \mathcal{B} = \phi$. In such a case, $\mathcal{A} \Delta \mathcal{B} = \mathcal{A} \cup \mathcal{B}$, $\mathcal{A} \cap \overline{\mathcal{B}} = \mathcal{A}$ and $\overline{\mathcal{A}} \cap \mathcal{B} = \mathcal{B}$.

The following statements are equivalent:(Proof Left as an Exercise!)(a) $\mathcal{A} \subseteq \mathcal{B}$,(b) $\mathcal{A} \cup \mathcal{B} = \mathcal{B}$,(c) $\mathcal{A} \cap \mathcal{B} = \mathcal{A}$,(d) $\overline{\mathcal{B}} \subseteq \overline{\mathcal{A}}$

Aritra Hazra (CSE, IITKGP)

Laws of Set Theory

For three sets, $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{U},$ the rules given as follows:

Name of the Law	Mathematical Expressions
Double Complement:	$\overline{\overline{\mathcal{A}}} = \mathcal{A}$
DeMorgan's Laws:	$\overline{\mathcal{A} \cup \mathcal{B}} = \overline{\mathcal{A}} \cap \overline{\mathcal{B}}, \overline{\mathcal{A} \cap \mathcal{B}} = \overline{\mathcal{A}} \cup \overline{\mathcal{B}}$
Commutative Laws:	$\mathcal{A}\cup\mathcal{B}=\mathcal{B}\cup\mathcal{A}, \hspace{1em} \mathcal{A}\cap\mathcal{B}=\mathcal{B}\cap\mathcal{A}$
Associative Laws:	$\mathcal{A} \cup (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C}, \mathcal{A} \cap (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C}$
Distributive Laws:	$\mathcal{A} \cup (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{C}), \ \mathcal{A} \cap (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cup (\mathcal{A} \cap \mathcal{C})$
Idempotent Laws:	$\mathcal{A}\cup\mathcal{A}=\mathcal{A}, \hspace{1em} \mathcal{A}\cap\mathcal{A}=\mathcal{A}$
Identity Laws:	$\mathcal{A}\cup\phi=\mathcal{A}, \hspace{1em} \mathcal{A}\cap\mathcal{U}=\mathcal{A}$
Inverse Laws:	$\mathcal{A}\cup\overline{\mathcal{A}}=\mathcal{U}, \hspace{1em} \mathcal{A}\cap\overline{\mathcal{A}}=\phi$
Domination Laws:	$\mathcal{A}\cup\mathcal{U}=\mathcal{U}, \hspace{1em} \mathcal{A}\cap\phi=\phi$
Absorption Laws:	$\mathcal{A} \cup (\mathcal{A} \cap \mathcal{B}) = \mathcal{A}, \hspace{1em} \mathcal{A} \cap (\mathcal{A} \cup \mathcal{B}) = \mathcal{A}$

Laws of Set Theory

For three sets, $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{U},$ the rules given as follows:

Name of the Law	Mathematical Expressions
Double Complement:	$\overline{\overline{\mathcal{A}}} = \mathcal{A}$
DeMorgan's Laws:	$\overline{\mathcal{A} \cup \mathcal{B}} = \overline{\mathcal{A}} \cap \overline{\mathcal{B}}, \overline{\mathcal{A} \cap \mathcal{B}} = \overline{\mathcal{A}} \cup \overline{\mathcal{B}}$
Commutative Laws:	$\mathcal{A}\cup\mathcal{B}=\mathcal{B}\cup\mathcal{A}, \hspace{1em} \mathcal{A}\cap\mathcal{B}=\mathcal{B}\cap\mathcal{A}$
Associative Laws:	$\mathcal{A} \cup (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C}, \mathcal{A} \cap (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C}$
Distributive Laws:	$\mathcal{A} \cup (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{C}), \ \mathcal{A} \cap (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cup (\mathcal{A} \cap \mathcal{C})$
Idempotent Laws:	$\mathcal{A}\cup\mathcal{A}=\mathcal{A}, \hspace{1em} \mathcal{A}\cap\mathcal{A}=\mathcal{A}$
Identity Laws:	$\mathcal{A}\cup\phi=\mathcal{A}, \hspace{1em} \mathcal{A}\cap\mathcal{U}=\mathcal{A}$
Inverse Laws:	$\mathcal{A}\cup\overline{\mathcal{A}}=\mathcal{U}, \hspace{1em} \mathcal{A}\cap\overline{\mathcal{A}}=\phi$
Domination Laws:	$\mathcal{A}\cup\mathcal{U}=\mathcal{U}, \hspace{1em} \mathcal{A}\cap\phi=\phi$
Absorption Laws:	$\mathcal{A} \cup (\mathcal{A} \cap \mathcal{B}) = \mathcal{A}, \hspace{1em} \mathcal{A} \cap (\mathcal{A} \cup \mathcal{B}) = \mathcal{A}$

An Example Proof Sketch: $\mathcal{A} \cup (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{C})$

 $\begin{aligned} x \in \mathcal{A} \cup (\mathcal{B} \cap \mathcal{C}) &\Leftrightarrow (x \in \mathcal{A}) \lor (x \in \mathcal{B} \cap \mathcal{C}) &\Leftrightarrow (x \in \mathcal{A}) \lor ((x \in \mathcal{B}) \land (x \in \mathcal{C})) \\ &\Leftrightarrow ((x \in \mathcal{A}) \lor (x \in \mathcal{B})) \land ((x \in \mathcal{A}) \lor (x \in \mathcal{C})) \\ &\Leftrightarrow (x \in \mathcal{A} \cup \mathcal{B}) \land (x \in \mathcal{A} \cup \mathcal{C}) &\Leftrightarrow x \in (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{C}) \end{aligned}$

Aritra Hazra (CSE, IITKGP)

Some Derived Laws and Observations

 $\mathcal{A}_1 = \mathcal{A}_1 \cup (\mathcal{A}_1 \cap \mathcal{A}_2) \cup (\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3) \cup (\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3 \cap \mathcal{A}_4) \cup \cdots \quad (\forall i, \ \mathcal{A}_i \in \mathcal{U})$

 $\begin{aligned} \mathcal{A}_{1} &= \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) \cup \cdots \qquad (\forall i, \ \mathcal{A}_{i} \in \mathcal{U}) \\ \textit{Proof:} \ \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) &= \mathcal{A}_{1}, \quad (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) &= (\mathcal{A}_{1} \cap \mathcal{A}_{2}), \\ (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) &= (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}), \text{ and so on } \ldots \end{aligned}$

 $\begin{array}{l} \mathcal{A}_{1} = \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) \cup \cdots \qquad (\forall i, \ \mathcal{A}_{i} \in \mathcal{U}) \\ \textit{Proof:} \ \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) = \mathcal{A}_{1}, \quad (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2}), \\ (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}), \text{ and so on } \dots \\ \textit{Similarly,} \ \mathcal{A}_{1} = \mathcal{A}_{1} \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap \dots \end{array}$

Some Derived Laws and Observations

 $\begin{array}{l} \mathcal{A}_{1} = \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) \cup \cdots & (\forall i, \ \mathcal{A}_{i} \in \mathcal{U}) \\ Proof: \ \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) = \mathcal{A}_{1}, & (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2}), \\ & (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}), \text{ and so on } \dots \\ \text{Similarly, } \mathcal{A}_{1} = \mathcal{A}_{1} \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup \mathcal{A}_{4}) \cap \cdots \end{array}$

 $\overline{\mathcal{A} \ \Delta \ \mathcal{B}} = \mathcal{A} \ \Delta \ \overline{\mathcal{B}} = \overline{\mathcal{A}} \ \Delta \ \mathcal{B}$

 $\begin{array}{l} \mathcal{A}_{1} = \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) \cup \cdots \qquad (\forall i, \ \mathcal{A}_{i} \in \mathcal{U}) \\ \textit{Proof:} \ \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) = \mathcal{A}_{1}, \quad (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2}), \\ (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}), \text{ and so on } \dots \\ \textit{Similarly,} \ \mathcal{A}_{1} = \mathcal{A}_{1} \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap \cdots \end{array}$

 $\overline{\mathcal{A} \Delta \mathcal{B}} = \mathcal{A} \Delta \overline{\mathcal{B}} = \overline{\mathcal{A}} \Delta \mathcal{B}$ Proof: As, $\mathcal{A} \Delta \mathcal{B} = (\mathcal{A} \cup \mathcal{B}) - (\mathcal{A} \cap \mathcal{B})$ and $\mathcal{A} \Delta \mathcal{B} = (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\overline{\mathcal{A}} \cap \mathcal{B})$, so $\overline{\mathcal{A} \Delta \mathcal{B}} = (\overline{\mathcal{A} \cap \overline{\mathcal{B}}}) \cup (\overline{\mathcal{A} \cap \mathcal{B}}) = (\overline{\mathcal{A}} \cup \mathcal{B}) \cap (\overline{\overline{\mathcal{A}} \cap \mathcal{B}}) = (\overline{\mathcal{A}} \cup \mathcal{B}) - (\overline{\mathcal{A}} \cap \mathcal{B}) = \overline{\mathcal{A}} \Delta \mathcal{B}$ and $\overline{\mathcal{A} \Delta \mathcal{B}} = (\overline{\mathcal{A} \cap \mathcal{B}}) \cup (\mathcal{A} \cap \overline{\mathcal{B}}) = (\mathcal{A} \cup \overline{\mathcal{B}}) \cap (\overline{\mathcal{A} \cap \overline{\mathcal{B}}}) = (\mathcal{A} \cup \overline{\mathcal{B}}) - (\mathcal{A} \cap \overline{\mathcal{B}}) = \mathcal{A} \Delta \overline{\mathcal{B}}$

 $\begin{array}{l} \mathcal{A}_{1} = \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) \cup \cdots \qquad (\forall i, \ \mathcal{A}_{i} \in \mathcal{U}) \\ Proof: \ \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) = \mathcal{A}_{1}, \quad (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2}), \\ (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}), \text{ and so on } \dots \\ \text{Similarly, } \mathcal{A}_{1} = \mathcal{A}_{1} \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cup \mathcal{A}_{2}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2}) \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cup \mathcal{A}_{2}) \cap (\mathcal{A}_{2} \cap \mathcal{A}_{2}) \cap ($

 $\overline{\mathcal{A} \Delta \mathcal{B}} = \mathcal{A} \Delta \overline{\mathcal{B}} = \overline{\mathcal{A}} \Delta \mathcal{B}$ Proof: As, $\mathcal{A} \Delta \mathcal{B} = (\mathcal{A} \cup \mathcal{B}) - (\mathcal{A} \cap \mathcal{B})$ and $\mathcal{A} \Delta \mathcal{B} = (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\overline{\mathcal{A}} \cap \mathcal{B})$, so $\overline{\mathcal{A} \Delta \mathcal{B}} = (\overline{\mathcal{A} \cap \overline{\mathcal{B}}}) \cup (\overline{\mathcal{A} \cap \mathcal{B}}) = (\overline{\mathcal{A}} \cup \mathcal{B}) \cap (\overline{\overline{\mathcal{A}} \cap \mathcal{B}}) = (\overline{\mathcal{A}} \cup \mathcal{B}) - (\overline{\mathcal{A}} \cap \mathcal{B}) = \overline{\mathcal{A}} \Delta \mathcal{B}$ and $\overline{\mathcal{A} \Delta \mathcal{B}} = (\overline{\mathcal{A} \cap \mathcal{B}}) \cup (\mathcal{A} \cap \overline{\mathcal{B}}) = (\mathcal{A} \cup \overline{\mathcal{B}}) \cap (\overline{\mathcal{A} \cap \overline{\mathcal{B}}}) = (\mathcal{A} \cup \overline{\mathcal{B}}) - (\mathcal{A} \cap \overline{\mathcal{B}}) = \mathcal{A} \Delta \overline{\mathcal{B}}$

 $\begin{array}{l} \mathcal{A} - (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} - \mathcal{B}) \cap (\mathcal{A} - \mathcal{C}) & (\mathcal{A} \cup \mathcal{B}) - \mathcal{C} = (\mathcal{A} - \mathcal{C}) \cup (\mathcal{B} - \mathcal{C}) \\ \mathcal{A} - (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} - \mathcal{B}) \cup (\mathcal{A} - \mathcal{C}) & (\mathcal{A} \cap \mathcal{B}) - \mathcal{C} = (\mathcal{A} - \mathcal{C}) \cap (\mathcal{B} - \mathcal{C}) \\ (\mathcal{A} \cap \mathcal{B}) - (\mathcal{A} \cap \mathcal{C}) = \mathcal{A} \cap (\mathcal{B} - \mathcal{C}) \end{array}$

 $\begin{array}{l} \mathcal{A}_{1} = \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) \cup \cdots \qquad (\forall i, \ \mathcal{A}_{i} \in \mathcal{U}) \\ Proof: \ \mathcal{A}_{1} \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2}) = \mathcal{A}_{1}, \quad (\mathcal{A}_{1} \cap \mathcal{A}_{2}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2}), \\ (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}) \cup (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}) = (\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}), \text{ and so on } \dots \\ \text{Similarly, } \mathcal{A}_{1} = \mathcal{A}_{1} \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}) \cap (\mathcal{A}_{1} \cup \mathcal{A}_{2}) \cap (\mathcal{A}_{2} \cap \mathcal{A}_{2}) \cap$

 $\overline{\mathcal{A} \Delta \mathcal{B}} = \mathcal{A} \Delta \overline{\mathcal{B}} = \overline{\mathcal{A}} \Delta \mathcal{B}$ Proof: As, $\mathcal{A} \Delta \mathcal{B} = (\mathcal{A} \cup \mathcal{B}) - (\mathcal{A} \cap \mathcal{B})$ and $\mathcal{A} \Delta \mathcal{B} = (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\overline{\mathcal{A}} \cap \mathcal{B})$, so $\overline{\mathcal{A} \Delta \mathcal{B}} = (\overline{\mathcal{A} \cap \overline{\mathcal{B}}}) \cup (\overline{\mathcal{A} \cap \mathcal{B}}) = (\overline{\mathcal{A}} \cup \mathcal{B}) \cap (\overline{\overline{\mathcal{A} \cap \mathcal{B}}}) = (\overline{\mathcal{A}} \cup \mathcal{B}) - (\overline{\mathcal{A} \cap \mathcal{B}}) = \overline{\mathcal{A}} \Delta \mathcal{B}$ and $\overline{\mathcal{A} \Delta \mathcal{B}} = (\overline{\mathcal{A} \cap \mathcal{B}}) \cup (\mathcal{A} \cap \overline{\mathcal{B}}) = (\mathcal{A} \cup \overline{\mathcal{B}}) \cap (\overline{\mathcal{A} \cap \overline{\mathcal{B}}}) = (\mathcal{A} \cup \overline{\mathcal{B}}) - (\mathcal{A} \cap \overline{\mathcal{B}}) = \mathcal{A} \Delta \overline{\mathcal{B}}$

 $\begin{array}{l} \mathcal{A} - (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} - \mathcal{B}) \cap (\mathcal{A} - \mathcal{C}) & (\mathcal{A} \cup \mathcal{B}) - \mathcal{C} = (\mathcal{A} - \mathcal{C}) \cup (\mathcal{B} - \mathcal{C}) \\ \mathcal{A} - (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} - \mathcal{B}) \cup (\mathcal{A} - \mathcal{C}) & (\mathcal{A} \cap \mathcal{B}) - \mathcal{C} = (\mathcal{A} - \mathcal{C}) \cap (\mathcal{B} - \mathcal{C}) \\ (\mathcal{A} \cap \mathcal{B}) - (\mathcal{A} \cap \mathcal{C}) = \mathcal{A} \cap (\mathcal{B} - \mathcal{C}) \end{array}$

 $\overline{\mathcal{A}} \Delta \overline{\mathcal{B}} = \mathcal{A} \Delta \mathcal{B} = \mathcal{B} \Delta \mathcal{A} = \overline{\mathcal{B}} \Delta \overline{\mathcal{A}}$ $\mathcal{A} \Delta (\mathcal{B} \Delta \mathcal{C}) = (\mathcal{A} \Delta \mathcal{B}) \Delta \mathcal{C} \qquad \qquad \mathcal{A} \cap (\mathcal{B} \Delta \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \Delta (\mathcal{A} \cap \mathcal{C})$

Aritra Hazra (CSE, IITKGP)

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_i \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an *index set*, and each $i \in \mathcal{I}$ is an index.

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_i \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an *index set*, and each $i \in \mathcal{I}$ is an index. Set Operations: (Union) $\bigcup_{i \in \mathcal{I}} \mathcal{A}_i = \{x \mid \exists i \in \mathcal{I}, x \in \mathcal{A}_i\}$

(Intersection) $\bigcap_{i \in \mathcal{I}} \mathcal{A}_i = \{x \mid \forall i \in \mathcal{I}, x \in \mathcal{A}_i\}$

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_i \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an *index set*, and each $i \in \mathcal{I}$ is an index. Set Operations: (Union) $\bigcup_{i \in \mathcal{I}} \mathcal{A}_i = \{x \mid \exists i \in \mathcal{I}, x \in \mathcal{A}_i\}$ (Intersection) $\bigcap_{i \in \mathcal{I}} \mathcal{A}_i = \{x \mid \forall i \in \mathcal{I}, x \in \mathcal{A}_i\}$ Generalized DeMorgan's Law: $\overline{\bigcup_{i \in \mathcal{I}} \mathcal{A}_i} = \bigcap_{i \in \mathcal{I}} \overline{\mathcal{A}_i}$ and $\overline{\bigcap_{i \in \mathcal{I}} \mathcal{A}_i} = \bigcup_{i \in \mathcal{I}} \overline{\mathcal{A}_i}$

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_i \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an *index set*, and each $i \in \mathcal{I}$ is an index.

Set Operations: (Union) $\bigcup_{i \in \mathcal{I}} \mathcal{A}_i = \{x \mid \exists i \in \mathcal{I}, x \in \mathcal{A}_i\}$ (Intersection) $\bigcap_{i \in \mathcal{I}} \mathcal{A}_i = \{x \mid \forall i \in \mathcal{I}, x \in \mathcal{A}_i\}$

Generalized DeMorgan's Law: $\overline{\bigcup_{i \in \mathcal{I}} \mathcal{A}_i} = \bigcap_{i \in \mathcal{I}} \overline{\mathcal{A}_i}$ and $\overline{\bigcap_{i \in \mathcal{I}} \mathcal{A}_i} = \bigcup_{i \in \mathcal{I}} \overline{\mathcal{A}_i}$

Partition of a Set

Definition: Let S be a non-empty set. A family of non-empty subsets, $\{S_i \mid i \in \mathcal{I}\}$ (\mathcal{I} being the index set) is said to form a partition of S if the following two condition holds:

- $\bigcup_{i \in \mathcal{T}} S_i = S$ (Complete Set Cover), and
- $S_i \cap S_j = \phi, \forall i, j \in \mathcal{I} \text{ and } i \neq j \text{ (Pairwise Disjoint).}$

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_i \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an *index set*, and each $i \in \mathcal{I}$ is an index.

Set Operations: (Union) $\bigcup_{i \in \mathcal{I}} \mathcal{A}_i = \{x \mid \exists i \in \mathcal{I}, x \in \mathcal{A}_i\}$ (Intersection) $\bigcap_{i \in \mathcal{I}} \mathcal{A}_i = \{x \mid \forall i \in \mathcal{I}, x \in \mathcal{A}_i\}$

Generalized DeMorgan's Law: $\overline{\bigcup_{i \in \mathcal{I}} \mathcal{A}_i} = \bigcap_{i \in \mathcal{I}} \overline{\mathcal{A}_i}$ and $\overline{\bigcap_{i \in \mathcal{I}} \mathcal{A}_i} = \bigcup_{i \in \mathcal{I}} \overline{\mathcal{A}_i}$

Partition of a Set

Definition: Let S be a non-empty set. A family of non-empty subsets, $\{S_i \mid i \in \mathcal{I}\}$ (\mathcal{I} being the index set) is said to form a partition of S if the following two condition holds:

• $\bigcup_{i \in \mathcal{I}} S_i = S \text{ (Complete Set Cover), and}$ • $\mathcal{S}_i \cap \mathcal{S}_j = \phi, \forall i, j \in \mathcal{I} \text{ and } i \neq j \text{ (Pairwise Disjoint).}$ Example: Let $\mathcal{Z}_0 = \{3m \mid m \text{ is an integer}\} = \{0, \pm 3, \pm 6, \ldots\},$ $\mathcal{Z}_1 = \{3m+1 \mid m \text{ is an integer}\} = \{\ldots, -8, -5, -2, +1, +4, +7, \ldots\}$ $\mathcal{Z}_2 = \{3m+2 \mid m \text{ is an integer}\} = \{\ldots, -7, -4, -1, +2, +5, +8, \ldots\}$ Now, $\mathcal{Z}_0 \cup \mathcal{Z}_1 \cup \mathcal{Z}_2 = \mathbb{Z} \text{ and } \mathcal{Z}_0 \cap \mathcal{Z}_1 = \mathcal{Z}_1 \cap \mathcal{Z}_2 = \mathcal{Z}_2 \cap \mathcal{Z}_0 = \phi$

Aritra Hazra (CSE, IITKGP)

Thank You!

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020 11 / 11