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Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: S = {4, 9, 16 . . . , 81, 100} = {x2 | x is integer and 1 < x ≤ 10})
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Subset: A set (A) is a subset of another set (B) iff each element of A is also a
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Null Set: Set containing NO element, denoted using φ or {}
(Ex: Q = {z | x + y = z and all x , y , z are odd} = φ)
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Power Set and Set Properties

Power Set: Set of all possible subsets of a set (A), denoted as P(A) or 2A

(Ex: Let A = {1, 2, 3},
Thus, P(A) = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}})
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If (A ⊂ B), then |A| < |B|.
If (A = B), then |A| = |B|.
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Frequently-Used Set Examples and Notations

Popular Set Examples:

N = Set of Non-negative natural numbers = {0, 1, 2, . . .}

Z = Set of Integers = {. . . ,−2,−1, 0, 1, 2, . . .}

Z+ = Set of Positive Integers = {x ∈ Z | x > 0}

Q = Set of Rational Numbers = { a
b
| a, b ∈ Z, b 6= 0}

Q+ = Set of Positive Rational Numbers = {r ∈ Q | r > 0}

Q∗ = Set of Non-zero Rational Numbers = {r ∈ Q | r 6= 0}

R = Set of Real Numbers

R+ = Set of Positive Real Numbers

R∗ = Set of Non-zero Real Numbers

C = Set of Complex Numbers = {a + ib | a, b ∈ R, i2 = −1}

C∗ = Set of Non-zero Complex Numbers = {c ∈ C | c 6= 0}
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Z+ = Set of Positive Integers = {x ∈ Z | x > 0}

Q = Set of Rational Numbers = { a
b
| a, b ∈ Z, b 6= 0}

Q+ = Set of Positive Rational Numbers = {r ∈ Q | r > 0}

Q∗ = Set of Non-zero Rational Numbers = {r ∈ Q | r 6= 0}

R = Set of Real Numbers

R+ = Set of Positive Real Numbers

R∗ = Set of Non-zero Real Numbers

C = Set of Complex Numbers = {a + ib | a, b ∈ R, i2 = −1}

C∗ = Set of Non-zero Complex Numbers = {c ∈ C | c 6= 0}

Frequently-Used Notations:

For each n ∈ Z+, Zn = {0, 1, 2, . . . , n − 1}

For real numbers, a, b with a < b, we define intervals as follows:

(Closed) [a, b] = {x | a ≤ x ≤ b} (Open) (a, b) = {x | a < x < b}

(Half-Open) (a,b] = {x | a < x ≤ b} and [a, b) = {x | a ≤ x < b}
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Counting using Set Theory

Prove that,
(

n
r+1

)

= n−r
r+1

(

n
r

)
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Counting using Set Theory

Prove that,
(

n
r+1

)

= n−r
r+1

(

n
r

)

Counting: Total number of (r + 1)-element subsets, formed from all r -element
subsets by adding an element from (n− r) remaining elements, is, m = (n− r)

(

n
r

)

.
Ex: Let n = 4 and S = {1, 2, 3, 4}. All 2-element subsets are, A1 = {1, 2}, A2 = {1, 3},

A3 = {1, 4}, A4 = {2, 3}, A5 = {2, 4}, A6 = {3, 4}. From each Ai s, a 3-element subset

can be formed in two ways. So, total possibilities = 2×
(

4
2

)

= 12.
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can be formed in two ways. So, total possibilities = 2×
(

4
2

)

= 12.

Repetition: Each (r + 1) element subset can be formed from (r + 1) different
r -element subsets. So, the total choice reduces to,

(

n
r+1

)

= m
r+1 = n−r

r+1

(

n
r

)

.
Ex: 3-element subset {1, 2, 3} can formed from A1,A2,A4 by adding an element to

each. So, reduced number of possibilities = 12
3
= 4 =

(

4
3

)
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(
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Let the (n + 1)-element set be = {1, 2, . . . , n, n + 1} From (n + 1)-element set,
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r

)
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i=1

(

n+1−i
r

)

=
(

n+1
r+1

)

,
implying the proof.
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= n.2n, implying the proof.

Prove that, Number of Summands of n is 2n−1.

Consider, n = 4.

Summand Subset Correspondence

1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 φ

2 + 1 + 1 = (1+1) + 1 + 1 {1}
1 + 2 + 1 = 1 + (1+1) + 1 {2}
1 + 1 + 2 = 1 + 1 + (1+1) {3}

3 + 1 = (1+1+1) + 1 {1, 2}
2 + 2 = (1+1) + (1+1) {1, 3}
1 + 3 = 1 + (1+1+1) {2, 3}

4 = (1+1+1+1) {1, 2, 3}
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1 + 1 + 2 = 1 + 1 + (1+1) {3}

3 + 1 = (1+1+1) + 1 {1, 2}
2 + 2 = (1+1) + (1+1) {1, 3}
1 + 3 = 1 + (1+1+1) {2, 3}
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Set Operations

For two sets, A,B ∈ U (universal set), the following operations are defined:
(Ex: Let, A = {1, 2, 3} and B = {2, 3, 4})

Union: A∪ B = {x | x ∈ A ∨ x ∈ B} (Ex: A∪ B = {1, 2, 3, 4})
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Relative Complement: A−B = {x | x ∈ A ∧ x 6∈ B} = A∩ B (Ex: A− B = {1})

Symmetric Difference:

A ∆ B = {x | (x ∈ A ∨ x ∈ B) ∧ x 6∈ A ∩ B}

= {x | x ∈ A ∪ B ∧ x 6∈ A ∩ B} = (A ∪ B)− (A ∩ B)

= {x | x ∈ A ∩ B ∧ x ∈ A ∩ B} = (A ∩ B) ∪ (A∩ B)

= (A− B) ∪ (B −A) = B ∆ A (Ex: A ∆ B = {1, 4})
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= {x | x ∈ A ∩ B ∧ x ∈ A ∩ B} = (A ∩ B) ∪ (A∩ B)

= (A− B) ∪ (B −A) = B ∆ A (Ex: A ∆ B = {1, 4})

Mutual Disjoint: Sets, A and B, are mutually disjoint (or disjoint), when A∩ B = φ.
In such a case, A ∆ B = A ∪ B, A ∩ B = A and A∩ B = B.
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= {x | x ∈ A ∪ B ∧ x 6∈ A ∩ B} = (A ∪ B)− (A ∩ B)

= {x | x ∈ A ∩ B ∧ x ∈ A ∩ B} = (A ∩ B) ∪ (A∩ B)

= (A− B) ∪ (B −A) = B ∆ A (Ex: A ∆ B = {1, 4})

Mutual Disjoint: Sets, A and B, are mutually disjoint (or disjoint), when A∩ B = φ.
In such a case, A ∆ B = A ∪ B, A ∩ B = A and A∩ B = B.

The following statements are equivalent: (Proof Left as an Exercise!)
(a) A ⊆ B, (b) A∪ B = B, (c) A ∩ B = A, (d) B ⊆ A
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Laws of Set Theory

For three sets, A,B, C ∈ U , the rules given as follows:

Name of the Law Mathematical Expressions

Double Complement: A = A

DeMorgan’s Laws: A ∪ B = A∩ B, A∩ B = A ∪ B
Commutative Laws: A ∪ B = B ∪ A, A∩ B = B ∩ A
Associative Laws: A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A∩ B) ∩ C
Distributive Laws: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Idempotent Laws: A ∪A = A, A∩A = A
Identity Laws: A ∪ φ = A, A∩ U = A

Inverse Laws: A ∪A = U , A∩A = φ

Domination Laws: A ∪ U = U , A∩ φ = φ

Absorption Laws: A ∪ (A∩ B) = A, A ∩ (A∪ B) = A
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Inverse Laws: A ∪A = U , A∩A = φ

Domination Laws: A ∪ U = U , A∩ φ = φ

Absorption Laws: A ∪ (A∩ B) = A, A ∩ (A∪ B) = A

An Example Proof Sketch: A∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

x ∈ A ∪ (B ∩ C) ⇔ (x ∈ A) ∨ (x ∈ B ∩ C) ⇔ (x ∈ A) ∨ ((x ∈ B) ∧ (x ∈ C))

⇔ ((x ∈ A) ∨ (x ∈ B)) ∧ ((x ∈ A) ∨ (x ∈ C))

⇔ (x ∈ A ∪ B) ∧ (x ∈ A ∪ C) ⇔ x ∈ (A ∪ B) ∩ (A∪ C)
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Some Derived Laws and Observations

A1 = A1 ∪ (A1 ∩A2) ∪ (A1 ∩A2 ∩A3) ∪ (A1 ∩A2 ∩A3 ∩A4) ∪ · · · (∀i , Ai ∈ U)
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Index Set and Partitions

Index Set

Definition: Let I 6= φ and ∀i ∈ I, let Ai ⊆ U (universal set). Then, I is called an
index set, and each i ∈ I is an index.
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Definition: Let I 6= φ and ∀i ∈ I, let Ai ⊆ U (universal set). Then, I is called an
index set, and each i ∈ I is an index.

Set Operations: (Union)
⋃

i∈I Ai = {x | ∃i ∈ I, x ∈ Ai}

(Intersection)
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i∈I Ai = {x | ∀i ∈ I, x ∈ Ai}
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Index Set and Partitions

Index Set

Definition: Let I 6= φ and ∀i ∈ I, let Ai ⊆ U (universal set). Then, I is called an
index set, and each i ∈ I is an index.

Set Operations: (Union)
⋃

i∈I Ai = {x | ∃i ∈ I, x ∈ Ai}

(Intersection)
⋂

i∈I Ai = {x | ∀i ∈ I, x ∈ Ai}

Generalized DeMorgan’s Law:
⋃

i∈I Ai =
⋂

i∈I Ai and
⋂

i∈I Ai =
⋃

i∈I Ai

Partition of a Set

Definition: Let S be a non-empty set. A family of non-empty subsets, {Si | i ∈ I}
(I being the index set) is said to form a partition of S if the following
two condition holds:

⋃

i∈I Si = S (Complete Set Cover), and
Si ∩ Sj = φ,∀i , j ∈ I and i 6= j (Pairwise Disjoint).
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Index Set and Partitions

Index Set

Definition: Let I 6= φ and ∀i ∈ I, let Ai ⊆ U (universal set). Then, I is called an
index set, and each i ∈ I is an index.

Set Operations: (Union)
⋃

i∈I Ai = {x | ∃i ∈ I, x ∈ Ai}

(Intersection)
⋂

i∈I Ai = {x | ∀i ∈ I, x ∈ Ai}

Generalized DeMorgan’s Law:
⋃

i∈I Ai =
⋂

i∈I Ai and
⋂

i∈I Ai =
⋃

i∈I Ai

Partition of a Set

Definition: Let S be a non-empty set. A family of non-empty subsets, {Si | i ∈ I}
(I being the index set) is said to form a partition of S if the following
two condition holds:

⋃

i∈I Si = S (Complete Set Cover), and
Si ∩ Sj = φ,∀i , j ∈ I and i 6= j (Pairwise Disjoint).

Example: Let Z0 = {3m | m is an integer} = {0,±3,±6, . . .},
Z1 = {3m + 1 | m is an integer} = {. . . ,−8,−5,−2,+1,+4,+7, . . .}
Z2 = {3m + 2 | m is an integer} = {. . . ,−7,−4,−1,+2,+5,+8, . . .}
Now, Z0 ∪ Z1 ∪ Z2 = Z and Z0 ∩ Z1 = Z1 ∩ Z2 = Z2 ∩ Z0 = φ
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Thank You!
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