Set Theory

Aritra Hazra

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in
Autumn 2020

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)
- Cardinality: Number of elements in a set (Ex: $|\mathcal{S}|=9$)

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)
- Cardinality: Number of elements in a set (Ex: $|\mathcal{S}|=9$)
- Finite Set: Set having finite cardinality (Ex: The set, \mathcal{S})
- Infinite Set: Set having infinite (∞) cardinality (Ex: $\mathcal{T}=\{1,2,4,8,16, \ldots\}=\left\{2^{y} \mid y\right.$ is integer and $\left.y \geq 0\right\}$)

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)
- Cardinality: Number of elements in a set (Ex: $|\mathcal{S}|=9$)
- Finite Set: Set having finite cardinality (Ex: The set, \mathcal{S})
- Infinite Set: Set having infinite (∞) cardinality

$$
\left(\mathrm{Ex}: \mathcal{T}=\{1,2,4,8,16, \ldots\}=\left\{2^{y} \mid y \text { is integer and } y \geq 0\right\}\right)
$$

Subset: A set (\mathcal{A}) is a subset of another $\operatorname{set}(\mathcal{B})$ iff each element of \mathcal{A} is also a member of \mathcal{B}. Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)
- Cardinality: Number of elements in a set (Ex: $|\mathcal{S}|=9$)
- Finite Set: Set having finite cardinality (Ex: The set, \mathcal{S})
- Infinite Set: Set having infinite (∞) cardinality

$$
\left(\mathrm{Ex}: \mathcal{T}=\{1,2,4,8,16, \ldots\}=\left\{2^{y} \mid y \text { is integer and } y \geq 0\right\}\right)
$$

Subset: A set (\mathcal{A}) is a subset of another $\operatorname{set}(\mathcal{B})$ iff each element of \mathcal{A} is also a member of \mathcal{B}. Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \nsubseteq \mathcal{B}$ iff $\neg \forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x[x \in \mathcal{A} \wedge x \notin \mathcal{B}]$.

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)
- Cardinality: Number of elements in a set (Ex: $|\mathcal{S}|=9$)
- Finite Set: Set having finite cardinality (Ex: The set, \mathcal{S})
- Infinite Set: Set having infinite (∞) cardinality

$$
\left(\mathrm{Ex}: \mathcal{T}=\{1,2,4,8,16, \ldots\}=\left\{2^{y} \mid y \text { is integer and } y \geq 0\right\}\right)
$$

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B}. Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \nsubseteq \mathcal{B}$ iff $\neg \forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x[x \in \mathcal{A} \wedge x \notin \mathcal{B}]$.
(Ex: Let $\mathcal{R}=\{z \mid z$ is composite integer and $2 \leq z \leq 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$)

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)
- Cardinality: Number of elements in a set (Ex: $|\mathcal{S}|=9$)
- Finite Set: Set having finite cardinality (Ex: The set, \mathcal{S})
- Infinite Set: Set having infinite (∞) cardinality

$$
\left(\mathrm{Ex}: \mathcal{T}=\{1,2,4,8,16, \ldots\}=\left\{2^{y} \mid y \text { is integer and } y \geq 0\right\}\right)
$$

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B}. Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \nsubseteq \mathcal{B}$ iff $\neg \forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x[x \in \mathcal{A} \wedge x \notin \mathcal{B}]$. (Ex: Let $\mathcal{R}=\{z \mid z$ is composite integer and $2 \leq z \leq 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$) Equal Sets: $\mathcal{A}=\mathcal{B}$ iff $[(\mathcal{A} \subseteq \mathcal{B}) \wedge(\mathcal{B} \subseteq \mathcal{A})] \equiv \forall x[x \in \mathcal{A} \Leftrightarrow x \in \mathcal{B}]$

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)
- Cardinality: Number of elements in a set (Ex: $|\mathcal{S}|=9$)
- Finite Set: Set having finite cardinality (Ex: The set, \mathcal{S})
- Infinite Set: Set having infinite (∞) cardinality

$$
\left(\mathrm{Ex}: \mathcal{T}=\{1,2,4,8,16, \ldots\}=\left\{2^{y} \mid y \text { is integer and } y \geq 0\right\}\right)
$$

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B}. Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \nsubseteq \mathcal{B}$ iff $\neg \forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x[x \in \mathcal{A} \wedge x \notin \mathcal{B}]$. (Ex: Let $\mathcal{R}=\{z \mid z$ is composite integer and $2 \leq z \leq 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$)
Equal Sets: $\mathcal{A}=\mathcal{B}$ iff $[(\mathcal{A} \subseteq \mathcal{B}) \wedge(\mathcal{B} \subseteq \mathcal{A})] \equiv \forall x[x \in \mathcal{A} \Leftrightarrow x \in \mathcal{B}]$ Proper Subset: $\mathcal{A} \subset \mathcal{B}$ iff $[\forall x(x \in \mathcal{A} \Rightarrow x \in \mathcal{B}) \wedge \exists y(y \in \mathcal{B} \wedge y \notin \mathcal{A})]$

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)
- Cardinality: Number of elements in a set (Ex: $|\mathcal{S}|=9$)
- Finite Set: Set having finite cardinality (Ex: The set, \mathcal{S})
- Infinite Set: Set having infinite (∞) cardinality

$$
\left(\mathrm{Ex}: \mathcal{T}=\{1,2,4,8,16, \ldots\}=\left\{2^{y} \mid y \text { is integer and } y \geq 0\right\}\right)
$$

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B}. Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \nsubseteq \mathcal{B}$ iff $\neg \forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x[x \in \mathcal{A} \wedge x \notin \mathcal{B}]$.
(Ex: Let $\mathcal{R}=\{z \mid z$ is composite integer and $2 \leq z \leq 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$)
Equal Sets: $\mathcal{A}=\mathcal{B}$ iff $[(\mathcal{A} \subseteq \mathcal{B}) \wedge(\mathcal{B} \subseteq \mathcal{A})] \equiv \forall x[x \in \mathcal{A} \Leftrightarrow x \in \mathcal{B}]$
Proper Subset: $\mathcal{A} \subset \mathcal{B}$ iff $[\forall x(x \in \mathcal{A} \Rightarrow x \in \mathcal{B}) \wedge \exists y(y \in \mathcal{B} \wedge y \notin \mathcal{A})]$
Null Set: Set containing NO element, denoted using ϕ or $\}$ (Ex: $\mathcal{Q}=\{z \mid x+y=z$ and all x, y, z are odd $\}=\phi)$

Sets and Subsets: Definitions and Properties

Set: Well-defined collection of distinct objects
(Ex: $\mathcal{S}=\{4,9,16 \ldots, 81,100\}=\left\{x^{2} \mid x\right.$ is integer and $\left.1<x \leq 10\right\}$)

- Membership: Element belonging to (or a member of) a set (Ex: $25,64 \in \mathcal{S}$ and $50,72 \notin \mathcal{S}$)
- Cardinality: Number of elements in a set (Ex: $|\mathcal{S}|=9$)
- Finite Set: Set having finite cardinality (Ex: The set, \mathcal{S})
- Infinite Set: Set having infinite (∞) cardinality

$$
\text { (Ex: } \left.\mathcal{T}=\{1,2,4,8,16, \ldots\}=\left\{2^{y} \mid y \text { is integer and } y \geq 0\right\}\right)
$$

Subset: A set (\mathcal{A}) is a subset of another set (\mathcal{B}) iff each element of \mathcal{A} is also a member of \mathcal{B}. Formally, $\mathcal{A} \subseteq \mathcal{B}$ iff $\forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}]$.

Hence, $\mathcal{A} \nsubseteq \mathcal{B}$ iff $\neg \forall x[x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x[x \in \mathcal{A} \wedge x \notin \mathcal{B}]$.
(Ex: Let $\mathcal{R}=\{z \mid z$ is composite integer and $2 \leq z \leq 100\}$, so $\mathcal{S} \subseteq \mathcal{R}$)
Equal Sets: $\mathcal{A}=\mathcal{B}$ iff $[(\mathcal{A} \subseteq \mathcal{B}) \wedge(\mathcal{B} \subseteq \mathcal{A})] \equiv \forall x[x \in \mathcal{A} \Leftrightarrow x \in \mathcal{B}]$
Proper Subset: $\mathcal{A} \subset \mathcal{B}$ iff $[\forall x(x \in \mathcal{A} \Rightarrow x \in \mathcal{B}) \wedge \exists y(y \in \mathcal{B} \wedge y \notin \mathcal{A})]$
Null Set: Set containing NO element, denoted using ϕ or $\}$ (Ex: $\mathcal{Q}=\{z \mid x+y=z$ and all x, y, z are odd $\}=\phi$)
Note: $|\phi|=0$, but $\phi \neq\{0\}$ and $\phi \neq\{\phi\}$ (since, $|\{0\}|=|\{\phi\}|=1$)

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A}=\{1,2,3\}$,

Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$ (Ex: Let $\mathcal{A}=\{1,2,3\}$,

Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
Cardinality: $|\mathcal{P}(\mathcal{A})|=2^{|\mathcal{A}|}$ (Why?)

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$
(Ex: Let $\mathcal{A}=\{1,2,3\}$,
Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
Cardinality: $|\mathcal{P}(\mathcal{A})|=2^{|\mathcal{A}|}$ (Why?)
Proof. Let $|\mathcal{A}|=n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \leq k \leq n$). So, the total number of subsets $=\sum_{i=0}^{n}\binom{n}{k}=2^{n}$.

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$
(Ex: Let $\mathcal{A}=\{1,2,3\}$,
Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
Cardinality: $|\mathcal{P}(\mathcal{A})|=2^{|\mathcal{A}|}$ (Why?)
Proof. Let $|\mathcal{A}|=n$. There are $\binom{n}{k}$ subsets of size k possible (for any k,
$0 \leq k \leq n)$. So, the total number of subsets $=\sum_{i=0}^{n}\binom{n}{k}=2^{n}$.
Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$
(Ex: Let $\mathcal{A}=\{1,2,3\}$,
Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
Cardinality: $|\mathcal{P}(\mathcal{A})|=2^{|\mathcal{A}|}$ (Why?)
Proof. Let $|\mathcal{A}|=n$. There are $\binom{n}{k}$ subsets of size k possible (for any k,
$0 \leq k \leq n)$. So, the total number of subsets $=\sum_{i=0}^{n}\binom{n}{k}=2^{n}$.
Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

- $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}, \quad$ but $\mathcal{A} \subseteq \mathcal{B} \nRightarrow \mathcal{A} \subset \mathcal{B}$.

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$
(Ex: Let $\mathcal{A}=\{1,2,3\}$,
Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
Cardinality: $|\mathcal{P}(\mathcal{A})|=2^{|\mathcal{A}|}$ (Why?)
Proof. Let $|\mathcal{A}|=n$. There are $\binom{n}{k}$ subsets of size k possible (for any k,
$0 \leq k \leq n$). So, the total number of subsets $=\sum_{i=0}^{n}\binom{n}{k}=2^{n}$.
Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

- $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}, \quad$ but $\mathcal{A} \subseteq \mathcal{B} \nRightarrow \mathcal{A} \subset \mathcal{B}$.
- $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \wedge(\mathcal{A} \neq \mathcal{B})]$.

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$
(Ex: Let $\mathcal{A}=\{1,2,3\}$,
Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
Cardinality: $|\mathcal{P}(\mathcal{A})|=2^{|\mathcal{A}|}$ (Why?)
Proof. Let $|\mathcal{A}|=n$. There are $\binom{n}{k}$ subsets of size k possible (for any k,
$0 \leq k \leq n$). So, the total number of subsets $=\sum_{i=0}^{n}\binom{n}{k}=2^{n}$.
Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

- $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}, \quad$ but $\mathcal{A} \subseteq \mathcal{B} \nRightarrow \mathcal{A} \subset \mathcal{B}$.
- $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \wedge(\mathcal{A} \neq \mathcal{B})]$.
- $(\mathcal{A} \neq \mathcal{B})$ if and only if $(\mathcal{A} \nsubseteq \mathcal{B}) \vee(\mathcal{B} \nsubseteq \mathcal{A})$.

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$
(Ex: Let $\mathcal{A}=\{1,2,3\}$,
Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
Cardinality: $|\mathcal{P}(\mathcal{A})|=2^{|\mathcal{A}|}$ (Why?)
Proof. Let $|\mathcal{A}|=n$. There are $\binom{n}{k}$ subsets of size k possible (for any k,
$0 \leq k \leq n)$. So, the total number of subsets $=\sum_{i=0}^{n}\binom{n}{k}=2^{n}$.
Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

- $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}, \quad$ but $\mathcal{A} \subseteq \mathcal{B} \nRightarrow \mathcal{A} \subset \mathcal{B}$.
- $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \wedge(\mathcal{A} \neq \mathcal{B})]$.
- $(\mathcal{A} \neq \mathcal{B})$ if and only if $(\mathcal{A} \nsubseteq \mathcal{B}) \vee(\mathcal{B} \nsubseteq \mathcal{A})$.
- $\phi \subseteq \mathcal{A}$. If $\mathcal{A} \neq \phi$, then $\phi \subset \mathcal{A}$. $\mathcal{A} \subseteq \mathcal{A}$ and $\mathcal{A} \in \mathcal{P}(\mathcal{A})$.

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$
(Ex: Let $\mathcal{A}=\{1,2,3\}$,
Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
Cardinality: $|\mathcal{P}(\mathcal{A})|=2^{|\mathcal{A}|}$ (Why?)
Proof: Let $|\mathcal{A}|=n$. There are $\binom{n}{k}$ subsets of size k possible (for any k,
$0 \leq k \leq n)$. So, the total number of subsets $=\sum_{i=0}^{n}\binom{n}{k}=2^{n}$.
Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

- $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}, \quad$ but $\mathcal{A} \subseteq \mathcal{B} \nRightarrow \mathcal{A} \subset \mathcal{B}$.
- $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \wedge(\mathcal{A} \neq \mathcal{B})]$.
- $(\mathcal{A} \neq \mathcal{B})$ if and only if $(\mathcal{A} \nsubseteq \mathcal{B}) \vee(\mathcal{B} \nsubseteq \mathcal{A})$.
- $\phi \subseteq \mathcal{A}$. If $\mathcal{A} \neq \phi$, then $\phi \subset \mathcal{A}$. $\mathcal{A} \subseteq \mathcal{A} \quad$ and $\quad \mathcal{A} \in \mathcal{P}(\mathcal{A})$.
- If $(\mathcal{A} \subseteq \mathcal{B})$, then $|\mathcal{A}| \leq|\mathcal{B}|$. If $(\mathcal{A} \subset \mathcal{B})$, then $|\mathcal{A}|<|\mathcal{B}|$. If $(\mathcal{A}=\mathcal{B})$, then $|\mathcal{A}|=|\mathcal{B}|$.

Power Set and Set Properties

Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as $\mathcal{P}(\mathcal{A})$ or $2^{\mathcal{A}}$
(Ex: Let $\mathcal{A}=\{1,2,3\}$,
Thus, $\mathcal{P}(\mathcal{A})=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
Cardinality: $|\mathcal{P}(\mathcal{A})|=2^{|\mathcal{A}|}$ (Why?)
Proof: Let $|\mathcal{A}|=n$. There are $\binom{n}{k}$ subsets of size k possible (for any k,
$0 \leq k \leq n)$. So, the total number of subsets $=\sum_{i=0}^{n}\binom{n}{k}=2^{n}$.
Properties: For sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have the following:

- $\mathcal{A} \subset \mathcal{B} \Rightarrow \mathcal{A} \subseteq \mathcal{B}, \quad$ but $\mathcal{A} \subseteq \mathcal{B} \nRightarrow \mathcal{A} \subset \mathcal{B}$.
- $(\mathcal{A} \subset \mathcal{B})$ if and only if $[(\mathcal{A} \subseteq \mathcal{B}) \wedge(\mathcal{A} \neq \mathcal{B})]$.
- $(\mathcal{A} \neq \mathcal{B})$ if and only if $(\mathcal{A} \nsubseteq \mathcal{B}) \vee(\mathcal{B} \nsubseteq \mathcal{A})$.
- $\phi \subseteq \mathcal{A}$. If $\mathcal{A} \neq \phi$, then $\phi \subset \mathcal{A}$. $\mathcal{A} \subseteq \mathcal{A} \quad$ and $\quad \mathcal{A} \in \mathcal{P}(\mathcal{A})$.
- If $(\mathcal{A} \subseteq \mathcal{B})$, then $|\mathcal{A}| \leq|\mathcal{B}|$.

If $(\mathcal{A} \subset \mathcal{B})$, then $|\mathcal{A}|<|\mathcal{B}|$.
If $(\mathcal{A}=\mathcal{B})$, then $|\mathcal{A}|=|\mathcal{B}|$.

- If $(\mathcal{A} \subseteq \mathcal{B})$ and $(\mathcal{B} \subseteq \mathcal{C})$, then $(\mathcal{A} \subseteq \mathcal{C})$.

If $(\mathcal{A} \subset \mathcal{B})$ and $(\mathcal{B} \subset \mathcal{C})$, then $(\mathcal{A} \subset \mathcal{C})$.
If $(\mathcal{A} \subseteq \mathcal{B})$ and $(\mathcal{B} \subset \mathcal{C})$, then $(\mathcal{A} \subset \mathcal{C})$. If $(\mathcal{A} \subset \mathcal{B})$ and $(\mathcal{B} \subseteq \mathcal{C})$, then $(\mathcal{A} \subset \mathcal{C})$.

Frequently-Used Set Examples and Notations

Popular Set Examples:

$$
\begin{aligned}
\mathbb{N} & =\text { Set of Non-negative natural numbers }=\{0,1,2, \ldots\} \\
\mathbb{Z} & =\text { Set of Integers }=\{\ldots,-2,-1,0,1,2, \ldots\} \\
\mathbb{Z}^{+} & =\text {Set of Positive Integers }=\{x \in \mathbb{Z} \mid x>0\} \\
\mathbb{Q} & =\text { Set of Rational Numbers }=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\} \\
\mathbb{Q}^{+} & =\text {Set of Positive Rational Numbers }=\{r \in \mathbb{Q} \mid r>0\} \\
\mathbb{Q}^{*} & =\text { Set of Non-zero Rational Numbers }=\{r \in \mathbb{Q} \mid r \neq 0\} \\
\mathbb{R} & =\text { Set of Real Numbers } \\
\mathbb{R}^{+} & =\text {Set of Positive Real Numbers } \\
\mathbb{R}^{*} & =\text { Set of Non-zero Real Numbers } \\
\mathbb{C} & =\text { Set of Complex Numbers }=\left\{a+i b \mid a, b \in \mathbb{R}, i^{2}=-1\right\} \\
\mathbb{C}^{*} & =\text { Set of Non-zero Complex Numbers }=\{c \in \mathbb{C} \mid c \neq 0\}
\end{aligned}
$$

Frequently-Used Set Examples and Notations

Popular Set Examples:

$$
\begin{aligned}
\mathbb{N} & =\text { Set of Non-negative natural numbers }=\{0,1,2, \ldots\} \\
\mathbb{Z} & =\text { Set of Integers }=\{\ldots,-2,-1,0,1,2, \ldots\} \\
\mathbb{Z}^{+} & =\text {Set of Positive Integers }=\{x \in \mathbb{Z} \mid x>0\} \\
\mathbb{Q} & =\text { Set of Rational Numbers }=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\} \\
\mathbb{Q}^{+} & =\text {Set of Positive Rational Numbers }=\{r \in \mathbb{Q} \mid r>0\} \\
\mathbb{Q}^{*} & =\text { Set of Non-zero Rational Numbers }=\{r \in \mathbb{Q} \mid r \neq 0\} \\
\mathbb{R} & =\text { Set of Real Numbers } \\
\mathbb{R}^{+} & =\text {Set of Positive Real Numbers } \\
\mathbb{R}^{*} & =\text { Set of Non-zero Real Numbers } \\
\mathbb{C} & =\text { Set of Complex Numbers }=\left\{a+i b \mid a, b \in \mathbb{R}, i^{2}=-1\right\} \\
\mathbb{C}^{*} & =\text { Set of Non-zero Complex Numbers }=\{c \in \mathbb{C} \mid c \neq 0\}
\end{aligned}
$$

Frequently-Used Notations:

- For each $n \in \mathbb{Z}^{+}, \mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$
- For real numbers, a, b with $a<b$, we define intervals as follows:
(Closed) $[a, b]=\{x \mid a \leq x \leq b\} \quad$ (Open) $(a, b)=\{x \mid a<x<b\}$
(Half-Open) $(a, b]=\{x \mid a<x \leq b\} \quad$ and $\quad[a, b)=\{x \mid a \leq x<b\}$

Counting using Set Theory

Prove that, $\binom{n}{r+1}=\frac{n-r}{r+1}\binom{n}{r}$

Counting using Set Theory

$$
\text { Prove that, }\binom{n}{r+1}=\frac{n-r}{r+1}\binom{n}{r}
$$

Counting: Total number of $(r+1)$-element subsets, formed from all r-element subsets by adding an element from ($n-r$) remaining elements, is, $m=(n-r)\binom{n}{r}$. Ex: Let $n=4$ and $\mathcal{S}=\{1,2,3,4\}$. All 2-element subsets are, $\mathcal{A}_{1}=\{1,2\}, \mathcal{A}_{2}=\{1,3\}$, $\mathcal{A}_{3}=\{1,4\}, \mathcal{A}_{4}=\{2,3\}, \mathcal{A}_{5}=\{2,4\}, \mathcal{A}_{6}=\{3,4\}$. From each \mathcal{A}_{i} s, a 3 -element subset can be formed in two ways. So, total possibilities $=2 \times\binom{ 4}{2}=12$.

Counting using Set Theory

Prove that, $\binom{n}{r+1}=\frac{n-r}{r+1}\binom{n}{r}$

Counting: Total number of $(r+1)$-element subsets, formed from all r-element subsets by adding an element from ($n-r$) remaining elements, is, $m=(n-r)\binom{n}{r}$. Ex: Let $n=4$ and $\mathcal{S}=\{1,2,3,4\}$. All 2-element subsets are, $\mathcal{A}_{1}=\{1,2\}, \mathcal{A}_{2}=\{1,3\}$, $\mathcal{A}_{3}=\{1,4\}, \mathcal{A}_{4}=\{2,3\}, \mathcal{A}_{5}=\{2,4\}, \mathcal{A}_{6}=\{3,4\}$. From each \mathcal{A}_{i} s, a 3-element subset can be formed in two ways. So, total possibilities $=2 \times\binom{ 4}{2}=12$.
Repetition: Each $(r+1)$ element subset can be formed from $(r+1)$ different r-element subsets. So, the total choice reduces to, $\binom{n}{r+1}=\frac{m}{r+1}=\frac{n-r}{r+1}\binom{n}{r}$. Ex: 3 -element subset $\{1,2,3\}$ can formed from $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{4}$ by adding an element to each. So, reduced number of possibilities $=\frac{12}{3}=4=\binom{4}{3}$

Counting using Set Theory

Prove that, $\binom{n}{r+1}=\frac{n-r}{r+1}\binom{n}{r}$

Counting: Total number of $(r+1)$-element subsets, formed from all r-element subsets by adding an element from $(n-r)$ remaining elements, is, $m=(n-r)\binom{n}{r}$. Ex: Let $n=4$ and $\mathcal{S}=\{1,2,3,4\}$. All 2-element subsets are, $\mathcal{A}_{1}=\{1,2\}, \mathcal{A}_{2}=\{1,3\}$, $\mathcal{A}_{3}=\{1,4\}, \mathcal{A}_{4}=\{2,3\}, \mathcal{A}_{5}=\{2,4\}, \mathcal{A}_{6}=\{3,4\}$. From each \mathcal{A}_{i} s, a 3-element subset can be formed in two ways. So, total possibilities $=2 \times\binom{ 4}{2}=12$.
Repetition: Each $(r+1)$ element subset can be formed from $(r+1)$ different r-element subsets. So, the total choice reduces to, $\binom{n}{r+1}=\frac{m}{r+1}=\frac{n-r}{r+1}\binom{n}{r}$. Ex: 3 -element subset $\{1,2,3\}$ can formed from $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{4}$ by adding an element to each. So, reduced number of possibilities $=\frac{12}{3}=4=\binom{4}{3}$

Prove that, $\binom{r}{r}+\binom{r+1}{r}+\cdots+\binom{n-1}{r}+\binom{n}{r}=\binom{n+1}{r+1}$

Counting using Set Theory

Prove that, $\binom{n}{r+1}=\frac{n-r}{r+1}\binom{n}{r}$

Counting: Total number of $(r+1)$-element subsets, formed from all r-element subsets by adding an element from $(n-r)$ remaining elements, is, $m=(n-r)\binom{n}{r}$. Ex: Let $n=4$ and $\mathcal{S}=\{1,2,3,4\}$. All 2-element subsets are, $\mathcal{A}_{1}=\{1,2\}, \mathcal{A}_{2}=\{1,3\}$, $\mathcal{A}_{3}=\{1,4\}, \mathcal{A}_{4}=\{2,3\}, \mathcal{A}_{5}=\{2,4\}, \mathcal{A}_{6}=\{3,4\}$. From each \mathcal{A}_{i} s, a 3-element subset can be formed in two ways. So, total possibilities $=2 \times\binom{ 4}{2}=12$.
Repetition: Each $(r+1)$ element subset can be formed from $(r+1)$ different r-element subsets. So, the total choice reduces to, $\binom{n}{r+1}=\frac{m}{r+1}=\frac{n-r}{r+1}\binom{n}{r}$. Ex: 3 -element subset $\{1,2,3\}$ can formed from $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{4}$ by adding an element to each. So, reduced number of possibilities $=\frac{12}{3}=4=\binom{4}{3}$

Prove that, $\binom{r}{r}+\binom{r+1}{r}+\cdots+\binom{n-1}{r}+\binom{n}{r}=\binom{n+1}{r+1}$
Let the $(n+1)$-element set be $=\{1,2, \ldots, n, n+1\}$ From $(n+1)$-element set, choosing $(r+1)$-element subsets with smallest element i can be done in $\binom{n+1-i}{r}$ ways. So, all such possible choice leads to, $\sum_{i=1}^{(n+1)-(r+1)}\binom{n+1-i}{r}=\binom{n+1}{r+1}$, implying the proof.

Counting using Set Theory

Prove that, $\sum_{i=0}^{n} i\binom{n}{i}=n .2^{n-1}$

Counting using Set Theory

Prove that, $\sum_{i=0}^{n} i\binom{n}{i}=n .2^{n-1}$
From an n-element set, Size of a subset with i elements + Size of its complement subset $=i+(n-i)=n$ and there are $\binom{n}{i}$ number of these each.

Counting using Set Theory

Prove that, $\sum_{i=0}^{n} i\binom{n}{i}=n .2^{n-1}$
From an n-element set, Size of a subset with i elements + Size of its complement subset $=i+(n-i)=n$ and there are $\binom{n}{i}$ number of these each. Therefore, $2 \sum_{i=0}^{n} i\binom{n}{i}=n \sum_{i=0}^{n}\binom{n}{i}=n .2^{n}$, implying the proof.

Counting using Set Theory

Prove that, $\sum_{i=0}^{n} i\binom{n}{i}=n .2^{n-1}$

From an n-element set, Size of a subset with i elements + Size of its complement subset $=i+(n-i)=n$ and there are $\binom{n}{i}$ number of these each. Therefore, $2 \sum_{i=0}^{n} i\binom{n}{i}=n \sum_{i=0}^{n}\binom{n}{i}=n .2^{n}$, implying the proof.

Prove that, Number of Summands of n is 2^{n-1}.

Counting using Set Theory

Prove that, $\sum_{i=0}^{n} i\binom{n}{i}=n .2^{n-1}$

From an n-element set, Size of a subset with i elements + Size of its complement subset $=i+(n-i)=n$ and there are $\binom{n}{i}$ number of these each. Therefore, $2 \sum_{i=0}^{n} i\binom{n}{i}=n \sum_{i=0}^{n}\binom{n}{i}=n .2^{n}$, implying the proof.

Prove that, Number of Summands of n is 2^{n-1}.

Consider, $n=4$.

Summand	Subset Correspondence
$1+1+1+1=1+1+1+1$	ϕ
$2+1+1=(1+1)+1+1$	$\{1\}$
$1+2+1=1+(1+1)+1$	$\{2\}$
$1+1+2=1+1+(1+1)$	$\{3\}$
$3+1=(1+1+1)+1$	$\{1,2\}$
$2+2=(1+1)+(1+1)$	$\{1,3\}$
$1+3=1+(1+1+1)$	$\{2,3\}$
$4=(1+1+1+1)$	$\{1,2,3\}$

Counting using Set Theory

Prove that, $\sum_{i=0}^{n} i\binom{n}{i}=n .2^{n-1}$

From an n-element set, Size of a subset with i elements + Size of its complement subset $=i+(n-i)=n$ and there are $\binom{n}{i}$ number of these each. Therefore, $2 \sum_{i=0}^{n} i\binom{n}{i}=n \sum_{i=0}^{n}\binom{n}{i}=n .2^{n}$, implying the proof.

Prove that, Number of Summands of n is 2^{n-1}.

Consider, $n=4$.

Summand	Subset Correspondence
$1+1+1+1=1+1+1+1$	ϕ
$2+1+1=(1+1)+1+1$	$\{1\}$
$1+2+1=1+(1+1)+1$	$\{2\}$
$1+1+2=1+1+(1+1)$	$\{3\}$
$3+1=(1+1+1)+1$	$\{1,2\}$
$2+2=(1+1)+(1+1)$	$\{1,3\}$
$1+3=1+(1+1+1)$	$\{2,3\}$
$4=(1+1+1+1)$	$\{1,2,3\}$

\therefore Number of summands of $n=$ Number of subsets of an $(n-1)$-element set $=2^{n-1}$.

Set Operations

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A}=\{1,2,3\}$ and $\mathcal{B}=\{2,3,4\}$)
Union: $\mathcal{A} \cup \mathcal{B}=\{x \mid x \in \mathcal{A} \vee x \in \mathcal{B}\}$ ($\mathrm{Ex}: \mathcal{A} \cup \mathcal{B}=\{1,2,3,4\}$)

Set Operations

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A}=\{1,2,3\}$ and $\mathcal{B}=\{2,3,4\}$)
Union: $\mathcal{A} \cup \mathcal{B}=\{x \mid x \in \mathcal{A} \vee x \in \mathcal{B}\}$ Intersection: $\mathcal{A} \cap \mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \in \mathcal{B}\}$
($\mathrm{Ex}: \mathcal{A} \cup \mathcal{B}=\{1,2,3,4\}$)
(Ex: $\mathcal{A} \cap \mathcal{B}=\{2,3\}$)

Set Operations

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A}=\{1,2,3\}$ and $\mathcal{B}=\{2,3,4\}$)
Union: $\mathcal{A} \cup \mathcal{B}=\{x \mid x \in \mathcal{A} \vee x \in \mathcal{B}\}$
Intersection: $\mathcal{A} \cap \mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \in \mathcal{B}\}$
($\mathrm{Ex}: \mathcal{A} \cup \mathcal{B}=\{1,2,3,4\}$)
(Ex: $\mathcal{A} \cap \mathcal{B}=\{2,3\}$)
Complement: $\overline{\mathcal{A}}=\{x \mid x \in \mathcal{U} \wedge x \notin \mathcal{A}\}$

Set Operations

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A}=\{1,2,3\}$ and $\mathcal{B}=\{2,3,4\}$)
Union: $\mathcal{A} \cup \mathcal{B}=\{x \mid x \in \mathcal{A} \vee x \in \mathcal{B}\}$ ($\mathrm{Ex}: \mathcal{A} \cup \mathcal{B}=\{1,2,3,4\}$)
Intersection: $\mathcal{A} \cap \mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \in \mathcal{B}\}$
(Ex: $\mathcal{A} \cap \mathcal{B}=\{2,3\}$)
Complement: $\overline{\mathcal{A}}=\{x \mid x \in \mathcal{U} \wedge x \notin \mathcal{A}\}$
Relative Complement: $\mathcal{A}-\mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \notin \mathcal{B}\}=\mathcal{A} \cap \overline{\mathcal{B}}$
(Ex: $\mathcal{A}-\mathcal{B}=\{1\}$)

Set Operations

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A}=\{1,2,3\}$ and $\mathcal{B}=\{2,3,4\}$)
Union: $\mathcal{A} \cup \mathcal{B}=\{x \mid x \in \mathcal{A} \vee x \in \mathcal{B}\}$
(Ex: $\mathcal{A} \cup \mathcal{B}=\{1,2,3,4\}$)
Intersection: $\mathcal{A} \cap \mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \in \mathcal{B}\}$
($\mathrm{Ex}: \mathcal{A} \cap \mathcal{B}=\{2,3\}$)
Complement: $\overline{\mathcal{A}}=\{x \mid x \in \mathcal{U} \wedge x \notin \mathcal{A}\}$
Relative Complement: $\mathcal{A}-\mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \notin \mathcal{B}\}=\mathcal{A} \cap \overline{\mathcal{B}} \quad$ (Ex: $\mathcal{A}-\mathcal{B}=\{1\}$) Symmetric Difference:

$$
\begin{aligned}
\mathcal{A} \Delta \mathcal{B} & =\{x \mid(x \in \mathcal{A} \vee x \in \mathcal{B}) \wedge x \notin \mathcal{A} \cap \mathcal{B}\} \\
& =\{x \mid x \in \mathcal{A} \cup \mathcal{B} \wedge x \notin \mathcal{A} \cap \mathcal{B}\}=(\mathcal{A} \cup \mathcal{B})-(\mathcal{A} \cap \mathcal{B}) \\
& =\{x \mid x \in \mathcal{A} \cap \overline{\mathcal{B}} \wedge x \in \overline{\mathcal{A}} \cap \mathcal{B}\}=(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\overline{\mathcal{A}} \cap \mathcal{B}) \\
& =(\mathcal{A}-\mathcal{B}) \cup(\mathcal{B}-\mathcal{A})=\mathcal{B} \Delta \mathcal{A} \quad(E x: \mathcal{A} \Delta \mathcal{B}=\{1,4\})
\end{aligned}
$$

Set Operations

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A}=\{1,2,3\}$ and $\mathcal{B}=\{2,3,4\}$)

$$
\text { Union: } \mathcal{A} \cup \mathcal{B}=\{x \mid x \in \mathcal{A} \vee x \in \mathcal{B}\}
$$

$$
\text { (Ex: } \mathcal{A} \cup \mathcal{B}=\{1,2,3,4\} \text {) }
$$

Intersection: $\mathcal{A} \cap \mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \in \mathcal{B}\}$
(Ex: $\mathcal{A} \cap \mathcal{B}=\{2,3\}$)
Complement: $\overline{\mathcal{A}}=\{x \mid x \in \mathcal{U} \wedge x \notin \mathcal{A}\}$
Relative Complement: $\mathcal{A}-\mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \notin \mathcal{B}\}=\mathcal{A} \cap \overline{\mathcal{B}} \quad($ Ex: $\mathcal{A}-\mathcal{B}=\{1\})$ Symmetric Difference:

$$
\begin{aligned}
\mathcal{A} \Delta \mathcal{B} & =\{x \mid(x \in \mathcal{A} \vee x \in \mathcal{B}) \wedge x \notin \mathcal{A} \cap \mathcal{B}\} \\
& =\{x \mid x \in \mathcal{A} \cup \mathcal{B} \wedge x \notin \mathcal{A} \cap \mathcal{B}\}=(\mathcal{A} \cup \mathcal{B})-(\mathcal{A} \cap \mathcal{B}) \\
& =\{x \mid x \in \mathcal{A} \cap \overline{\mathcal{B}} \wedge x \in \overline{\mathcal{A}} \cap \mathcal{B}\}=(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\overline{\mathcal{A}} \cap \mathcal{B}) \\
& =(\mathcal{A}-\mathcal{B}) \cup(\mathcal{B}-\mathcal{A})=\mathcal{B} \Delta \mathcal{A} \quad(\text { Ex: } \mathcal{A} \Delta \mathcal{B}=\{1,4\})
\end{aligned}
$$

Mutual Disjoint: Sets, \mathcal{A} and \mathcal{B}, are mutually disjoint (or disjoint), when $\mathcal{A} \cap \mathcal{B}=\phi$. In such a case, $\mathcal{A} \Delta \mathcal{B}=\mathcal{A} \cup \mathcal{B}, \mathcal{A} \cap \overline{\mathcal{B}}=\mathcal{A}$ and $\overline{\mathcal{A}} \cap \mathcal{B}=\mathcal{B}$.

Set Operations

For two sets, $\mathcal{A}, \mathcal{B} \in \mathcal{U}$ (universal set), the following operations are defined: (Ex: Let, $\mathcal{A}=\{1,2,3\}$ and $\mathcal{B}=\{2,3,4\}$)

$$
\text { Union: } \mathcal{A} \cup \mathcal{B}=\{x \mid x \in \mathcal{A} \vee x \in \mathcal{B}\}
$$

$$
(\mathrm{Ex}: \mathcal{A} \cup \mathcal{B}=\{1,2,3,4\})
$$

Intersection: $\mathcal{A} \cap \mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \in \mathcal{B}\}$
($\mathrm{Ex}: \mathcal{A} \cap \mathcal{B}=\{2,3\}$)
Complement: $\overline{\mathcal{A}}=\{x \mid x \in \mathcal{U} \wedge x \notin \mathcal{A}\}$
Relative Complement: $\mathcal{A}-\mathcal{B}=\{x \mid x \in \mathcal{A} \wedge x \notin \mathcal{B}\}=\mathcal{A} \cap \overline{\mathcal{B}} \quad$ (Ex: $\mathcal{A}-\mathcal{B}=\{1\})$ Symmetric Difference:

$$
\begin{aligned}
\mathcal{A} \Delta \mathcal{B} & =\{x \mid(x \in \mathcal{A} \vee x \in \mathcal{B}) \wedge x \notin \mathcal{A} \cap \mathcal{B}\} \\
& =\{x \mid x \in \mathcal{A} \cup \mathcal{B} \wedge x \notin \mathcal{A} \cap \mathcal{B}\}=(\mathcal{A} \cup \mathcal{B})-(\mathcal{A} \cap \mathcal{B}) \\
& =\{x \mid x \in \mathcal{A} \cap \overline{\mathcal{B}} \wedge x \in \overline{\mathcal{A}} \cap \mathcal{B}\}=(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\overline{\mathcal{A}} \cap \mathcal{B}) \\
& =(\mathcal{A}-\mathcal{B}) \cup(\mathcal{B}-\mathcal{A})=\mathcal{B} \Delta \mathcal{A} \quad(\text { Ex: } \mathcal{A} \Delta \mathcal{B}=\{1,4\})
\end{aligned}
$$

Mutual Disjoint: Sets, \mathcal{A} and \mathcal{B}, are mutually disjoint (or disjoint), when $\mathcal{A} \cap \mathcal{B}=\phi$. In such a case, $\mathcal{A} \Delta \mathcal{B}=\mathcal{A} \cup \mathcal{B}, \mathcal{A} \cap \overline{\mathcal{B}}=\mathcal{A}$ and $\overline{\mathcal{A}} \cap \mathcal{B}=\mathcal{B}$.

The following statements are equivalent:
(a) $\mathcal{A} \subseteq \mathcal{B}$,
(b) $\mathcal{A} \cup \mathcal{B}=\mathcal{B}$,
(c) $\mathcal{A} \cap \mathcal{B}=\mathcal{A}$,
(d) $\overline{\mathcal{B}} \subseteq \overline{\mathcal{A}}$

Laws of Set Theory

For three sets, $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{U}$, the rules given as follows:

Name of the Law Mathematical Expressions
Double Complement: $\quad \overline{\overline{\mathcal{A}}}=\mathcal{A}$
DeMorgan's Laws: $\quad \overline{\mathcal{A} \cup \mathcal{B}}=\overline{\mathcal{A}} \cap \overline{\mathcal{B}}, \quad \overline{\mathcal{A} \cap \mathcal{B}}=\overline{\mathcal{A}} \cup \overline{\mathcal{B}}$
Commutative Laws: $\quad \mathcal{A} \cup \mathcal{B}=\mathcal{B} \cup \mathcal{A}, \quad \mathcal{A} \cap \mathcal{B}=\mathcal{B} \cap \mathcal{A}$
Associative Laws: $\quad \mathcal{A} \cup(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C}, \quad \mathcal{A} \cap(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C}$
Distributive Laws: $\quad \mathcal{A} \cup(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cap(\mathcal{A} \cup \mathcal{C}), \mathcal{A} \cap(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \cup(\mathcal{A} \cap \mathcal{C})$
Idempotent Laws: $\quad \mathcal{A} \cup \mathcal{A}=\mathcal{A}, \quad \mathcal{A} \cap \mathcal{A}=\mathcal{A}$
Identity Laws: $\mathcal{A} \cup \phi=\mathcal{A}, \quad \mathcal{A} \cap \mathcal{U}=\mathcal{A}$
Inverse Laws: $\mathcal{A} \cup \overline{\mathcal{A}}=\mathcal{U}, \quad \mathcal{A} \cap \overline{\mathcal{A}}=\phi$
Domination Laws: $\mathcal{A} \cup \mathcal{U}=\mathcal{U}, \quad \mathcal{A} \cap \phi=\phi$
Absorption Laws: $\mathcal{A} \cup(\mathcal{A} \cap \mathcal{B})=\mathcal{A}, \quad \mathcal{A} \cap(\mathcal{A} \cup \mathcal{B})=\mathcal{A}$

Laws of Set Theory

For three sets, $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{U}$, the rules given as follows:

Name of the Law Mathematical Expressions

Double Complement: $\quad \overline{\overline{\mathcal{A}}}=\mathcal{A}$
DeMorgan's Laws: $\quad \overline{\mathcal{A} \cup \mathcal{B}}=\overline{\mathcal{A}} \cap \overline{\mathcal{B}}, \quad \overline{\mathcal{A} \cap \mathcal{B}}=\overline{\mathcal{A}} \cup \overline{\mathcal{B}}$
Commutative Laws: $\quad \mathcal{A} \cup \mathcal{B}=\mathcal{B} \cup \mathcal{A}, \quad \mathcal{A} \cap \mathcal{B}=\mathcal{B} \cap \mathcal{A}$
Associative Laws: $\quad \mathcal{A} \cup(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C}, \quad \mathcal{A} \cap(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C}$
Distributive Laws: $\quad \mathcal{A} \cup(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cap(\mathcal{A} \cup \mathcal{C}), \mathcal{A} \cap(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \cup(\mathcal{A} \cap \mathcal{C})$
Idempotent Laws: $\quad \mathcal{A} \cup \mathcal{A}=\mathcal{A}, \quad \mathcal{A} \cap \mathcal{A}=\mathcal{A}$
Identity Laws: $\mathcal{A} \cup \phi=\mathcal{A}, \quad \mathcal{A} \cap \mathcal{U}=\mathcal{A}$
Inverse Laws: $\mathcal{A} \cup \overline{\mathcal{A}}=\mathcal{U}, \quad \mathcal{A} \cap \overline{\mathcal{A}}=\phi$
Domination Laws: $\mathcal{A} \cup \mathcal{U}=\mathcal{U}, \quad \mathcal{A} \cap \phi=\phi$
Absorption Laws: $\quad \mathcal{A} \cup(\mathcal{A} \cap \mathcal{B})=\mathcal{A}, \quad \mathcal{A} \cap(\mathcal{A} \cup \mathcal{B})=\mathcal{A}$

An Example Proof Sketch: $\mathcal{A} \cup(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cap(\mathcal{A} \cup \mathcal{C})$

$x \in \mathcal{A} \cup(\mathcal{B} \cap \mathcal{C}) \Leftrightarrow(x \in \mathcal{A}) \vee(x \in \mathcal{B} \cap \mathcal{C}) \Leftrightarrow(x \in \mathcal{A}) \vee((x \in \mathcal{B}) \wedge(x \in \mathcal{C}))$

$$
\begin{aligned}
& \Leftrightarrow \quad((x \in \mathcal{A}) \vee(x \in \mathcal{B})) \wedge((x \in \mathcal{A}) \vee(x \in \mathcal{C})) \\
& \Leftrightarrow \quad(x \in \mathcal{A} \cup \mathcal{B}) \wedge(x \in \mathcal{A} \cup \mathcal{C}) \Leftrightarrow \quad x \in(\mathcal{A} \cup \mathcal{B}) \cap(\mathcal{A} \cup \mathcal{C})
\end{aligned}
$$

Some Derived Laws and Observations

$$
\mathcal{A}_{1}=\mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right) \cup \cdots \quad\left(\forall i, \mathcal{A}_{i} \in \mathcal{U}\right)
$$

Some Derived Laws and Observations

$$
\begin{aligned}
& \mathcal{A}_{1}=\mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right) \cup \ldots \\
& \text { Proof: } \mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right)=\mathcal{A}_{1}, \quad\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right), \\
& \quad\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \text {, and so on } \ldots
\end{aligned}
$$

Some Derived Laws and Observations

$$
\begin{gathered}
\mathcal{A}_{1}=\mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right) \cup \ldots \quad\left(\forall i, \mathcal{A}_{i} \in \mathcal{U}\right) \\
\text { Proof: } \mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right)=\mathcal{A}_{1}, \quad\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right), \\
\\
\quad\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right), \text { and so on } \ldots \\
\text { Similarly, } \mathcal{A}_{1}=\mathcal{A}_{1} \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right) \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}\right) \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup \mathcal{A}_{4}\right) \cap \ldots
\end{gathered}
$$

Some Derived Laws and Observations

```
\mathcal{A}}=\mp@subsup{\mathcal{A}}{1}{}\cup(\mp@subsup{\mathcal{A}}{1}{}\cap\mp@subsup{\mathcal{A}}{2}{})\cup(\mp@subsup{\mathcal{A}}{1}{}\cap\mp@subsup{\mathcal{A}}{2}{}\cap\mp@subsup{\mathcal{A}}{3}{})\cup(\mp@subsup{\mathcal{A}}{1}{}\cap\mp@subsup{\mathcal{A}}{2}{}\cap\mp@subsup{\mathcal{A}}{3}{}\cap\mp@subsup{\mathcal{A}}{4}{})\cup\cdots\quad(\foralli,\mp@subsup{\mathcal{A}}{i}{}\in\mathcal{U}
Proof: }\mp@subsup{\mathcal{A}}{1}{}\cup(\mp@subsup{\mathcal{A}}{1}{}\cap\mp@subsup{\mathcal{A}}{2}{})=\mp@subsup{\mathcal{A}}{1}{},\quad(\mp@subsup{\mathcal{A}}{1}{}\cap\mp@subsup{\mathcal{A}}{2}{})\cup(\mp@subsup{\mathcal{A}}{1}{}\cap\mp@subsup{\mathcal{A}}{2}{}\cap\mp@subsup{\mathcal{A}}{3}{})=(\mp@subsup{\mathcal{A}}{1}{}\cap\mp@subsup{\mathcal{A}}{2}{})\mathrm{ ,
    (\mathcal{A}\cap\mp@subsup{\mathcal{A}}{2}{}\cap\mp@subsup{\mathcal{A}}{3}{})\cup(\mp@subsup{\mathcal{A}}{1}{}\cap\mp@subsup{\mathcal{A}}{2}{}\cap\mp@subsup{\mathcal{A}}{3}{}\cap\mp@subsup{\mathcal{A}}{4}{})=(\mp@subsup{\mathcal{A}}{1}{}\cap\mp@subsup{\mathcal{A}}{2}{}\cap\mp@subsup{\mathcal{A}}{3}{})\mathrm{ ), and so on ...}
Similarly, }\mp@subsup{\mathcal{A}}{1}{}=\mp@subsup{\mathcal{A}}{1}{}\cap(\mp@subsup{\mathcal{A}}{1}{}\cup\mp@subsup{\mathcal{A}}{2}{})\cap(\mp@subsup{\mathcal{A}}{1}{}\cup\mp@subsup{\mathcal{A}}{2}{}\cup\mathcal{A}\mp@subsup{\mathcal{A}}{3}{})\cap(\mp@subsup{\mathcal{A}}{1}{}\cup\mp@subsup{\mathcal{A}}{2}{}\cup\mp@subsup{\mathcal{A}}{3}{}\cup\mp@subsup{\mathcal{A}}{4}{})\cap
```

$$
\overline{\mathcal{A} \Delta \mathcal{B}}=\mathcal{A} \Delta \overline{\mathcal{B}}=\overline{\mathcal{A}} \Delta \mathcal{B}
$$

Some Derived Laws and Observations

$$
\begin{aligned}
& \mathcal{A}_{1}=\mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right) \cup \ldots \quad\left(\forall \mathcal{A}_{1} \quad\left(\mathcal{A}_{i} \in \mathcal{U}\right)\right. \\
& \text { Proof: } \mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right)=\mathcal{A}_{1}, \quad\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right), \\
& \quad\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right), \text { and so on } \ldots \\
& \text { Similarly, } \mathcal{A}_{1}=\mathcal{A}_{1} \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right) \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}\right) \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup \mathcal{A}_{4}\right) \cap \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathcal{A} \Delta \mathcal{B}}=\mathcal{A} \Delta \overline{\mathcal{B}}=\overline{\mathcal{A}} \Delta \mathcal{B} \\
& \text { Proof: } A \text { s, } \mathcal{A} \Delta \mathcal{B}=(\mathcal{A} \cup \mathcal{B})-(\mathcal{A} \cap \mathcal{B}) \text { and } \mathcal{A} \Delta \mathcal{B}=(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\overline{\mathcal{A}} \cap \mathcal{B}) \text {, so } \\
& \overline{\mathcal{A} \Delta \mathcal{B}}=\overline{(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\overline{\mathcal{A}} \cap \mathcal{B})}=(\overline{\mathcal{A}} \cup \mathcal{B}) \cap \overline{(\overline{\mathcal{A}} \cap \mathcal{B})}=(\overline{\mathcal{A}} \cup \mathcal{B})-(\overline{\mathcal{A}} \cap \mathcal{B})=\overline{\mathcal{A}} \Delta \mathcal{B} \text { and } \\
& \overline{\mathcal{A} \Delta \mathcal{B}}=\overline{(\overline{\mathcal{A}} \cap \mathcal{B}) \cup(\mathcal{A} \cap \overline{\mathcal{B}})}=(\mathcal{A} \cup \overline{\mathcal{B}}) \cap \overline{(\mathcal{A} \cap \overline{\mathcal{B}})}=(\mathcal{A} \cup \overline{\mathcal{B}})-(\mathcal{A} \cap \overline{\mathcal{B}})=\mathcal{A} \Delta \overline{\mathcal{B}}
\end{aligned}
$$

Some Derived Laws and Observations

$\mathcal{A}_{1}=\mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right) \cup \cdots \quad\left(\forall i, \mathcal{A}_{i} \in \mathcal{U}\right)$ Proof: $\mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right)=\mathcal{A}_{1}, \quad\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right)$,
$\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right)$, and so on ... Similarly, $\mathcal{A}_{1}=\mathcal{A}_{1} \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right) \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}\right) \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup \mathcal{A}_{4}\right) \cap \ldots$

$$
\overline{\mathcal{A} \Delta \mathcal{B}}=\mathcal{A} \Delta \overline{\mathcal{B}}=\overline{\mathcal{A}} \Delta \mathcal{B}
$$

Proof: $A s, \mathcal{A} \Delta \mathcal{B}=(\mathcal{A} \cup \mathcal{B})-(\mathcal{A} \cap \mathcal{B})$ and $\mathcal{A} \Delta \mathcal{B}=(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\overline{\mathcal{A}} \cap \mathcal{B})$, so
$\overline{\mathcal{A} \Delta \mathcal{B}}=\overline{(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\overline{\mathcal{A}} \cap \mathcal{B})}=(\overline{\mathcal{A}} \cup \mathcal{B}) \cap \overline{(\overline{\mathcal{A}} \cap \mathcal{B})}=(\overline{\mathcal{A}} \cup \mathcal{B})-(\overline{\mathcal{A}} \cap \mathcal{B})=\overline{\mathcal{A}} \Delta \mathcal{B}$ and
$\overline{\mathcal{A} \Delta \mathcal{B}}=\overline{(\overline{\mathcal{A}} \cap \mathcal{B}) \cup(\mathcal{A} \cap \overline{\mathcal{B}})}=(\mathcal{A} \cup \overline{\mathcal{B}}) \cap \overline{(\mathcal{A} \cap \overline{\mathcal{B}})}=(\mathcal{A} \cup \overline{\mathcal{B}})-(\mathcal{A} \cap \overline{\mathcal{B}})=\mathcal{A} \Delta \overline{\mathcal{B}}$

$$
\begin{array}{cl}
\mathcal{A}-(\mathcal{B} \cup \mathcal{C})=(\mathcal{A}-\mathcal{B}) \cap(\mathcal{A}-\mathcal{C}) & (\mathcal{A} \cup \mathcal{B})-\mathcal{C}=(\mathcal{A}-\mathcal{C}) \cup(\mathcal{B}-\mathcal{C}) \\
\mathcal{A}-(\mathcal{B} \cap \mathcal{C})=(\mathcal{A}-\mathcal{B}) \cup(\mathcal{A}-\mathcal{C}) & (\mathcal{A} \cap \mathcal{B})-\mathcal{C}=(\mathcal{A}-\mathcal{C}) \cap(\mathcal{B}-\mathcal{C}) \\
(\mathcal{A} \cap \mathcal{B})-(\mathcal{A} \cap \mathcal{C})= & \mathcal{A} \cap(\mathcal{B}-\mathcal{C})
\end{array}
$$

Some Derived Laws and Observations

$$
\begin{gathered}
\mathcal{A}_{1}=\mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right) \cup \ldots \quad\left(\forall i, \mathcal{A}_{i} \in \mathcal{U}\right) \\
\text { Proof: } \mathcal{A}_{1} \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right)=\mathcal{A}_{1}, \quad\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right), \\
\\
\quad\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \cup\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right)=\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right), \text { and so on } \ldots \\
\text { Similarly, } \mathcal{A}_{1}=\mathcal{A}_{1} \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right) \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}\right) \cap\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup \mathcal{A}_{4}\right) \cap \ldots
\end{gathered}
$$

$$
\begin{aligned}
& \overline{\mathcal{A} \Delta \mathcal{B}}=\mathcal{A} \Delta \overline{\mathcal{B}}=\overline{\mathcal{A}} \Delta \mathcal{B} \\
& \text { Proof: } A s, \mathcal{A} \Delta \mathcal{B}=(\mathcal{A} \cup \mathcal{B})-(\mathcal{A} \cap \mathcal{B}) \text { and } \mathcal{A} \Delta \mathcal{B}=(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\overline{\mathcal{A}} \cap \mathcal{B}) \text {, so } \\
& \overline{\mathcal{A} \Delta \mathcal{B}}=\overline{(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\overline{\mathcal{A}} \cap \mathcal{B})}=(\overline{\mathcal{A}} \cup \mathcal{B}) \cap \overline{(\overline{\mathcal{A}} \cap \mathcal{B})}=(\overline{\mathcal{A}} \cup \mathcal{B})-(\overline{\mathcal{A}} \cap \mathcal{B})=\overline{\mathcal{A}} \Delta \mathcal{B} \text { and } \\
& \overline{\mathcal{A} \Delta \mathcal{B}}=\overline{(\overline{\mathcal{A}} \cap \mathcal{B}) \cup(\mathcal{A} \cap \overline{\mathcal{B}})}=(\mathcal{A} \cup \overline{\mathcal{B}}) \cap \overline{(\mathcal{A} \cap \overline{\mathcal{B}})}=(\mathcal{A} \cup \overline{\mathcal{B}})-(\mathcal{A} \cap \overline{\mathcal{B}})=\mathcal{A} \Delta \overline{\mathcal{B}} \\
& \mathcal{A}-(\mathcal{B} \cup \mathcal{C})=(\mathcal{A}-\mathcal{B}) \cap(\mathcal{A}-\mathcal{C}) \\
& (\mathcal{A} \cup \mathcal{B})-\mathcal{C}=(\mathcal{A}-\mathcal{C}) \cup(\mathcal{B}-\mathcal{C}) \\
& \mathcal{A}-(\mathcal{B} \cap \mathcal{C})=(\mathcal{A}-\mathcal{B}) \cup(\mathcal{A}-\mathcal{C}) \\
& (\mathcal{A} \cap \mathcal{B})-\mathcal{C}=(\mathcal{A}-\mathcal{C}) \cap(\mathcal{B}-\mathcal{C}) \\
& (\mathcal{A} \cap \mathcal{B})-(\mathcal{A} \cap \mathcal{C})=\mathcal{A} \cap(\mathcal{B}-\mathcal{C}) \\
& \overline{\mathcal{A}} \Delta \overline{\mathcal{B}}=\mathcal{A} \Delta \mathcal{B}=\mathcal{B} \Delta \mathcal{A}=\overline{\mathcal{B}} \Delta \overline{\mathcal{A}} \\
& \mathcal{A} \Delta(\mathcal{B} \Delta \mathcal{C})=(\mathcal{A} \Delta \mathcal{B}) \Delta \mathcal{C} \quad \mathcal{A} \cap(\mathcal{B} \Delta \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \Delta(\mathcal{A} \cap \mathcal{C})
\end{aligned}
$$

Index Set and Partitions

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_{i} \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an index set, and each $i \in \mathcal{I}$ is an index.

Index Set and Partitions

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_{i} \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an index set, and each $i \in \mathcal{I}$ is an index.

Set Operations: (Union) $\bigcup_{i \in \mathcal{I}} \mathcal{A}_{i}=\left\{x \mid \exists i \in \mathcal{I}, x \in \mathcal{A}_{i}\right\}$
(Intersection) $\bigcap_{i \in \mathcal{I}} \mathcal{A}_{i}=\left\{x \mid \forall i \in \mathcal{I}, x \in \mathcal{A}_{i}\right\}$

Index Set and Partitions

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_{i} \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an index set, and each $i \in \mathcal{I}$ is an index.

Set Operations: (Union) $\bigcup_{i \in \mathcal{I}} \mathcal{A}_{i}=\left\{x \mid \exists i \in \mathcal{I}, x \in \mathcal{A}_{i}\right\}$ (Intersection) $\bigcap_{i \in \mathcal{I}} \mathcal{A}_{i}=\left\{x \mid \forall i \in \mathcal{I}, x \in \mathcal{A}_{i}\right\}$
Generalized DeMorgan's Law: $\overline{\bigcup_{i \in \mathcal{I}} \mathcal{A}_{i}}=\bigcap_{i \in \mathcal{I}} \overline{\mathcal{A}_{i}} \quad$ and $\quad \overline{\bigcap_{i \in \mathcal{I}} \mathcal{A}_{i}}=\bigcup_{i \in \mathcal{I}} \overline{\mathcal{A}_{i}}$

Index Set and Partitions

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_{i} \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an index set, and each $i \in \mathcal{I}$ is an index.
Set Operations: (Union) $\bigcup_{i \in \mathcal{I}} \mathcal{A}_{i}=\left\{x \mid \exists i \in \mathcal{I}, x \in \mathcal{A}_{i}\right\}$
(Intersection) $\bigcap_{i \in \mathcal{I}} \mathcal{A}_{i}=\left\{x \mid \forall i \in \mathcal{I}, x \in \mathcal{A}_{i}\right\}$
Generalized DeMorgan's Law: $\overline{\bigcup_{i \in \mathcal{I}} \mathcal{A}_{i}}=\bigcap_{i \in \mathcal{I}} \overline{\mathcal{A}_{i}}$ and $\overline{\bigcap_{i \in \mathcal{I}} \mathcal{A}_{i}}=\bigcup_{i \in \mathcal{I}} \overline{\mathcal{A}_{i}}$

Partition of a Set

Definition: Let \mathcal{S} be a non-empty set. A family of non-empty subsets, $\left\{\mathcal{S}_{i} \mid i \in \mathcal{I}\right\}$ (\mathcal{I} being the index set) is said to form a partition of \mathcal{S} if the following two condition holds:

- $\bigcup_{i \in \mathcal{I}} \mathcal{S}_{i}=\mathcal{S}$ (Complete Set Cover), and
- $\mathcal{S}_{i} \cap \mathcal{S}_{j}=\phi, \forall i, j \in \mathcal{I}$ and $i \neq j$ (Pairwise Disjoint).

Index Set and Partitions

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_{i} \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an index set, and each $i \in \mathcal{I}$ is an index.
Set Operations: (Union) $\bigcup_{i \in \mathcal{I}} \mathcal{A}_{i}=\left\{x \mid \exists i \in \mathcal{I}, x \in \mathcal{A}_{i}\right\}$
(Intersection) $\bigcap_{i \in \mathcal{I}} \mathcal{A}_{i}=\left\{x \mid \forall i \in \mathcal{I}, x \in \mathcal{A}_{i}\right\}$
Generalized DeMorgan's Law: $\overline{\bigcup_{i \in \mathcal{I}} \mathcal{A}_{i}}=\bigcap_{i \in \mathcal{I}} \overline{\mathcal{A}_{i}} \quad$ and $\quad \overline{\bigcap_{i \in \mathcal{I}} \mathcal{A}_{i}}=\bigcup_{i \in \mathcal{I}} \overline{\mathcal{A}_{i}}$

Partition of a Set

Definition: Let \mathcal{S} be a non-empty set. A family of non-empty subsets, $\left\{\mathcal{S}_{i} \mid i \in \mathcal{I}\right\}$ (\mathcal{I} being the index set) is said to form a partition of \mathcal{S} if the following two condition holds:

- $\bigcup_{i \in \mathcal{I}} \mathcal{S}_{i}=\mathcal{S}$ (Complete Set Cover), and
- $\mathcal{S}_{i} \cap \mathcal{S}_{j}=\phi, \forall i, j \in \mathcal{I}$ and $i \neq j$ (Pairwise Disjoint).

Example: Let $\mathcal{Z}_{0}=\{3 m \mid m$ is an integer $\}=\{0, \pm 3, \pm 6, \ldots\}$,
$\mathcal{Z}_{1}=\{3 m+1 \mid m$ is an integer $\}=\{\ldots,-8,-5,-2,+1,+4,+7, \ldots\}$
$\mathcal{Z}_{2}=\{3 m+2 \mid m$ is an integer $\}=\{\ldots,-7,-4,-1,+2,+5,+8, \ldots\}$
Now, $\mathcal{Z}_{0} \cup \mathcal{Z}_{1} \cup \mathcal{Z}_{2}=\mathbb{Z}$ and $\mathcal{Z}_{0} \cap \mathcal{Z}_{1}=\mathcal{Z}_{1} \cap \mathcal{Z}_{2}=\mathcal{Z}_{2} \cap \mathcal{Z}_{0}=\phi$

Thank You!

