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Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A× B, is defined by, A× B = {(a, b) | a ∈ A, b ∈ B}

Generically, A1 ×A2 × · · · × Ak = {(x1, x2, . . . , xk) | ∀i , xi ∈ Ai}
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Relations and Examples

(Binary) Relation

Definition: A (binary) relation, ρ, between two sets, A and B, is defined as,
ρ ⊆ A× B. If an ordered pair, (a, b) ∈ ρ (or a ρ b), then the
element, a ∈ A, is said to be related to the element, b ∈ B.
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(A× B), i.e. 2mn.

Example

Let A = {1, 2, 3} and B = {a, b}. So, the Cartesian products are defined as,
A× B = {(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)} and
B ×A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

Clearly, A× B 6= B ×A, however |A × B| = 6 = |B × A|.
There can be a total of 26 = 64 different (binary) relations possible. Some are:
ρ1 = {(1, a), (1, b), (1, c)} or ρ2 = {(2, a), (3, a), (1, b), (3, b)}.
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Types and Properties of Relations

Let a relation, ρ, is defined over the set, A with |A| = n, as ρ ⊆ A×A.
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Let a relation, ρ, is defined over the set, A with |A| = n, as ρ ⊆ A×A. (Count: 2n
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Transitive: ρ is transitive if ∀x , y , z ∈ A, (x , y), (y , z) ∈ ρ ⇒ (x , z) ∈ ρ

Count: Unknown (still an open-problem!)

Antisymmetric: ρ is antisymmetric if ∀x , y ∈ A, (x , y), (y , x) ∈ ρ ⇒ (x = y)
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Count: Unknown (still an open-problem!)

Antisymmetric: ρ is antisymmetric if ∀x , y ∈ A, (x , y), (y , x) ∈ ρ ⇒ (x = y)

Count: 2n3
n2−n

2 (element (x , x) can either be included or excluded;
element (x , y) have three options – (i) take only (x , y), (ii) take only
(y , x), or (iii) take neither (x , y) nor (y , x). What if take both?)
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2 (element (x , x) can either be included or excluded;
element (x , y) have three options – (i) take only (x , y), (ii) take only
(y , x), or (iii) take neither (x , y) nor (y , x). What if take both?)

Irreflexive: ρ is irreflexive if ∃x ∈ A, (x , x) 6∈ ρ

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 4 / 12



Types and Properties of Relations

Let a relation, ρ, is defined over the set, A with |A| = n, as ρ ⊆ A×A. (Count: 2n
2

)

Reflexive: ρ is reflexive if ∀x ∈ A, (x , x) ∈ ρ

Count: 2n
2−n (after choosing all n number of (x , x) pairs, any subset

from (n2 − n) pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if ∀x , y ∈ A, (x , y) ∈ ρ ⇒ (y , x) ∈ ρ

Count: 2
n2+n

2 (selecting an (x , y) + (x , x) pair in
(

n
2

)

+ n ways, any
subset from

(

n
2

)

+ n pairs can be taken as relation keeping symmetry)

Transitive: ρ is transitive if ∀x , y , z ∈ A, (x , y), (y , z) ∈ ρ ⇒ (x , z) ∈ ρ

Count: Unknown (still an open-problem!)

Antisymmetric: ρ is antisymmetric if ∀x , y ∈ A, (x , y), (y , x) ∈ ρ ⇒ (x = y)

Count: 2n3
n2−n

2 (element (x , x) can either be included or excluded;
element (x , y) have three options – (i) take only (x , y), (ii) take only
(y , x), or (iii) take neither (x , y) nor (y , x). What if take both?)

Irreflexive: ρ is irreflexive if ∃x ∈ A, (x , x) 6∈ ρ

Asymmetric: ρ is asymmetric if ∃x , y ∈ A, (x , y) ∈ ρ ∧ (y , x) 6∈ ρ

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 4 / 12



Types and Properties of Relations

Let a relation, ρ, is defined over the set, A with |A| = n, as ρ ⊆ A×A. (Count: 2n
2

)

Reflexive: ρ is reflexive if ∀x ∈ A, (x , x) ∈ ρ

Count: 2n
2−n (after choosing all n number of (x , x) pairs, any subset

from (n2 − n) pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if ∀x , y ∈ A, (x , y) ∈ ρ ⇒ (y , x) ∈ ρ

Count: 2
n2+n

2 (selecting an (x , y) + (x , x) pair in
(

n
2

)

+ n ways, any
subset from

(

n
2

)

+ n pairs can be taken as relation keeping symmetry)

Transitive: ρ is transitive if ∀x , y , z ∈ A, (x , y), (y , z) ∈ ρ ⇒ (x , z) ∈ ρ

Count: Unknown (still an open-problem!)

Antisymmetric: ρ is antisymmetric if ∀x , y ∈ A, (x , y), (y , x) ∈ ρ ⇒ (x = y)

Count: 2n3
n2−n

2 (element (x , x) can either be included or excluded;
element (x , y) have three options – (i) take only (x , y), (ii) take only
(y , x), or (iii) take neither (x , y) nor (y , x). What if take both?)

Irreflexive: ρ is irreflexive if ∃x ∈ A, (x , x) 6∈ ρ

Asymmetric: ρ is asymmetric if ∃x , y ∈ A, (x , y) ∈ ρ ∧ (y , x) 6∈ ρ

Non-Transitive: ρ is non-transitive if ∃x , y , z ∈ A, (x , y), (y , z) ∈ ρ ∧ (x , z) 6∈ ρ

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 4 / 12



Types and Properties of Relations

Let a relation, ρ, is defined over the set, A with |A| = n, as ρ ⊆ A×A. (Count: 2n
2

)

Reflexive: ρ is reflexive if ∀x ∈ A, (x , x) ∈ ρ

Count: 2n
2−n (after choosing all n number of (x , x) pairs, any subset

from (n2 − n) pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if ∀x , y ∈ A, (x , y) ∈ ρ ⇒ (y , x) ∈ ρ

Count: 2
n2+n

2 (selecting an (x , y) + (x , x) pair in
(

n
2

)

+ n ways, any
subset from

(

n
2

)

+ n pairs can be taken as relation keeping symmetry)

Transitive: ρ is transitive if ∀x , y , z ∈ A, (x , y), (y , z) ∈ ρ ⇒ (x , z) ∈ ρ

Count: Unknown (still an open-problem!)

Antisymmetric: ρ is antisymmetric if ∀x , y ∈ A, (x , y), (y , x) ∈ ρ ⇒ (x = y)

Count: 2n3
n2−n

2 (element (x , x) can either be included or excluded;
element (x , y) have three options – (i) take only (x , y), (ii) take only
(y , x), or (iii) take neither (x , y) nor (y , x). What if take both?)

Irreflexive: ρ is irreflexive if ∃x ∈ A, (x , x) 6∈ ρ

Asymmetric: ρ is asymmetric if ∃x , y ∈ A, (x , y) ∈ ρ ∧ (y , x) 6∈ ρ

Non-Transitive: ρ is non-transitive if ∃x , y , z ∈ A, (x , y), (y , z) ∈ ρ ∧ (x , z) 6∈ ρ

Not Antisymmetric: ρ is not antisymmetric if ∃x , y ∈ A, (x , y), (y , x) ∈ ρ ∧ (x 6= y)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 4 / 12



Examples of Relations

1 Reflexive and Symmetric, but NOT Transitive:
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Examples of Relations

1 Reflexive and Symmetric, but NOT Transitive:

ρ is defined over Z as, ρ = {(x , y) | xy ≥ 0 and x , y ∈ Z}

(Reflexive as x2 ≥ 0, Symmetric as xy = yx , NOT Transitive for x = 2, y = 0, z = −1)
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(Reflexive as x ≤ x , NOT Symmetric for x = 0.1, y = 1.0, Transitive as x ≤ y ≤ z)
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Examples of Relations

1 Reflexive and Symmetric, but NOT Transitive:

ρ is defined over Z as, ρ = {(x , y) | xy ≥ 0 and x , y ∈ Z}

(Reflexive as x2 ≥ 0, Symmetric as xy = yx , NOT Transitive for x = 2, y = 0, z = −1)

2 Symmetric and Transitive, but NOT Reflexive:
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(NOT Reflexive for x = 0, Symmetric as xy = yx , Transitive as xz =
(xy).(yz)
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> 0 since xy > 0, yz > 0, y2 > 0)

3 Reflexive and Transitive, but NOT Symmetric (Antisymmetric):

ρ is defined over R as, ρ = {(x , y) | x ≤ y and x , y ∈ R}

(Reflexive as x ≤ x , NOT Symmetric for x = 0.1, y = 1.0, Transitive as x ≤ y ≤ z)

4 NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric:

ρ is defined over Z as, ρ = {(x , y) | y = x + 1 and x , y ∈ Z}

(NOT Reflexive as x 6= x + 1, NOT Symmetric as y = x + 1 ⇒ x = y − 1, NOT Transitive as z = y + 1 = x + 2)

5 Only Reflexive: Relation ρ = {(A,B) | Person-A knows Person-B}

6 Only Symmetric: Relation ρ = {(A,B) | A+ B = 5 and A,B ∈ Z}

7 Only Transitive: Relation ρ = {(A,B) | A ⊂ B and A,B ∈ U}

8 Only Antisymmetric: Left for You to find as an Exercise!
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Equivalence Relation and Equivalence Classes

Equivalence Relation: A relation ρ ⊆ A×A on set A is called an equivalence relation if
it is reflexive, symmetric and transitive.
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Equivalence Relation and Equivalence Classes
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it is reflexive, symmetric and transitive.

Example: ρ = {(x , y) | (x − y) is divisible by 5 and x , y ∈ Z}

Reflexive since (x − x) = 0 is divisible by 5.
Symmetric since (y − x) = −(x − y) is divisible by 5.
Transitive since (x − z) = (x − y) + (y − z) is divisible by 5.
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Fallacy: Does Symmetric + Transitive ⇒ Reflexive? Why define Reflexivity?

[ from (x , y) ∈ ρ ⇒ (y , x) ∈ ρ and (x , y), (y , x) ∈ ρ ⇒ (x , x) ∈ ρ ]
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Reason: NO, since for all x , an y may not be found/associated!
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Reason: NO, since for all x , an y may not be found/associated!

Equivalence Class: Let ρ be an equivalence relation on A. For each y ∈ A, the
equivalence class is denoted by [y ] = {x | (x , y) ∈ ρ and x ∈ A}.
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Reason: NO, since for all x , an y may not be found/associated!

Equivalence Class: Let ρ be an equivalence relation on A. For each y ∈ A, the
equivalence class is denoted by [y ] = {x | (x , y) ∈ ρ and x ∈ A}.

Example: In the relation, ρ = {(x , y) | (x − y) is divisible by 3 and x , y ∈ Z}, the
four equivalence classes are defined as:

[0] = {. . . ,−6,−3, 0,+3,+6, . . .} = {3k | k ∈ Z}
[1] = {. . . ,−5,−2, 1,+4,+7, . . .} = {3k + 1 | k ∈ Z}
[2] = {. . . ,−4,−1, 2,+5,+8, . . .} = {3k + 2 | k ∈ Z}
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Note: [0] = [−3] = [+3] = [−6] = [+6] = · · · (from definition)
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Equivalence Classes and Partitions

Theorem: If ρ is an equivalence relation on A and x , y ∈ A, then
(i) x ∈ [x]; (ii) (x , y) ∈ ρ iff [x] = [y ]; and (iii) [x] = [y ] or [x] ∩ [y ] = φ
Proof:
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i From Reflexive property, (x , x) ∈ ρ.
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Proof:

i From Reflexive property, (x , x) ∈ ρ.

ii [ If ] Let a ∈ [x ] ⇒ (a, x) ∈ ρ. As (x , y) ∈ ρ, so using transitivity, we get
(a, y) ∈ ρ ⇒ a ∈ [y ]. Hence, [x ] ⊆ [y ].
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(x , y) ∈ ρ ⇒ (y , x) ∈ ρ. So, using transitivity, (b, x) ∈ ρ ⇒ b ∈ [x ]. Hence, [y ] ⊆ [x ].

[ Only-If ] x ∈ [x ] and [x ] = [y ] implies x ∈ [y ] ⇒ (x , y) ∈ ρ.
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[ Only-If ] x ∈ [x ] and [x ] = [y ] implies x ∈ [y ] ⇒ (x , y) ∈ ρ.

iii Assume [x ] 6= [y ], then [x ]∩ [y ] = φ must hold. If otherwise [x ]∩ [y ] 6= φ, then let u ∈ [x ]
and u ∈ [y ]. Thus, (u, x) ∈ ρ and by symmetry, (x , u) ∈ ρ. With (u, y) ∈ ρ, applying
transitivity we get, (x , y) ∈ ρ ⇒ [x ] = [y ], which contradicts the assumption!
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and u ∈ [y ]. Thus, (u, x) ∈ ρ and by symmetry, (x , u) ∈ ρ. With (u, y) ∈ ρ, applying
transitivity we get, (x , y) ∈ ρ ⇒ [x ] = [y ], which contradicts the assumption!

Partitions of a Set (Revisited)

Given set A and index set I, let ∀i , φ 6= Ai ⊆ A. Then {Ai}i∈I induces a partition on A if:

(i) A =
⋃

i∈I

Ai , and (ii) Ai ∩ Aj = φ, ∀i , j ∈ I (i 6= j).
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transitivity we get, (x , y) ∈ ρ ⇒ [x ] = [y ], which contradicts the assumption!
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Given set A and index set I, let ∀i , φ 6= Ai ⊆ A. Then {Ai}i∈I induces a partition on A if:

(i) A =
⋃

i∈I

Ai , and (ii) Ai ∩ Aj = φ, ∀i , j ∈ I (i 6= j).

Results: (i) Any equivalence relation ρ on set A induces a partition of A.
Proof: Follows from the above theorem.
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transitivity we get, (x , y) ∈ ρ ⇒ [x ] = [y ], which contradicts the assumption!

Partitions of a Set (Revisited)

Given set A and index set I, let ∀i , φ 6= Ai ⊆ A. Then {Ai}i∈I induces a partition on A if:

(i) A =
⋃

i∈I

Ai , and (ii) Ai ∩ Aj = φ, ∀i , j ∈ I (i 6= j).

Results: (i) Any equivalence relation ρ on set A induces a partition of A.
Proof: Follows from the above theorem.

(ii) Any partition of A gives rise to an equivalence relation ρ on A.
Proof: Left for You as an Exercise!
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Partial Order and Hasse Diagram

Partial Order: A relation ρ ⊆ A×A on set A is called a partial ordering relation (or
partial order) if it is reflexive, antisymmetric and transitive.

We call (A, ρ) as a Poset (Partial Ordered Set).
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partial order) if it is reflexive, antisymmetric and transitive.

We call (A, ρ) as a Poset (Partial Ordered Set).

Example: Let S = {1, 2, 3} and ρ = {(A,B) | A ⊆ B and A,B ∈ P(S)},
therefore (P(S), ρ) or (P(S),⊆) is a poset.

Also, (P(S),⊇) is a poset and called dual of the poset (P(S),⊆).
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therefore (P(S), ρ) or (P(S),⊆) is a poset.

Also, (P(S),⊇) is a poset and called dual of the poset (P(S),⊆).

Covering Relation: Let (A, ρ) is a poset and p,q, r ∈ A. We call q as the cover for p
(denoted as p ≺ q) when (p, q) ∈ ρ, and no element r ∈ A exists such
that p ≺ r ≺ q, that is (p, r) ∈ ρ and (r , q) ∈ ρ.
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(denoted as p ≺ q) when (p, q) ∈ ρ, and no element r ∈ A exists such
that p ≺ r ≺ q, that is (p, r) ∈ ρ and (r , q) ∈ ρ.

Hasse Diagram: A directed acyclic graph (DAG) with elements of set A as nodes and
(p,q) as directed edges from p to q (p,q ∈ A) iff p ≺ q (q covers p).
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Hasse Diagram: A directed acyclic graph (DAG) with elements of set A as nodes and
(p,q) as directed edges from p to q (p,q ∈ A) iff p ≺ q (q covers p).

Example: Note that, ({2}, {1, 3}) 6∈ ρ and
{1, 2} ≺ {1, 2, 3} (forming the cover), but
{1} ⊀ {1, 2, 3} as {1} ≺ {1, 3} ≺ {1, 2, 3}.

{2,3}{1,3}

{ }

{1} {3}{2}

{1,2,3}

{1,2}
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Total Order: If (A, ρ) is a Poset, we call A is totally ordered (or linearly ordered) if
for all x , y ∈ A either (x , y) ∈ ρ or (y , x) ∈ ρ. In this case, ρ is also
called a total order (or linear order).
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Properties of Partial Orders

Maximal Element: In the poset (A, ρ), an element x ∈ A is called a maximal element of
A if ∀a ∈ A [(a 6= x) ⇒ (x , a) 6∈ ρ] (≡ ∃a ∈ A [(x , a) ∈ ρ ⇒ (a = x)]).
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A if ∀a ∈ A [(a 6= x) ⇒ (x , a) 6∈ ρ] (≡ ∃a ∈ A [(x , a) ∈ ρ ⇒ (a = x)]).

Minimal Element: In the poset (A, ρ), an element y ∈ A is called a minimal element of
A if ∀b ∈ A [(b 6= y) ⇒ (b, y) 6∈ ρ] (≡ ∃b ∈ A [(b, y) ∈ ρ ⇒ (b = y)]).

Example: In the poset (P(S),⊆) where S = {1, 2, 3}, we have {1, 2, 3} and {} as
the maximal and minimal elements, respectively.
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A if ∀a ∈ A [(a 6= x) ⇒ (x , a) 6∈ ρ] (≡ ∃a ∈ A [(x , a) ∈ ρ ⇒ (a = x)]).

Minimal Element: In the poset (A, ρ), an element y ∈ A is called a minimal element of
A if ∀b ∈ A [(b 6= y) ⇒ (b, y) 6∈ ρ] (≡ ∃b ∈ A [(b, y) ∈ ρ ⇒ (b = y)]).

Example: In the poset (P(S),⊆) where S = {1, 2, 3}, we have {1, 2, 3} and {} as
the maximal and minimal elements, respectively.

If (A, ρ) is a poset and A is finite, then A has both a maximal and a minimal element.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 9 / 12



Properties of Partial Orders

Maximal Element: In the poset (A, ρ), an element x ∈ A is called a maximal element of
A if ∀a ∈ A [(a 6= x) ⇒ (x , a) 6∈ ρ] (≡ ∃a ∈ A [(x , a) ∈ ρ ⇒ (a = x)]).

Minimal Element: In the poset (A, ρ), an element y ∈ A is called a minimal element of
A if ∀b ∈ A [(b 6= y) ⇒ (b, y) 6∈ ρ] (≡ ∃b ∈ A [(b, y) ∈ ρ ⇒ (b = y)]).

Example: In the poset (P(S),⊆) where S = {1, 2, 3}, we have {1, 2, 3} and {} as
the maximal and minimal elements, respectively.

If (A, ρ) is a poset and A is finite, then A has both a maximal and a minimal element.

Least Element: Let (A, ρ) is a poset. An element x ∈ A is called the least element if
∀a ∈ A, (x , a) ∈ ρ.
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Greatest Element: Let (A, ρ) is a poset. An element y ∈ A is called the greatest
element if ∀a ∈ A, (a, y) ∈ ρ.
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Least Element: Let (A, ρ) is a poset. An element x ∈ A is called the least element if
∀a ∈ A, (x , a) ∈ ρ.

Greatest Element: Let (A, ρ) is a poset. An element y ∈ A is called the greatest
element if ∀a ∈ A, (a, y) ∈ ρ.

Example: In the poset (P(S),⊆) where S = {1, 2, 3}, we have {} and {1, 2, 3} as
the least and greatest elements, respectively.
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the maximal and minimal elements, respectively.

If (A, ρ) is a poset and A is finite, then A has both a maximal and a minimal element.

Least Element: Let (A, ρ) is a poset. An element x ∈ A is called the least element if
∀a ∈ A, (x , a) ∈ ρ.

Greatest Element: Let (A, ρ) is a poset. An element y ∈ A is called the greatest
element if ∀a ∈ A, (a, y) ∈ ρ.

Example: In the poset (P(S),⊆) where S = {1, 2, 3}, we have {} and {1, 2, 3} as
the least and greatest elements, respectively.

If (A, ρ) is a poset has a least (greatest) element, then that element is unique.
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Properties of Partial Orders

Lower Bound: Let (A, ρ) is a poset and B ⊆ A. An element x ∈ A is called a lower
bound of B if ∀b ∈ B, (x , b) ∈ ρ.
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Properties of Partial Orders

Lower Bound: Let (A, ρ) is a poset and B ⊆ A. An element x ∈ A is called a lower
bound of B if ∀b ∈ B, (x , b) ∈ ρ.

Upper Bound: Let (A, ρ) is a poset and B ⊆ A. An element y ∈ A is called a upper
bound of B if ∀b ∈ B, (b, y) ∈ ρ.
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Greatest Lower Bound: Let (A, ρ) is a poset. An element x ′ ∈ A is called the greatest
lower bound (glb) of B if it is a lower bound of B and (x ′′, x ′) ∈ ρ for all
other lower bounds x ′′ of B.
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Properties of Partial Orders

Lower Bound: Let (A, ρ) is a poset and B ⊆ A. An element x ∈ A is called a lower
bound of B if ∀b ∈ B, (x , b) ∈ ρ.

Upper Bound: Let (A, ρ) is a poset and B ⊆ A. An element y ∈ A is called a upper
bound of B if ∀b ∈ B, (b, y) ∈ ρ.

Greatest Lower Bound: Let (A, ρ) is a poset. An element x ′ ∈ A is called the greatest
lower bound (glb) of B if it is a lower bound of B and (x ′′, x ′) ∈ ρ for all
other lower bounds x ′′ of B.

Least Upper Bound: Let (A, ρ) is a poset. An element y ′ ∈ A is called the least upper
bound (lub) of B if it is an upper bound of B and (y ′, y ′′) ∈ ρ for all
other upper bounds y ′′ of B.

Example: In the poset (P(S),⊆) where S = {1, 2, 3} and let
B = {{1}, {2}, {1, 2}} ⊆ P(S). Then, {1, 2} and {1, 2, 3} both are the
upper bounds for B in (P(S), ρ); whereas {1, 2} is the lub (and is in B).
However, the glb for B is {}, i.e. φ, which does not belong to B.
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Lower Bound: Let (A, ρ) is a poset and B ⊆ A. An element x ∈ A is called a lower
bound of B if ∀b ∈ B, (x , b) ∈ ρ.

Upper Bound: Let (A, ρ) is a poset and B ⊆ A. An element y ∈ A is called a upper
bound of B if ∀b ∈ B, (b, y) ∈ ρ.

Greatest Lower Bound: Let (A, ρ) is a poset. An element x ′ ∈ A is called the greatest
lower bound (glb) of B if it is a lower bound of B and (x ′′, x ′) ∈ ρ for all
other lower bounds x ′′ of B.

Least Upper Bound: Let (A, ρ) is a poset. An element y ′ ∈ A is called the least upper
bound (lub) of B if it is an upper bound of B and (y ′, y ′′) ∈ ρ for all
other upper bounds y ′′ of B.

Example: In the poset (P(S),⊆) where S = {1, 2, 3} and let
B = {{1}, {2}, {1, 2}} ⊆ P(S). Then, {1, 2} and {1, 2, 3} both are the
upper bounds for B in (P(S), ρ); whereas {1, 2} is the lub (and is in B).
However, the glb for B is {}, i.e. φ, which does not belong to B.

If (A, ρ) is a poset and B ⊆ A, then B has at most one lub (glb).
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Lattice

Definition

A lattice is a poset, (A, ρ), in which for every pair of elements a, b ∈ A, the lub{a, b}
and glb{a, b} both exists in A.
A lattice is complete in which every subset of elements has a lub and glb.
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Lattice
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A lattice is a poset, (A, ρ), in which for every pair of elements a, b ∈ A, the lub{a, b}
and glb{a, b} both exists in A.
A lattice is complete in which every subset of elements has a lub and glb.

Examples: All the following posets are lattice.

1 Poset (N, ρ), where ρ = {(x , y) | x ≤ y and x , y ∈ N} is a lattice.

Here, for any x , y ∈ N, lub{x , y} = max{x , y} and glb{x , y} = min{x , y}.
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Here, for any A,B ∈ P(S), lub{A,B} = A∪ B and glb{A,B} = A∩ B.

3 Poset (Z+, ρ), where ρ = {(x , y) | x divides y and x , y ∈ Z+} is a lattice.

Here, for any x , y ∈ Z+, lub{x , y} = LCM{x , y} and glb{x , y} = GCD{x , y}.
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Lattice

Definition

A lattice is a poset, (A, ρ), in which for every pair of elements a, b ∈ A, the lub{a, b}
and glb{a, b} both exists in A.
A lattice is complete in which every subset of elements has a lub and glb.

Examples: All the following posets are lattice.

1 Poset (N, ρ), where ρ = {(x , y) | x ≤ y and x , y ∈ N} is a lattice.

Here, for any x , y ∈ N, lub{x , y} = max{x , y} and glb{x , y} = min{x , y}.

2 Poset (P(S), ρ), where ρ = {(A,B) | A ⊆ B and A,B ∈ P(S)} is a lattice.

Here, for any A,B ∈ P(S), lub{A,B} = A∪ B and glb{A,B} = A∩ B.

3 Poset (Z+, ρ), where ρ = {(x , y) | x divides y and x , y ∈ Z+} is a lattice.

Here, for any x , y ∈ Z+, lub{x , y} = LCM{x , y} and glb{x , y} = GCD{x , y}.

Example: The following poset is NOT a lattice.

Let S = {1, 2, 3} and Q ⊂ P(S) (all proper subsets) where φ 6∈ Q. Poset (Q, ρ), where
ρ = {(A,B) | A ⊆ B and x , y ∈ Q} is NOT a lattice.
Here, the pair of elements {1, 2} and {1, 3} in Q do not have a lub, whereas the pair of
elements {1} and {2} in Q do not have a glb.
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Thank You!
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