Relations

Aritra Hazra

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020 1 / 12

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted as $A \times B$, is defined by, $A \times B = \{(a, b) \mid a \in A, b \in B\}$

Generically, $\mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in \mathcal{A}_i\}$

Definition: Cartesian Product or Cross Product of two sets, \mathcal{A} and \mathcal{B} , denoted as $\mathcal{A} \times \mathcal{B}$, is defined by, $\mathcal{A} \times \mathcal{B} = \{(a, b) \mid a \in \mathcal{A}, b \in \mathcal{B}\}$ Generically, $\mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in \mathcal{A}_i\}$

Ordered Pairs: The elements of $(A \times B)$ are called ordered pairs.

Generically, the elements, $(x_1, x_2, ..., x_k) \in A_1 \times A_2 \times \cdots \times A_k$ (*k*-fold Cartesian product), are called ordered *k*-tuples.

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted as $A \times B$, is defined by, $A \times B = \{(a, b) \mid a \in A, b \in B\}$ Generically, $A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in A_i\}$

Ordered Pairs: The elements of $(\mathcal{A} \times \mathcal{B})$ are called ordered pairs.

Generically, the elements, $(x_1, x_2, ..., x_k) \in A_1 \times A_2 \times \cdots \times A_k$ (*k*-fold Cartesian product), are called ordered *k*-tuples.

Cardinality: Let,
$$|\mathcal{A}_1| = n_1, |\mathcal{A}_2| = n_2, \dots, |\mathcal{A}_k| = n_k$$
. Then,
 $|\mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_k| = |\mathcal{A}_1||\mathcal{A}_2| \cdots |\mathcal{A}_k| = n_1 n_2 \cdots n_k$

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted as $A \times B$, is defined by, $A \times B = \{(a, b) \mid a \in A, b \in B\}$ Generically, $A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in A_i\}$

Ordered Pairs: The elements of $(\mathcal{A} \times \mathcal{B})$ are called ordered pairs.

Generically, the elements, $(x_1, x_2, ..., x_k) \in A_1 \times A_2 \times \cdots \times A_k$ (*k*-fold Cartesian product), are called ordered *k*-tuples.

Cardinality: Let,
$$|\mathcal{A}_1| = n_1, |\mathcal{A}_2| = n_2, \dots, |\mathcal{A}_k| = n_k$$
. Then,
 $|\mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_k| = |\mathcal{A}_1||\mathcal{A}_2| \cdots |\mathcal{A}_k| = n_1 n_2 \cdots n_k$

Properties: For $(a, b), (c, d) \in A \times B$, we have (a, b) = (c, d) if and only if a = b and c = d.

Definition: Cartesian Product or Cross Product of two sets, \mathcal{A} and \mathcal{B} , denoted as $\mathcal{A} \times \mathcal{B}$, is defined by, $\mathcal{A} \times \mathcal{B} = \{(a, b) \mid a \in \mathcal{A}, b \in \mathcal{B}\}$ Generically, $\mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in \mathcal{A}_i\}$

Ordered Pairs: The elements of $(\mathcal{A} \times \mathcal{B})$ are called ordered pairs.

Generically, the elements, $(x_1, x_2, ..., x_k) \in A_1 \times A_2 \times \cdots \times A_k$ (*k*-fold Cartesian product), are called ordered *k*-tuples.

Cardinality: Let,
$$|\mathcal{A}_1| = n_1, |\mathcal{A}_2| = n_2, \dots, |\mathcal{A}_k| = n_k$$
. Then,
 $|\mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_k| = |\mathcal{A}_1||\mathcal{A}_2| \cdots |\mathcal{A}_k| = n_1 n_2 \cdots n_k$.

Properties: For
$$(a, b), (c, d) \in A \times B$$
, we have $(a, b) = (c, d)$ if and only if $a = b$ and $c = d$.

Note that, $\mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$, but $|\mathcal{A} \times \mathcal{B}| = |\mathcal{A}||\mathcal{B}| = |\mathcal{B} \times \mathcal{A}|$.

Definition: Cartesian Product or Cross Product of two sets, \mathcal{A} and \mathcal{B} , denoted as $\mathcal{A} \times \mathcal{B}$, is defined by, $\mathcal{A} \times \mathcal{B} = \{(a, b) \mid a \in \mathcal{A}, b \in \mathcal{B}\}$ Generically, $\mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in \mathcal{A}_i\}$

Ordered Pairs: The elements of $(\mathcal{A} \times \mathcal{B})$ are called ordered pairs.

Generically, the elements, $(x_1, x_2, ..., x_k) \in A_1 \times A_2 \times \cdots \times A_k$ (*k*-fold Cartesian product), are called ordered *k*-tuples.

Cardinality: Let,
$$|\mathcal{A}_1| = n_1, |\mathcal{A}_2| = n_2, \dots, |\mathcal{A}_k| = n_k$$
. Then,
 $|\mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_k| = |\mathcal{A}_1||\mathcal{A}_2| \cdots |\mathcal{A}_k| = n_1 n_2 \cdots n_k$.

Properties: For $(a, b), (c, d) \in A \times B$, we have (a, b) = (c, d) if and only if a = b and c = d.

Note that, $\mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$, but $|\mathcal{A} \times \mathcal{B}| = |\mathcal{A}||\mathcal{B}| = |\mathcal{B} \times \mathcal{A}|$.

Other Properties: Let $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{U}$ (i) $\mathcal{A} \times \phi = \phi \times \mathcal{A} = \phi$

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted as $A \times B$, is defined by, $A \times B = \{(a, b) \mid a \in A, b \in B\}$ Generically, $A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in A_i\}$

Ordered Pairs: The elements of $(\mathcal{A} \times \mathcal{B})$ are called ordered pairs.

Generically, the elements, $(x_1, x_2, ..., x_k) \in A_1 \times A_2 \times \cdots \times A_k$ (*k*-fold Cartesian product), are called ordered *k*-tuples.

Cardinality: Let,
$$|\mathcal{A}_1| = n_1, |\mathcal{A}_2| = n_2, \dots, |\mathcal{A}_k| = n_k$$
. Then,
 $|\mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_k| = |\mathcal{A}_1||\mathcal{A}_2| \cdots |\mathcal{A}_k| = n_1 n_2 \cdots n_k$.

Properties: For $(a, b), (c, d) \in A \times B$, we have (a, b) = (c, d) if and only if a = b and c = d.

Note that, $\mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$, but $|\mathcal{A} \times \mathcal{B}| = |\mathcal{A}||\mathcal{B}| = |\mathcal{B} \times \mathcal{A}|$.

Other Properties: Let $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{U}$ (ii) $\mathcal{A} \times (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) \cap (\mathcal{A} \times \mathcal{C})$ (i) $\mathcal{A} \times \phi = \phi \times \mathcal{A} = \phi$ (iii) $\mathcal{A} \times (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) \cup (\mathcal{A} \times \mathcal{C})$

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted as $A \times B$, is defined by, $A \times B = \{(a, b) \mid a \in A, b \in B\}$ Generically, $A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in A_i\}$

Ordered Pairs: The elements of $(\mathcal{A} \times \mathcal{B})$ are called ordered pairs.

Generically, the elements, $(x_1, x_2, ..., x_k) \in A_1 \times A_2 \times \cdots \times A_k$ (*k*-fold Cartesian product), are called ordered *k*-tuples.

Cardinality: Let,
$$|\mathcal{A}_1| = n_1, |\mathcal{A}_2| = n_2, \dots, |\mathcal{A}_k| = n_k$$
. Then,
 $|\mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_k| = |\mathcal{A}_1||\mathcal{A}_2| \cdots |\mathcal{A}_k| = n_1 n_2 \cdots n_k$.

Properties: For $(a, b), (c, d) \in A \times B$, we have (a, b) = (c, d) if and only if a = b and c = d.

Note that, $\mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$, but $|\mathcal{A} \times \mathcal{B}| = |\mathcal{A}||\mathcal{B}| = |\mathcal{B} \times \mathcal{A}|$.

Other Properties: Let $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{U}$ **(ii)** $\mathcal{A} \times (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) \cap (\mathcal{A} \times \mathcal{C})$ **(iv)** $(\mathcal{A} \cap \mathcal{B}) \times \mathcal{C} = (\mathcal{A} \times \mathcal{C}) \cap (\mathcal{B} \times \mathcal{C})$ (i) $\mathcal{A} \times \phi = \phi \times \mathcal{A} = \phi$ (iii) $\mathcal{A} \times (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) \cup (\mathcal{A} \times \mathcal{C})$ (v) $(\mathcal{A} \cup \mathcal{B}) \times \mathcal{C} = (\mathcal{A} \times \mathcal{C}) \cup (\mathcal{B} \times \mathcal{C})$

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted as $A \times B$, is defined by, $A \times B = \{(a, b) \mid a \in A, b \in B\}$ Generically, $A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots, x_k) \mid \forall i, x_i \in A_i\}$

Ordered Pairs: The elements of $(\mathcal{A} \times \mathcal{B})$ are called ordered pairs.

Generically, the elements, $(x_1, x_2, ..., x_k) \in A_1 \times A_2 \times \cdots \times A_k$ (*k*-fold Cartesian product), are called ordered *k*-tuples.

Cardinality: Let,
$$|\mathcal{A}_1| = n_1, |\mathcal{A}_2| = n_2, \dots, |\mathcal{A}_k| = n_k$$
. Then,
 $|\mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_k| = |\mathcal{A}_1||\mathcal{A}_2| \cdots |\mathcal{A}_k| = n_1 n_2 \cdots n_k$.

Properties: For
$$(a, b), (c, d) \in A \times B$$
, we have $(a, b) = (c, d)$ if and only if $a = b$ and $c = d$.

Note that, $\mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$, but $|\mathcal{A} \times \mathcal{B}| = |\mathcal{A}||\mathcal{B}| = |\mathcal{B} \times \mathcal{A}|$.

Other Properties: Let $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{U}$ **(ii)** $\mathcal{A} \times (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) \cap (\mathcal{A} \times \mathcal{C})$ **(iv)** $(\mathcal{A} \cap \mathcal{B}) \times \mathcal{C} = (\mathcal{A} \times \mathcal{C}) \cap (\mathcal{B} \times \mathcal{C})$ **(vi)** $(\mathcal{A} - \mathcal{B}) \times \mathcal{C} = (\mathcal{A} \times \mathcal{C}) - (\mathcal{B} \times \mathcal{C})$

(i)
$$\mathcal{A} \times \phi = \phi \times \mathcal{A} = \phi$$

(iii) $\mathcal{A} \times (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) \cup (\mathcal{A} \times \mathcal{C})$
(v) $(\mathcal{A} \cup \mathcal{B}) \times \mathcal{C} = (\mathcal{A} \times \mathcal{C}) \cup (\mathcal{B} \times \mathcal{C})$
(vii) $\mathcal{A} \times (\mathcal{B} - \mathcal{C}) = (\mathcal{A} \times \mathcal{B}) - (\mathcal{A} \times \mathcal{C})$

(Binary) Relation

Definition: A (binary) relation, ρ , between two sets, \mathcal{A} and \mathcal{B} , is defined as, $\rho \subseteq \mathcal{A} \times \mathcal{B}$. If an ordered pair, $(a, b) \in \rho$ (or $a \rho b$), then the element, $a \in \mathcal{A}$, is said to be *related* to the element, $b \in \mathcal{B}$.

(Binary) Relation

Definition: A (binary) relation, ρ , between two sets, \mathcal{A} and \mathcal{B} , is defined as, $\rho \subseteq \mathcal{A} \times \mathcal{B}$. If an ordered pair, $(a, b) \in \rho$ (or $a \rho b$), then the element, $a \in \mathcal{A}$, is said to be *related* to the element, $b \in \mathcal{B}$.

• Any subset of $(\mathcal{A} \times \mathcal{A})$ (or \mathcal{A}^2) is called a relation on \mathcal{A} .

• The relation, $\rho = \mathcal{A} \times \mathcal{B}$, is called the *universal relation*.

(Binary) Relation

Definition: A (binary) relation, ρ , between two sets, \mathcal{A} and \mathcal{B} , is defined as, $\rho \subseteq \mathcal{A} \times \mathcal{B}$. If an ordered pair, $(a, b) \in \rho$ (or $a \rho b$), then the element, $a \in \mathcal{A}$, is said to be *related* to the element, $b \in \mathcal{B}$.

• Any subset of $(\mathcal{A} \times \mathcal{A})$ (or \mathcal{A}^2) is called a relation on \mathcal{A} .

• The relation, $\rho = \mathcal{A} \times \mathcal{B}$, is called the *universal relation*.

Count: Total number of (binary) relations between two sets, \mathcal{A} and \mathcal{B} (where, $|\mathcal{A}| = m$ and $|\mathcal{B}| = n$), is the number of possible subsets of $(\mathcal{A} \times \mathcal{B})$, i.e. 2^{mn} .

(Binary) Relation

Definition: A (binary) relation, ρ , between two sets, \mathcal{A} and \mathcal{B} , is defined as, $\rho \subseteq \mathcal{A} \times \mathcal{B}$. If an ordered pair, $(a, b) \in \rho$ (or $a \rho b$), then the element, $a \in \mathcal{A}$, is said to be *related* to the element, $b \in \mathcal{B}$.

• Any subset of $(\mathcal{A} \times \mathcal{A})$ (or \mathcal{A}^2) is called a relation on \mathcal{A} .

• The relation, $\rho = \mathcal{A} \times \mathcal{B}$, is called the *universal relation*.

Count: Total number of (binary) relations between two sets, \mathcal{A} and \mathcal{B} (where, $|\mathcal{A}| = m$ and $|\mathcal{B}| = n$), is the number of possible subsets of $(\mathcal{A} \times \mathcal{B})$, i.e. 2^{mn} .

Example

Let $\mathcal{A} = \{1, 2, 3\}$ and $\mathcal{B} = \{a, b\}$. So, the Cartesian products are defined as, $\mathcal{A} \times \mathcal{B} = \{(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)\}$ and $\mathcal{B} \times \mathcal{A} = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$

(Binary) Relation

Definition: A (binary) relation, ρ , between two sets, \mathcal{A} and \mathcal{B} , is defined as, $\rho \subseteq \mathcal{A} \times \mathcal{B}$. If an ordered pair, $(a, b) \in \rho$ (or $a \rho b$), then the element, $a \in \mathcal{A}$, is said to be *related* to the element, $b \in \mathcal{B}$.

• Any subset of $(\mathcal{A} \times \mathcal{A})$ (or \mathcal{A}^2) is called a relation on \mathcal{A} .

• The relation, $\rho = \mathcal{A} \times \mathcal{B}$, is called the *universal relation*.

Count: Total number of (binary) relations between two sets, \mathcal{A} and \mathcal{B} (where, $|\mathcal{A}| = m$ and $|\mathcal{B}| = n$), is the number of possible subsets of $(\mathcal{A} \times \mathcal{B})$, i.e. 2^{mn} .

Example

Let
$$\mathcal{A} = \{1, 2, 3\}$$
 and $\mathcal{B} = \{a, b\}$. So, the Cartesian products are defined as,
 $\mathcal{A} \times \mathcal{B} = \{(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)\}$ and
 $\mathcal{B} \times \mathcal{A} = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
Clearly, $\mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$, however $|\mathcal{A} \times \mathcal{B}| = 6 = |\mathcal{B} \times \mathcal{A}|$.

(Binary) Relation

Definition: A (binary) relation, ρ , between two sets, \mathcal{A} and \mathcal{B} , is defined as, $\rho \subseteq \mathcal{A} \times \mathcal{B}$. If an ordered pair, $(a, b) \in \rho$ (or $a \rho b$), then the element, $a \in \mathcal{A}$, is said to be *related* to the element, $b \in \mathcal{B}$.

• Any subset of $(\mathcal{A} \times \mathcal{A})$ (or \mathcal{A}^2) is called a relation on \mathcal{A} .

• The relation, $\rho = \mathcal{A} \times \mathcal{B}$, is called the *universal relation*.

Count: Total number of (binary) relations between two sets, \mathcal{A} and \mathcal{B} (where, $|\mathcal{A}| = m$ and $|\mathcal{B}| = n$), is the number of possible subsets of $(\mathcal{A} \times \mathcal{B})$, i.e. 2^{mn} .

Example

Let $\mathcal{A} = \{1, 2, 3\}$ and $\mathcal{B} = \{a, b\}$. So, the Cartesian products are defined as, $\mathcal{A} \times \mathcal{B} = \{(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)\}$ and $\mathcal{B} \times \mathcal{A} = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$ Clearly, $\mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$, however $|\mathcal{A} \times \mathcal{B}| = 6 = |\mathcal{B} \times \mathcal{A}|$. There can be a total of $2^6 = 64$ different (binary) relations possible. Some are: $\rho_1 = \{(1, a), (1, b), (1, c)\}$ or $\rho_2 = \{(2, a), (3, a), (1, b), (3, b)\}$.

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$.

Let a relation, ρ , is defined over the set, A with |A| = n, as $\rho \subseteq A \times A$. (Count: 2^{n^2})

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$ Count: 2^{n^2-n}

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}, (x, y) \in \rho \Rightarrow (y, x) \in \rho$

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: $2^{n^{\epsilon}}$) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}$, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in A$, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}, (x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

Transitive: ρ is transitive if $\forall x, y, z \in \mathcal{A}$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: $2^{n^{\epsilon}}$) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}, (x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

Transitive: ρ is transitive if $\forall x, y, z \in A$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$ Count: Unknown (still an open-problem!)

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}, (x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

Transitive: ρ is transitive if $\forall x, y, z \in A$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$ Count: Unknown (still an open-problem!)

Antisymmetric: ρ is antisymmetric if $\forall x, y \in A$, $(x, y), (y, x) \in \rho \Rightarrow (x = y)$

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: $2^{n^{\epsilon}}$) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}, (x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

Transitive: ρ is transitive if $\forall x, y, z \in A$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$ Count: Unknown (still an open-problem!)

Antisymmetric: ρ is antisymmetric if $\forall x, y \in A$, $(x, y), (y, x) \in \rho \Rightarrow (x = y)$ Count: $2^n 3^{\frac{n^2-n}{2}}$

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}, (x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

- Transitive: ρ is transitive if $\forall x, y, z \in A$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$ Count: Unknown (still an open-problem!)
- Antisymmetric: ρ is antisymmetric if $\forall x, y \in A$, $(x, y), (y, x) \in \rho \Rightarrow (x = y)$

Count: $2^n 3^{\frac{n^2-n}{2}}$ (element (x, x) can either be included or excluded; element (x, y) have three options – (i) take only (x, y), (ii) take only (y, x), or (iii) take neither (x, y) nor (y, x). What if take both?)

ヘロト 人間ト ヘヨト ヘヨト

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}$, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

Transitive: ρ is transitive if $\forall x, y, z \in A$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$ Count: Unknown (still an open-problem!)

Antisymmetric: ρ is antisymmetric if $\forall x, y \in A$, $(x, y), (y, x) \in \rho \Rightarrow (x = y)$

Count: $2^n 3^{\frac{n^2-n}{2}}$ (element (x, x) can either be included or excluded; element (x, y) have three options – (i) take only (x, y), (ii) take only (y, x), or (iii) take neither (x, y) nor (y, x). What if take both?)

Irreflexive: ρ is irreflexive if $\exists x \in \mathcal{A}, (x, x) \notin \rho$

ヘロト 人間ト ヘヨト ヘヨト

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in A$, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

- Transitive: ρ is transitive if $\forall x, y, z \in A$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$ Count: Unknown (still an open-problem!)
- Antisymmetric: ρ is antisymmetric if $\forall x, y \in A$, $(x, y), (y, x) \in \rho \Rightarrow (x = y)$

Count: $2^n 3^{\frac{n^2-n}{2}}$ (element (x, x) can either be included or excluded; element (x, y) have three options – (i) take only (x, y), (ii) take only (y, x), or (iii) take neither (x, y) nor (y, x). What if take both?)

Irreflexive: ρ is irreflexive if $\exists x \in \mathcal{A}, (x, x) \notin \rho$

Asymmetric: ρ is asymmetric if $\exists x, y \in \mathcal{A}, (x, y) \in \rho \land (y, x) \notin \rho$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in A$, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

- Transitive: ρ is transitive if $\forall x, y, z \in A$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$ Count: Unknown (still an open-problem!)
- Antisymmetric: ρ is antisymmetric if $\forall x, y \in A$, $(x, y), (y, x) \in \rho \Rightarrow (x = y)$

Count: $2^n 3^{\frac{n^2-n}{2}}$ (element (x, x) can either be included or excluded; element (x, y) have three options – (i) take only (x, y), (ii) take only (y, x), or (iii) take neither (x, y) nor (y, x). What if take both?)

Irreflexive: ρ is irreflexive if $\exists x \in \mathcal{A}, (x, x) \notin \rho$

Asymmetric: ρ is asymmetric if $\exists x, y \in \mathcal{A}, (x, y) \in \rho \land (y, x) \notin \rho$

Non-Transitive: ρ is non-transitive if $\exists x, y, z \in A$, $(x, y), (y, z) \in \rho \land (x, z) \notin \rho$

・ロト ・ 戸 ト ・ ヨ ト

Let a relation, ρ , is defined over the set, \mathcal{A} with $|\mathcal{A}| = n$, as $\rho \subseteq \mathcal{A} \times \mathcal{A}$. (Count: 2^{n^2}) Reflexive: ρ is reflexive if $\forall x \in \mathcal{A}$, $(x, x) \in \rho$

Count: 2^{n^2-n} (after choosing all *n* number of (x, x) pairs, any subset from $(n^2 - n)$ pairs can be taken as relation keeping reflexivity)

Symmetric: ρ is symmetric if $\forall x, y \in \mathcal{A}$, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$

Count: $2^{\frac{n^2+n}{2}}$ (selecting an (x, y) + (x, x) pair in $\binom{n}{2} + n$ ways, any subset from $\binom{n}{2} + n$ pairs can be taken as relation keeping symmetry)

- Transitive: ρ is transitive if $\forall x, y, z \in A$, $(x, y), (y, z) \in \rho \Rightarrow (x, z) \in \rho$ Count: Unknown (still an open-problem!)
- Antisymmetric: ρ is antisymmetric if $\forall x, y \in A$, $(x, y), (y, x) \in \rho \Rightarrow (x = y)$

Count: $2^n 3^{\frac{n^2-n}{2}}$ (element (x, x) can either be included or excluded; element (x, y) have three options – (i) take only (x, y), (ii) take only (y, x), or (iii) take neither (x, y) nor (y, x). What if take both?)

Irreflexive: ρ is irreflexive if $\exists x \in \mathcal{A}, (x, x) \notin \rho$

Asymmetric: ρ is asymmetric if $\exists x, y \in A$, $(x, y) \in \rho \land (y, x) \notin \rho$ Non-Transitive: ρ is non-transitive if $\exists x, y, z \in A$, $(x, y), (y, z) \in \rho \land (x, z) \notin \rho$

Not Antisymmetric: ρ is not antisymmetric if $\exists x, y \in \mathcal{A}$, $(x, y), (y, x) \in \rho \land (x \neq y)$

Examples of Relations

1 Reflexive and Symmetric, but NOT Transitive:

Aritra Hazra (CSE, IITKGP)

Examples of Relations

1 Reflexive and Symmetric, but NOT Transitive:

 ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$

Examples of Relations

1 Reflexive and Symmetric, but NOT Transitive:

ho is defined over $\mathbb Z$ as, $ho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb Z\}$

(Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1)

1 Reflexive and Symmetric, but NOT Transitive:

 ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$

(Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1)

Symmetric and Transitive, but NOT Reflexive:

1 Reflexive and Symmetric, but NOT Transitive:

 ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$

(Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1)

Symmetric and Transitive, but NOT Reflexive:

 ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$

1 Reflexive and Symmetric, but NOT Transitive:

 ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$

(Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1)

Symmetric and Transitive, but NOT Reflexive:

 ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$

(NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{v^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$)

1 Reflexive and Symmetric, but NOT Transitive:

ho is defined over $\mathbb Z$ as, $ho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb Z\}$

(Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1)

Symmetric and Transitive, but NOT Reflexive:

 ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$

(NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{v^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$)

8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric):

Reflexive and Symmetric, but NOT Transitive:

 ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$

(Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1)

Symmetric and Transitive, but NOT Reflexive:

 ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$

(NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{y^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$)

Seflexive and Transitive, but NOT Symmetric (Antisymmetric):

 ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x \leq y \text{ and } x, y \in \mathbb{R}\}$

1 Reflexive and Symmetric, but NOT Transitive:

 ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$

(Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1)

Symmetric and Transitive, but NOT Reflexive:

 ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$

(NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{v^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$)

Seflexive and Transitive, but NOT Symmetric (Antisymmetric):

 ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x \leq y \text{ and } x, y \in \mathbb{R}\}$

(Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$)

Reflexive and Symmetric, but NOT Transitive:
ρ is defined over Z as, ρ = {(x, y) | xy ≥ 0 and x, y ∈ Z} (Reflexive as x² ≥ 0, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1)
Symmetric and Transitive, but NOT Reflexive:
ρ is defined over R as, ρ = {(x, y) | xy > 0 and x, y ∈ R} (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as xz = (xy)/(yz) > 0 since xy > 0, yz > 0, y² > 0)
Reflexive and Transitive, but NOT Symmetric (Antisymmetric):
ρ is defined over R as, ρ = {(x, y) | x ≤ y and x, y ∈ R} (Reflexive as x ≤ x, NOT Symmetric for x = 0.1, y = 1.0, Transitive as x ≤ y ≤ z)
NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric:

Reflexive and Symmetric, but NOT Transitive. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$ (Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1) Symmetric and Transitive, but NOT Reflexive. ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$ (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{x^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$) 8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric): ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x < y \text{ and } x, y \in \mathbb{R}\}$ (Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$) NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$

Reflexive and Symmetric, but NOT Transitive. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$ (Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1) Symmetric and Transitive, but NOT Reflexive. ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$ (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{v^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$) 8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric): ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x < y \text{ and } x, y \in \mathbb{R}\}$ (Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$) NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric: ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$

(NOT Reflexive as $x \neq x + 1$, NOT Symmetric as $y = x + 1 \Rightarrow x = y - 1$, NOT Transitive as z = y + 1 = x + 2)

Reflexive and Symmetric, but NOT Transitive. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$ (Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1) Symmetric and Transitive, but NOT Reflexive. ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$ (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{y^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$) 8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric): ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x < y \text{ and } x, y \in \mathbb{R}\}$ (Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$) NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric: ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$ (NOT Reflexive as $x \neq x + 1$, NOT Symmetric as $y = x + 1 \Rightarrow x = y - 1$, NOT Transitive as z = y + 1 = x + 2)

Only Reflexive:

イロト イヨト イヨト

Reflexive and Symmetric, but NOT Transitive. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$ (Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1) Symmetric and Transitive, but NOT Reflexive. ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$ (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{x^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$) 8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric): ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x < y \text{ and } x, y \in \mathbb{R}\}$ (Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$) NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric: ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$ (NOT Reflexive as $x \neq x + 1$, NOT Symmetric as $y = x + 1 \Rightarrow x = y - 1$, NOT Transitive as z = y + 1 = x + 2) Solution $\rho = \{(A, B) \mid \text{Person-}A \text{ knows Person-}B\}$

Reflexive and Symmetric, but NOT Transitive. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$ (Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1) Symmetric and Transitive, but NOT Reflexive. ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$ (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{x^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$) 8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric): ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x < y \text{ and } x, y \in \mathbb{R}\}$ (Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$) NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric: ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$ (NOT Reflexive as $x \neq x + 1$, NOT Symmetric as $y = x + 1 \Rightarrow x = y - 1$, NOT Transitive as z = y + 1 = x + 2) Solution $\rho = \{(A, B) \mid \text{Person-}A \text{ knows Person-}B\}$ Only Symmetric:

Reflexive and Symmetric, but NOT Transitive. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$ (Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1) Symmetric and Transitive, but NOT Reflexive. ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$ (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{x^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$) 8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric): ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x < y \text{ and } x, y \in \mathbb{R}\}$ (Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$) NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$ (NOT Reflexive as $x \neq x + 1$, NOT Symmetric as $y = x + 1 \Rightarrow x = y - 1$, NOT Transitive as z = y + 1 = x + 2) Solution $\rho = \{(A, B) \mid \text{Person-}A \text{ knows Person-}B\}$ Only Symmetric: Relation $\rho = \{(A, B) \mid A + B = 5 \text{ and } A, B \in \mathbb{Z}\}$

Reflexive and Symmetric, but NOT Transitive. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$ (Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1) Symmetric and Transitive, but NOT Reflexive. ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$ (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{x^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$) 8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric): ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x < y \text{ and } x, y \in \mathbb{R}\}$ (Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$) NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$ (NOT Reflexive as $x \neq x + 1$, NOT Symmetric as $y = x + 1 \Rightarrow x = y - 1$, NOT Transitive as z = y + 1 = x + 2) **Only Reflexive:** Relation $\rho = \{(A, B) \mid \text{Person-}A \text{ knows Person-}B\}$ Relation $\rho = \{(A, B) \mid A + B = 5 \text{ and } A, B \in \mathbb{Z}\}$ Only Symmetric: Only Transitive:

Reflexive and Symmetric, but NOT Transitive. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$ (Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1) Symmetric and Transitive, but NOT Reflexive. ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$ (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{x^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$) 8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric): ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x < y \text{ and } x, y \in \mathbb{R}\}$ (Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$) NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$ (NOT Reflexive as $x \neq x + 1$, NOT Symmetric as $y = x + 1 \Rightarrow x = y - 1$, NOT Transitive as z = y + 1 = x + 2) Solution $\rho = \{(A, B) \mid \text{Person-}A \text{ knows Person-}B\}$ **Only Symmetric** Relation $\rho = \{(A, B) \mid A + B = 5 \text{ and } A, B \in \mathbb{Z}\}$ Only Transitive: Relation $\rho = \{(A, B) \mid A \subset B \text{ and } A, B \in \mathcal{U}\}$

イロト イヨト イヨト

Reflexive and Symmetric, but NOT Transitive. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid xy \ge 0 \text{ and } x, y \in \mathbb{Z}\}$ (Reflexive as $x^2 \ge 0$, Symmetric as xy = yx, NOT Transitive for x = 2, y = 0, z = -1) Symmetric and Transitive, but NOT Reflexive. ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid xy > 0 \text{ and } x, y \in \mathbb{R}\}$ (NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as $xz = \frac{(xy) \cdot (yz)}{x^2} > 0$ since $xy > 0, yz > 0, y^2 > 0$) 8 Reflexive and Transitive, but NOT Symmetric (Antisymmetric): ρ is defined over \mathbb{R} as, $\rho = \{(x, y) \mid x < y \text{ and } x, y \in \mathbb{R}\}$ (Reflexive as $x \le x$, NOT Symmetric for x = 0.1, y = 1.0, Transitive as $x \le y \le z$) NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric. ρ is defined over \mathbb{Z} as, $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$ (NOT Reflexive as $x \neq x + 1$, NOT Symmetric as $y = x + 1 \Rightarrow x = y - 1$, NOT Transitive as z = y + 1 = x + 2) Solution $\rho = \{(A, B) \mid \text{Person-}A \text{ knows Person-}B\}$ Relation $\rho = \{(A, B) \mid A + B = 5 \text{ and } A, B \in \mathbb{Z}\}$ Only Symmetric: Only Transitive: Relation $\rho = \{(A, B) \mid A \subset B \text{ and } A, B \in \mathcal{U}\}$ Only Antisymmetric: Left for You to find as an Exercise! Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 5/12

Equivalence Relation: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called an equivalence relation if it is reflexive, symmetric and transitive.

Equivalence Relation: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: $\rho = \{(x, y) \mid (x - y) \text{ is divisible by 5 and } x, y \in \mathbb{Z}\}$

- Reflexive since (x x) = 0 is divisible by 5.
- Symmetric since (y x) = -(x y) is divisible by 5.
- Transitive since (x z) = (x y) + (y z) is divisible by 5.

Equivalence Relation: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: $\rho = \{(x, y) \mid (x - y) \text{ is divisible by 5 and } x, y \in \mathbb{Z}\}$

- Reflexive since (x x) = 0 is divisible by 5.
- Symmetric since (y x) = -(x y) is divisible by 5.
- Transitive since (x z) = (x y) + (y z) is divisible by 5.

Fallacy: Does *Symmetric* + *Transitive* \Rightarrow *Reflexive*? Why define Reflexivit? [from $(x, y) \in \rho \Rightarrow (y, x) \in \rho$ and $(x, y), (y, x) \in \rho \Rightarrow (x, x) \in \rho$]

Equivalence Relation: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: $\rho = \{(x, y) \mid (x - y) \text{ is divisible by 5 and } x, y \in \mathbb{Z}\}$

- Reflexive since (x x) = 0 is divisible by 5.
- Symmetric since (y x) = -(x y) is divisible by 5.
- Transitive since (x z) = (x y) + (y z) is divisible by 5.

Fallacy: Does Symmetric + Transitive \Rightarrow Reflexive? Why define Reflexivity? [from $(x, y) \in \rho \Rightarrow (y, x) \in \rho$ and $(x, y), (y, x) \in \rho \Rightarrow (x, x) \in \rho$] **Reason:** NO, since for all x, an y may not be found/associated!

Equivalence Relation: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: $\rho = \{(x, y) \mid (x - y) \text{ is divisible by 5 and } x, y \in \mathbb{Z}\}$

- Reflexive since (x x) = 0 is divisible by 5.
- Symmetric since (y x) = -(x y) is divisible by 5.
- Transitive since (x z) = (x y) + (y z) is divisible by 5.

Fallacy: Does *Symmetric* + *Transitive* \Rightarrow *Reflexive*? Why define Reflexivity?

[from $(x, y) \in \rho \Rightarrow (y, x) \in \rho$ and $(x, y), (y, x) \in \rho \Rightarrow (x, x) \in \rho$]

Reason: NO, since for all *x*, an *y* may not be found/associated!

Equivalence Class: Let ρ be an equivalence relation on \mathcal{A} . For each $y \in \mathcal{A}$, the equivalence class is denoted by $[y] = \{x \mid (x, y) \in \rho \text{ and } x \in \mathcal{A}\}.$

Equivalence Relation: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: $\rho = \{(x, y) \mid (x - y) \text{ is divisible by 5 and } x, y \in \mathbb{Z}\}$

- Reflexive since (x x) = 0 is divisible by 5.
- Symmetric since (y x) = -(x y) is divisible by 5.
- Transitive since (x z) = (x y) + (y z) is divisible by 5.

Fallacy: Does *Symmetric* + *Transitive* \Rightarrow *Reflexive*? Why define Reflexivity?

[from
$$(x, y) \in \rho \Rightarrow (y, x) \in \rho$$
 and $(x, y), (y, x) \in \rho \Rightarrow (x, x) \in \rho$]

Reason: NO, since for all *x*, an *y* may not be found/associated!

Equivalence Class: Let ρ be an equivalence relation on \mathcal{A} . For each $y \in \mathcal{A}$, the equivalence class is denoted by $[y] = \{x \mid (x, y) \in \rho \text{ and } x \in \mathcal{A}\}.$

Example: In the relation, $\rho = \{(x, y) \mid (x - y) \text{ is divisible by 3 and } x, y \in \mathbb{Z}\}$, the four equivalence classes are defined as:

•
$$[0] = \{\dots, -6, -3, 0, +3, +6, \dots\} = \{3k \mid k \in \mathbb{Z}\}$$

• $[1] = \{\dots, -5, -2, 1, +4, +7, \dots\} = \{3k+1 \mid k \in \mathbb{Z}\}$
• $[2] = \{\dots, -4, -1, 2, +5, +8, \dots\} = \{3k+2 \mid k \in \mathbb{Z}\}$

Equivalence Relation: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: $\rho = \{(x, y) \mid (x - y) \text{ is divisible by 5 and } x, y \in \mathbb{Z}\}$

- Reflexive since (x x) = 0 is divisible by 5.
- Symmetric since (y x) = -(x y) is divisible by 5.
- Transitive since (x z) = (x y) + (y z) is divisible by 5.

Fallacy: Does *Symmetric* + *Transitive* \Rightarrow *Reflexive*? Why define Reflexivity?

[from
$$(x, y) \in \rho \Rightarrow (y, x) \in \rho$$
 and $(x, y), (y, x) \in \rho \Rightarrow (x, x) \in \rho$]

Reason: NO, since for all x, an y may not be found/associated!

Equivalence Class: Let ρ be an equivalence relation on \mathcal{A} . For each $y \in \mathcal{A}$, the equivalence class is denoted by $[y] = \{x \mid (x, y) \in \rho \text{ and } x \in \mathcal{A}\}.$

Example: In the relation, $\rho = \{(x, y) \mid (x - y) \text{ is divisible by 3 and } x, y \in \mathbb{Z}\}$, the four equivalence classes are defined as:

•
$$[0] = \{\dots, -6, -3, 0, +3, +6, \dots\} = \{3k \mid k \in \mathbb{Z}\}$$

• $[1] = \{\dots, -5, -2, 1, +4, +7, \dots\} = \{3k + 1 \mid k \in \mathbb{Z}\}$
• $[2] = \{\dots, -4, -1, 2, +5, +8, \dots\} = \{3k + 2 \mid k \in \mathbb{Z}\}$
Note: $[0] = [-3] = [+3] = [-6] = [+6] = \cdots$ (from definition)
 $[0] \neq [1] \neq [2]$ and $\mathbb{Z} = [0] \cup [1] \cup [2]$ (details in next slide)

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ **Proof:**

- 4 E b

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ **Proof:**

• From Reflexive property, $(x, x) \in \rho$.

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ **Proof:**

From Reflexive property, $(x, x) \in \rho$.

[If] Let
$$a \in [x] \Rightarrow (a, x) \in \rho$$
. As $(x, y) \in \rho$, so using transitivity, we get $(a, y) \in \rho \Rightarrow a \in [y]$. Hence, $[x] \subseteq [y]$.

- 4 E b

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ Proof:

Solution From Reflexive property, $(x, x) \in \rho$.

1 [If] Let $a \in [x] \Rightarrow (a, x) \in \rho$. As $(x, y) \in \rho$, so using transitivity, we get $(a, y) \in \rho \Rightarrow a \in [y]$. Hence, $[x] \subseteq [y]$. Again, let $b \in [y] \Rightarrow (b, y) \in \rho$. By symmetry, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$. So, using transitivity, $(b, x) \in \rho \Rightarrow b \in [x]$. Hence, $[y] \subseteq [x]$.

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ **Proof:**

1

From Reflexive property, $(x, x) \in \rho$.

[*If*] Let
$$a \in [x] \Rightarrow (a, x) \in \rho$$
. As $(x, y) \in \rho$, so using transitivity, we get $(a, y) \in \rho \Rightarrow a \in [y]$. Hence, $[x] \subseteq [y]$. Again, let $b \in [y] \Rightarrow (b, y) \in \rho$. By symmetry, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$. So, using transitivity, $(b, x) \in \rho \Rightarrow b \in [x]$. Hence, $[y] \subseteq [x]$.
[*Only-If*] $x \in [x]$ and $[x] = [y]$ implies $x \in [y] \Rightarrow (x, y) \in \rho$.

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ Proof:

Solution From Reflexive property, $(x, x) \in \rho$.

1 [If] Let $a \in [x] \Rightarrow (a, x) \in \rho$. As $(x, y) \in \rho$, so using transitivity, we get $(a, y) \in \rho \Rightarrow a \in [y]$. Hence, $[x] \subseteq [y]$. Again, let $b \in [y] \Rightarrow (b, y) \in \rho$. By symmetry, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$. So, using transitivity, $(b, x) \in \rho \Rightarrow b \in [x]$. Hence, $[y] \subseteq [x]$. [Only-If] $x \in [x]$ and [x] = [y] implies $x \in [y] \Rightarrow (x, y) \in \rho$.

(a) Assume $[x] \neq [y]$, then $[x] \cap [y] = \phi$ must hold. If otherwise $[x] \cap [y] \neq \phi$, then let $u \in [x]$ and $u \in [y]$. Thus, $(u, x) \in \rho$ and by symmetry, $(x, u) \in \rho$. With $(u, y) \in \rho$, applying transitivity we get, $(x, y) \in \rho \Rightarrow [x] = [y]$, which contradicts the assumption!

イロト イポト イヨト イヨト

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ **Proof:**

• From Reflexive property, $(x, x) \in \rho$.

 $\begin{bmatrix} If \end{bmatrix} \quad \text{Let } a \in [x] \Rightarrow (a, x) \in \rho. \text{ As } (x, y) \in \rho, \text{ so using transitivity, we get} \\ (a, y) \in \rho \Rightarrow a \in [y]. \text{ Hence, } [x] \subseteq [y]. \text{ Again, let } b \in [y] \Rightarrow (b, y) \in \rho. \text{ By symmetry,} \\ (x, y) \in \rho \Rightarrow (y, x) \in \rho. \text{ So, using transitivity, } (b, x) \in \rho \Rightarrow b \in [x]. \text{ Hence, } [y] \subseteq [x]. \\ [Only-If] \quad x \in [x] \text{ and } [x] = [y] \text{ implies } x \in [y] \Rightarrow (x, y) \in \rho. \end{bmatrix}$

(i) Assume $[x] \neq [y]$, then $[x] \cap [y] = \phi$ must hold. If otherwise $[x] \cap [y] \neq \phi$, then let $u \in [x]$ and $u \in [y]$. Thus, $(u, x) \in \rho$ and by symmetry, $(x, u) \in \rho$. With $(u, y) \in \rho$, applying transitivity we get, $(x, y) \in \rho \Rightarrow [x] = [y]$, which contradicts the assumption!

Partitions of a Set (Revisited)

Given set \mathcal{A} and index set \mathcal{I} , let $\forall i, \phi \neq \mathcal{A}_i \subseteq \mathcal{A}$. Then $\{\mathcal{A}_i\}_{i \in \mathcal{I}}$ induces a partition on \mathcal{A} if: (i) $\mathcal{A} = \bigcup_{i \in \mathcal{I}} \mathcal{A}_i$, and (ii) $\mathcal{A}_i \cap \mathcal{A}_j = \phi, \forall i, j \in \mathcal{I} \ (i \neq j)$.

イロト イポト イヨト イヨト 二日

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ **Proof:**

• From Reflexive property, $(x, x) \in \rho$.

- $\begin{bmatrix} If \end{bmatrix} \quad \text{Let } a \in [x] \Rightarrow (a, x) \in \rho. \text{ As } (x, y) \in \rho, \text{ so using transitivity, we get} \\ (a, y) \in \rho \Rightarrow a \in [y]. \text{ Hence, } [x] \subseteq [y]. \text{ Again, let } b \in [y] \Rightarrow (b, y) \in \rho. \text{ By symmetry,} \\ (x, y) \in \rho \Rightarrow (y, x) \in \rho. \text{ So, using transitivity, } (b, x) \in \rho \Rightarrow b \in [x]. \text{ Hence, } [y] \subseteq [x]. \\ [Only-If] \quad x \in [x] \text{ and } [x] = [y] \text{ implies } x \in [y] \Rightarrow (x, y) \in \rho. \end{bmatrix}$
- **(i)** Assume $[x] \neq [y]$, then $[x] \cap [y] = \phi$ must hold. If otherwise $[x] \cap [y] \neq \phi$, then let $u \in [x]$ and $u \in [y]$. Thus, $(u, x) \in \rho$ and by symmetry, $(x, u) \in \rho$. With $(u, y) \in \rho$, applying transitivity we get, $(x, y) \in \rho \Rightarrow [x] = [y]$, which contradicts the assumption!

Partitions of a Set (Revisited)

Given set \mathcal{A} and index set \mathcal{I} , let $\forall i, \phi \neq \mathcal{A}_i \subseteq \mathcal{A}$. Then $\{\mathcal{A}_i\}_{i \in \mathcal{I}}$ induces a partition on \mathcal{A} if: (i) $\mathcal{A} = \bigcup_{i \in \mathcal{I}} \mathcal{A}_i$, and (ii) $\mathcal{A}_i \cap \mathcal{A}_j = \phi, \forall i, j \in \mathcal{I} \ (i \neq j)$.

Results: (i) Any equivalence relation ρ on set A induces a partition of A. *Proof:* Follows from the above theorem.

Theorem: If ρ is an equivalence relation on \mathcal{A} and $x, y \in \mathcal{A}$, then (i) $x \in [x]$; (ii) $(x, y) \in \rho$ iff [x] = [y]; and (iii) [x] = [y] or $[x] \cap [y] = \phi$ Proof:

Solution From Reflexive property, $(x, x) \in \rho$.

- 1 [If] Let $a \in [x] \Rightarrow (a, x) \in \rho$. As $(x, y) \in \rho$, so using transitivity, we get $(a, y) \in \rho \Rightarrow a \in [y]$. Hence, $[x] \subseteq [y]$. Again, let $b \in [y] \Rightarrow (b, y) \in \rho$. By symmetry, $(x, y) \in \rho \Rightarrow (y, x) \in \rho$. So, using transitivity, $(b, x) \in \rho \Rightarrow b \in [x]$. Hence, $[y] \subseteq [x]$. [Only-If] $x \in [x]$ and [x] = [y] implies $x \in [y] \Rightarrow (x, y) \in \rho$.
- **(a)** Assume $[x] \neq [y]$, then $[x] \cap [y] = \phi$ must hold. If otherwise $[x] \cap [y] \neq \phi$, then let $u \in [x]$ and $u \in [y]$. Thus, $(u, x) \in \rho$ and by symmetry, $(x, u) \in \rho$. With $(u, y) \in \rho$, applying transitivity we get, $(x, y) \in \rho \Rightarrow [x] = [y]$, which contradicts the assumption!

Partitions of a Set (Revisited)

Given set \mathcal{A} and index set \mathcal{I} , let $\forall i, \phi \neq \mathcal{A}_i \subseteq \mathcal{A}$. Then $\{\mathcal{A}_i\}_{i \in \mathcal{I}}$ induces a partition on \mathcal{A} if: (i) $\mathcal{A} = \bigcup \mathcal{A}_i$, and (ii) $\mathcal{A}_i \cap \mathcal{A}_i = \phi$, $\forall i, j \in \mathcal{I} \ (i \neq j)$. $i \in \mathcal{I}$

Results: (i) Any equivalence relation ρ on set \mathcal{A} induces a partition of \mathcal{A} . *Proof:* Follows from the above theorem. (ii) Any partition of \mathcal{A} gives rise to an equivalence relation ρ on \mathcal{A} . Proof: Left for You as an Exercise!

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

Partial Order: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called a partial ordering relation (or partial order) if it is reflexive, antisymmetric and transitive. We call (\mathcal{A}, ρ) as a Poset (Partial Ordered Set).

Partial Order: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called a partial ordering relation (or partial order) if it is reflexive, antisymmetric and transitive. We call (\mathcal{A}, ρ) as a Poset (Partial Ordered Set).

Example: Let $S = \{1, 2, 3\}$ and $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } \mathcal{A}, \mathcal{B} \in \mathcal{P}(S)\}$, therefore $(\mathcal{P}(S), \rho)$ or $(\mathcal{P}(S), \subseteq)$ is a poset. Also, $(\mathcal{P}(S), \supseteq)$ is a poset and called dual of the poset $(\mathcal{P}(S), \subseteq)$.

Partial Order: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called a partial ordering relation (or partial order) if it is reflexive, antisymmetric and transitive. We call (\mathcal{A}, ρ) as a Poset (Partial Ordered Set).

Example: Let $S = \{1, 2, 3\}$ and $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } \mathcal{A}, \mathcal{B} \in \mathcal{P}(S)\}$, therefore $(\mathcal{P}(S), \rho)$ or $(\mathcal{P}(S), \subseteq)$ is a poset. Also, $(\mathcal{P}(S), \supseteq)$ is a poset and called dual of the poset $(\mathcal{P}(S), \subseteq)$.

Covering Relation: Let (\mathcal{A}, ρ) is a poset and $p, q, r \in \mathcal{A}$. We call q as the cover for p(denoted as $p \prec q$) when $(p, q) \in \rho$, and no element $r \in \mathcal{A}$ exists such that $p \prec r \prec q$, that is $(p, r) \in \rho$ and $(r, q) \in \rho$.

Partial Order: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called a partial ordering relation (or partial order) if it is reflexive, antisymmetric and transitive. We call (\mathcal{A}, ρ) as a Poset (Partial Ordered Set).

Example: Let $S = \{1, 2, 3\}$ and $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } \mathcal{A}, \mathcal{B} \in \mathcal{P}(S)\}$, therefore $(\mathcal{P}(S), \rho)$ or $(\mathcal{P}(S), \subseteq)$ is a poset.

Also, $(\mathcal{P}(\mathcal{S}), \supseteq)$ is a poset and called dual of the poset $(\mathcal{P}(\mathcal{S}), \subseteq)$.

Covering Relation: Let (\mathcal{A}, ρ) is a poset and $p, q, r \in \mathcal{A}$. We call q as the cover for p(denoted as $p \prec q$) when $(p, q) \in \rho$, and no element $r \in \mathcal{A}$ exists such that $p \prec r \prec q$, that is $(p, r) \in \rho$ and $(r, q) \in \rho$.

Hasse Diagram: A directed acyclic graph (DAG) with elements of set A as nodes and (p,q) as directed edges from p to q $(p,q \in A)$ iff $p \prec q$ (q covers p).

Partial Order and Hasse Diagram

Partial Order: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called a partial ordering relation (or partial order) if it is reflexive, antisymmetric and transitive. We call (\mathcal{A}, ρ) as a Poset (Partial Ordered Set).

Example: Let $S = \{1, 2, 3\}$ and $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } \mathcal{A}, \mathcal{B} \in \mathcal{P}(S)\}$, therefore $(\mathcal{P}(S), \rho)$ or $(\mathcal{P}(S), \subseteq)$ is a poset.

Also, $(\mathcal{P}(\mathcal{S}), \supseteq)$ is a poset and called dual of the poset $(\mathcal{P}(\mathcal{S}), \subseteq)$.

Covering Relation: Let (\mathcal{A}, ρ) is a poset and $p, q, r \in \mathcal{A}$. We call q as the cover for p(denoted as $p \prec q$) when $(p, q) \in \rho$, and no element $r \in \mathcal{A}$ exists such that $p \prec r \prec q$, that is $(p, r) \in \rho$ and $(r, q) \in \rho$.

Hasse Diagram: A directed acyclic graph (DAG) with elements of set A as nodes and (p,q) as directed edges from p to q $(p,q \in A)$ iff $p \prec q$ (q covers p).

Example: Note that, $(\{2\}, \{1,3\}) \notin \rho$ and $\{1,2\} \prec \{1,2,3\}$ (forming the cover), but $\{1\} \not\prec \{1,2,3\}$ as $\{1\} \prec \{1,3\} \prec \{1,2,3\}$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Partial Order and Hasse Diagram

Partial Order: A relation $\rho \subseteq \mathcal{A} \times \mathcal{A}$ on set \mathcal{A} is called a partial ordering relation (or partial order) if it is reflexive, antisymmetric and transitive. We call (\mathcal{A}, ρ) as a Poset (Partial Ordered Set).

Example: Let $S = \{1, 2, 3\}$ and $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } \mathcal{A}, \mathcal{B} \in \mathcal{P}(S)\}$, therefore $(\mathcal{P}(S), \rho)$ or $(\mathcal{P}(S), \subseteq)$ is a poset.

Also, $(\mathcal{P}(\mathcal{S}), \supseteq)$ is a poset and called dual of the poset $(\mathcal{P}(\mathcal{S}), \subseteq)$.

Covering Relation: Let (\mathcal{A}, ρ) is a poset and $p, q, r \in \mathcal{A}$. We call q as the cover for p(denoted as $p \prec q$) when $(p, q) \in \rho$, and no element $r \in \mathcal{A}$ exists such that $p \prec r \prec q$, that is $(p, r) \in \rho$ and $(r, q) \in \rho$.

Hasse Diagram: A directed acyclic graph (DAG) with elements of set A as nodes and (p,q) as directed edges from p to q $(p,q \in A)$ iff $p \prec q$ (q covers p).

Example: Note that, $(\{2\}, \{1,3\}) \notin \rho$ and $\{1,2\} \prec \{1,2,3\}$ (forming the cover), but $\{1\} \not\prec \{1,2,3\}$ as $\{1\} \prec \{1,3\} \prec \{1,2,3\}$.

Total Order: If (\mathcal{A}, ρ) is a Poset, we call \mathcal{A} is totally ordered (or linearly ordered) if for all $x, y \in \mathcal{A}$ either $(x, y) \in \rho$ or $(y, x) \in \rho$. In this case, ρ is also called a total order (or linear order).

Aritra Hazra (CSE, IITKGP)

Maximal Element: In the poset (\mathcal{A}, ρ) , an element $x \in \mathcal{A}$ is called a maximal element of \mathcal{A} if $\forall a \in \mathcal{A} \ [(a \neq x) \Rightarrow (x, a) \notin \rho] \ (\equiv \exists a \in \mathcal{A} \ [(x, a) \in \rho \Rightarrow (a = x)]).$

Maximal Element: In the poset (\mathcal{A}, ρ) , an element $x \in \mathcal{A}$ is called a maximal element of \mathcal{A} if $\forall a \in \mathcal{A} \ [(a \neq x) \Rightarrow (x, a) \notin \rho] \ (\equiv \exists a \in \mathcal{A} \ [(x, a) \in \rho \Rightarrow (a = x)]).$

Minimal Element: In the poset (\mathcal{A}, ρ) , an element $y \in \mathcal{A}$ is called a minimal element of \mathcal{A} if $\forall b \in \mathcal{A} \ [(b \neq y) \Rightarrow (b, y) \notin \rho] \ (\equiv \exists b \in \mathcal{A} \ [(b, y) \in \rho \Rightarrow (b = y)]).$

Maximal Element: In the poset (\mathcal{A}, ρ) , an element $x \in \mathcal{A}$ is called a maximal element of \mathcal{A} if $\forall a \in \mathcal{A} \ [(a \neq x) \Rightarrow (x, a) \notin \rho] \ (\equiv \exists a \in \mathcal{A} \ [(x, a) \in \rho \Rightarrow (a = x)]).$

Minimal Element: In the poset (\mathcal{A}, ρ) , an element $y \in \mathcal{A}$ is called a minimal element of \mathcal{A} if $\forall b \in \mathcal{A} \ [(b \neq y) \Rightarrow (b, y) \notin \rho] \ (\equiv \exists b \in \mathcal{A} \ [(b, y) \in \rho \Rightarrow (b = y)]).$

Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$, we have $\{1, 2, 3\}$ and $\{\}$ as the maximal and minimal elements, respectively.

Maximal Element: In the poset (\mathcal{A}, ρ) , an element $x \in \mathcal{A}$ is called a maximal element of \mathcal{A} if $\forall a \in \mathcal{A} \ [(a \neq x) \Rightarrow (x, a) \notin \rho] \ (\equiv \exists a \in \mathcal{A} \ [(x, a) \in \rho \Rightarrow (a = x)]).$

Minimal Element: In the poset (\mathcal{A}, ρ) , an element $y \in \mathcal{A}$ is called a minimal element of \mathcal{A} if $\forall b \in \mathcal{A} \ [(b \neq y) \Rightarrow (b, y) \notin \rho] \ (\equiv \exists b \in \mathcal{A} \ [(b, y) \in \rho \Rightarrow (b = y)]).$

Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$, we have $\{1, 2, 3\}$ and $\{\}$ as the maximal and minimal elements, respectively.

If (\mathcal{A}, ρ) is a poset and \mathcal{A} is finite, then \mathcal{A} has both a maximal and a minimal element.

Maximal Element: In the poset (\mathcal{A}, ρ) , an element $x \in \mathcal{A}$ is called a maximal element of \mathcal{A} if $\forall a \in \mathcal{A} \ [(a \neq x) \Rightarrow (x, a) \notin \rho] \ (\equiv \exists a \in \mathcal{A} \ [(x, a) \in \rho \Rightarrow (a = x)]).$

Minimal Element: In the poset (\mathcal{A}, ρ) , an element $y \in \mathcal{A}$ is called a minimal element of \mathcal{A} if $\forall b \in \mathcal{A} \ [(b \neq y) \Rightarrow (b, y) \notin \rho] \ (\equiv \exists b \in \mathcal{A} \ [(b, y) \in \rho \Rightarrow (b = y)]).$

Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$, we have $\{1, 2, 3\}$ and $\{\}$ as the maximal and minimal elements, respectively.

If (\mathcal{A}, ρ) is a poset and \mathcal{A} is finite, then \mathcal{A} has both a maximal and a minimal element.

Least Element: Let (\mathcal{A}, ρ) is a poset. An element $x \in \mathcal{A}$ is called the least element if $\forall a \in \mathcal{A}, (x, a) \in \rho$.

Maximal Element: In the poset (\mathcal{A}, ρ) , an element $x \in \mathcal{A}$ is called a maximal element of \mathcal{A} if $\forall a \in \mathcal{A} \ [(a \neq x) \Rightarrow (x, a) \notin \rho] \ (\equiv \exists a \in \mathcal{A} \ [(x, a) \in \rho \Rightarrow (a = x)]).$

Minimal Element: In the poset (\mathcal{A}, ρ) , an element $y \in \mathcal{A}$ is called a minimal element of \mathcal{A} if $\forall b \in \mathcal{A} \ [(b \neq y) \Rightarrow (b, y) \notin \rho] \ (\equiv \exists b \in \mathcal{A} \ [(b, y) \in \rho \Rightarrow (b = y)]).$

Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$, we have $\{1, 2, 3\}$ and $\{\}$ as the maximal and minimal elements, respectively.

If (\mathcal{A}, ρ) is a poset and \mathcal{A} is finite, then \mathcal{A} has both a maximal and a minimal element.

Least Element: Let (\mathcal{A}, ρ) is a poset. An element $x \in \mathcal{A}$ is called the least element if $\forall a \in \mathcal{A}, (x, a) \in \rho$.

Greatest Element: Let (\mathcal{A}, ρ) is a poset. An element $y \in \mathcal{A}$ is called the greatest element if $\forall a \in \mathcal{A}, (a, y) \in \rho$.

Maximal Element: In the poset (\mathcal{A}, ρ) , an element $x \in \mathcal{A}$ is called a maximal element of \mathcal{A} if $\forall a \in \mathcal{A} \ [(a \neq x) \Rightarrow (x, a) \notin \rho] \ (\equiv \exists a \in \mathcal{A} \ [(x, a) \in \rho \Rightarrow (a = x)]).$

Minimal Element: In the poset (\mathcal{A}, ρ) , an element $y \in \mathcal{A}$ is called a minimal element of \mathcal{A} if $\forall b \in \mathcal{A} \ [(b \neq y) \Rightarrow (b, y) \notin \rho] \ (\equiv \exists b \in \mathcal{A} \ [(b, y) \in \rho \Rightarrow (b = y)]).$

Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$, we have $\{1, 2, 3\}$ and $\{\}$ as the maximal and minimal elements, respectively.

If (\mathcal{A}, ρ) is a poset and \mathcal{A} is finite, then \mathcal{A} has both a maximal and a minimal element.

Least Element: Let (\mathcal{A}, ρ) is a poset. An element $x \in \mathcal{A}$ is called the least element if $\forall a \in \mathcal{A}, (x, a) \in \rho$.

Greatest Element: Let (\mathcal{A}, ρ) is a poset. An element $y \in \mathcal{A}$ is called the greatest element if $\forall a \in \mathcal{A}, (a, y) \in \rho$.

Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$, we have $\{\}$ and $\{1, 2, 3\}$ as the least and greatest elements, respectively.

ヘロト 人間 ト イヨト イヨト

Maximal Element: In the poset (\mathcal{A}, ρ) , an element $x \in \mathcal{A}$ is called a maximal element of \mathcal{A} if $\forall a \in \mathcal{A} \ [(a \neq x) \Rightarrow (x, a) \notin \rho] \ (\equiv \exists a \in \mathcal{A} \ [(x, a) \in \rho \Rightarrow (a = x)]).$

Minimal Element: In the poset (\mathcal{A}, ρ) , an element $y \in \mathcal{A}$ is called a minimal element of \mathcal{A} if $\forall b \in \mathcal{A} \ [(b \neq y) \Rightarrow (b, y) \notin \rho] \ (\equiv \exists b \in \mathcal{A} \ [(b, y) \in \rho \Rightarrow (b = y)]).$

Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$, we have $\{1, 2, 3\}$ and $\{\}$ as the maximal and minimal elements, respectively.

If (\mathcal{A}, ρ) is a poset and \mathcal{A} is finite, then \mathcal{A} has both a maximal and a minimal element.

Least Element: Let (\mathcal{A}, ρ) is a poset. An element $x \in \mathcal{A}$ is called the least element if $\forall a \in \mathcal{A}, (x, a) \in \rho$.

Greatest Element: Let (\mathcal{A}, ρ) is a poset. An element $y \in \mathcal{A}$ is called the greatest element if $\forall a \in \mathcal{A}, (a, y) \in \rho$.

Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$, we have $\{\}$ and $\{1, 2, 3\}$ as the least and greatest elements, respectively.

If (\mathcal{A}, ρ) is a poset has a least (greatest) element, then that element is unique.

Aritra Hazra (CSE, IITKGP)

Lower Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $x \in \mathcal{A}$ is called a lower bound of \mathcal{B} if $\forall b \in \mathcal{B}, (x, b) \in \rho$.

- Lower Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $x \in \mathcal{A}$ is called a lower bound of \mathcal{B} if $\forall b \in \mathcal{B}, (x, b) \in \rho$.
- Upper Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $y \in \mathcal{A}$ is called a upper bound of \mathcal{B} if $\forall b \in \mathcal{B}, (b, y) \in \rho$.

- Lower Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $x \in \mathcal{A}$ is called a lower bound of \mathcal{B} if $\forall b \in \mathcal{B}$, $(x, b) \in \rho$.
- Upper Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $y \in \mathcal{A}$ is called a upper bound of \mathcal{B} if $\forall b \in \mathcal{B}, (b, y) \in \rho$.
- Greatest Lower Bound: Let (\mathcal{A}, ρ) is a poset. An element $x' \in \mathcal{A}$ is called the greatest lower bound (glb) of \mathcal{B} if it is a lower bound of \mathcal{B} and $(x'', x') \in \rho$ for all other lower bounds x'' of \mathcal{B} .

- Lower Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $x \in \mathcal{A}$ is called a lower bound of \mathcal{B} if $\forall b \in \mathcal{B}$, $(x, b) \in \rho$.
- Upper Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $y \in \mathcal{A}$ is called a upper bound of \mathcal{B} if $\forall b \in \mathcal{B}, (b, y) \in \rho$.
- Greatest Lower Bound: Let (\mathcal{A}, ρ) is a poset. An element $x' \in \mathcal{A}$ is called the greatest lower bound (glb) of \mathcal{B} if it is a lower bound of \mathcal{B} and $(x'', x') \in \rho$ for all other lower bounds x'' of \mathcal{B} .

Least Upper Bound: Let (\mathcal{A}, ρ) is a poset. An element $y' \in \mathcal{A}$ is called the least upper bound (lub) of \mathcal{B} if it is an upper bound of \mathcal{B} and $(y', y'') \in \rho$ for all other upper bounds y'' of \mathcal{B} .

- Lower Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $x \in \mathcal{A}$ is called a lower bound of \mathcal{B} if $\forall b \in \mathcal{B}$, $(x, b) \in \rho$.
- Upper Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $y \in \mathcal{A}$ is called a upper bound of \mathcal{B} if $\forall b \in \mathcal{B}, (b, y) \in \rho$.
- Greatest Lower Bound: Let (\mathcal{A}, ρ) is a poset. An element $x' \in \mathcal{A}$ is called the greatest lower bound (glb) of \mathcal{B} if it is a lower bound of \mathcal{B} and $(x'', x') \in \rho$ for all other lower bounds x'' of \mathcal{B} .
- Least Upper Bound: Let (\mathcal{A}, ρ) is a poset. An element $y' \in \mathcal{A}$ is called the least upper bound (lub) of \mathcal{B} if it is an upper bound of \mathcal{B} and $(y', y'') \in \rho$ for all other upper bounds y'' of \mathcal{B} .
 - Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$ and let $\mathcal{B} = \{\{1\}, \{2\}, \{1, 2\}\} \subseteq \mathcal{P}(S)$. Then, $\{1, 2\}$ and $\{1, 2, 3\}$ both are the upper bounds for \mathcal{B} in $(\mathcal{P}(S), \rho)$; whereas $\{1, 2\}$ is the lub (and is in \mathcal{B}). However, the glb for \mathcal{B} is $\{\}$, i.e. ϕ , which does not belong to \mathcal{B} .

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Lower Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $x \in \mathcal{A}$ is called a lower bound of \mathcal{B} if $\forall b \in \mathcal{B}$, $(x, b) \in \rho$.
- Upper Bound: Let (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$. An element $y \in \mathcal{A}$ is called a upper bound of \mathcal{B} if $\forall b \in \mathcal{B}, (b, y) \in \rho$.
- Greatest Lower Bound: Let (\mathcal{A}, ρ) is a poset. An element $x' \in \mathcal{A}$ is called the greatest lower bound (glb) of \mathcal{B} if it is a lower bound of \mathcal{B} and $(x'', x') \in \rho$ for all other lower bounds x'' of \mathcal{B} .
- Least Upper Bound: Let (\mathcal{A}, ρ) is a poset. An element $y' \in \mathcal{A}$ is called the least upper bound (lub) of \mathcal{B} if it is an upper bound of \mathcal{B} and $(y', y'') \in \rho$ for all other upper bounds y'' of \mathcal{B} .
 - Example: In the poset $(\mathcal{P}(S), \subseteq)$ where $S = \{1, 2, 3\}$ and let $\mathcal{B} = \{\{1\}, \{2\}, \{1, 2\}\} \subseteq \mathcal{P}(S)$. Then, $\{1, 2\}$ and $\{1, 2, 3\}$ both are the upper bounds for \mathcal{B} in $(\mathcal{P}(S), \rho)$; whereas $\{1, 2\}$ is the lub (and is in \mathcal{B}). However, the glb for \mathcal{B} is $\{\}$, i.e. ϕ , which does not belong to \mathcal{B} .

If (\mathcal{A}, ρ) is a poset and $\mathcal{B} \subseteq \mathcal{A}$, then \mathcal{B} has at most one lub (glb).

・ロト ・四ト ・ヨト

Definition

A lattice is a poset, (\mathcal{A}, ρ) , in which for every pair of elements $a, b \in \mathcal{A}$, the $lub\{a, b\}$ and $glb\{a, b\}$ both exists in \mathcal{A} .

A lattice is complete in which every subset of elements has a lub and glb.

Definition

A lattice is a poset, (A, ρ) , in which for every pair of elements $a, b \in A$, the $lub\{a, b\}$ and $glb\{a, b\}$ both exists in A.

A lattice is complete in which every subset of elements has a lub and glb.

Examples:

All the following posets are lattice.

O Poset (\mathbb{N}, ρ) , where $\rho = \{(x, y) \mid x \leq y \text{ and } x, y \in \mathbb{N}\}$ is a lattice.

Here, for any $x, y \in \mathbb{N}$, $lub\{x, y\} = max\{x, y\}$ and $glb\{x, y\} = min\{x, y\}$.

Definition

A lattice is a poset, (A, ρ) , in which for every pair of elements $a, b \in A$, the $lub\{a, b\}$ and $glb\{a, b\}$ both exists in A.

A lattice is complete in which every subset of elements has a lub and glb.

Examples:

All the following posets are lattice.

O Poset (\mathbb{N}, ρ) , where $\rho = \{(x, y) \mid x \leq y \text{ and } x, y \in \mathbb{N}\}$ is a lattice.

Here, for any $x, y \in \mathbb{N}$, $lub\{x, y\} = max\{x, y\}$ and $glb\{x, y\} = min\{x, y\}$.

2 Poset $(\mathcal{P}(S), \rho)$, where $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } \mathcal{A}, \mathcal{B} \in \mathcal{P}(S)\}$ is a lattice. Here, for any $\mathcal{A}, \mathcal{B} \in \mathcal{P}(S)$, $lub\{\mathcal{A}, \mathcal{B}\} = \mathcal{A} \cup \mathcal{B}$ and $glb\{\mathcal{A}, \mathcal{B}\} = \mathcal{A} \cap \mathcal{B}$.

Definition

A lattice is a poset, (A, ρ) , in which for every pair of elements $a, b \in A$, the $lub\{a, b\}$ and $glb\{a, b\}$ both exists in A.

A lattice is complete in which every subset of elements has a lub and glb.

Examples:

All the following posets are lattice.

Obset (\mathbb{N}, ρ) , where $\rho = \{(x, y) \mid x \leq y \text{ and } x, y \in \mathbb{N}\}$ is a lattice.

Here, for any $x, y \in \mathbb{N}$, $lub\{x, y\} = max\{x, y\}$ and $glb\{x, y\} = min\{x, y\}$.

- **2** Poset $(\mathcal{P}(S), \rho)$, where $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } \mathcal{A}, \mathcal{B} \in \mathcal{P}(S)\}$ is a lattice. Here, for any $\mathcal{A}, \mathcal{B} \in \mathcal{P}(S)$, $lub\{\mathcal{A}, \mathcal{B}\} = \mathcal{A} \cup \mathcal{B}$ and $glb\{\mathcal{A}, \mathcal{B}\} = \mathcal{A} \cap \mathcal{B}$.
- Solution Poset (\mathbb{Z}^+, ρ) , where $\rho = \{(x, y) \mid x \text{ divides } y \text{ and } x, y \in \mathbb{Z}^+\}$ is a lattice. Here, for any $x, y \in \mathbb{Z}^+$, $lub\{x, y\} = LCM\{x, y\}$ and $glb\{x, y\} = GCD\{x, y\}$.

Definition

A lattice is a poset, (A, ρ) , in which for every pair of elements $a, b \in A$, the $lub\{a, b\}$ and $glb\{a, b\}$ both exists in A.

A lattice is complete in which every subset of elements has a lub and glb.

Examples:

All the following posets are lattice.

O Poset (\mathbb{N}, ρ) , where $\rho = \{(x, y) \mid x \leq y \text{ and } x, y \in \mathbb{N}\}$ is a lattice.

Here, for any $x, y \in \mathbb{N}$, $lub\{x, y\} = max\{x, y\}$ and $glb\{x, y\} = min\{x, y\}$.

- **2** Poset $(\mathcal{P}(S), \rho)$, where $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } \mathcal{A}, \mathcal{B} \in \mathcal{P}(S)\}$ is a lattice. Here, for any $\mathcal{A}, \mathcal{B} \in \mathcal{P}(S)$, $lub\{\mathcal{A}, \mathcal{B}\} = \mathcal{A} \cup \mathcal{B}$ and $glb\{\mathcal{A}, \mathcal{B}\} = \mathcal{A} \cap \mathcal{B}$.
- Solution Poset (\mathbb{Z}^+, ρ) , where $\rho = \{(x, y) \mid x \text{ divides } y \text{ and } x, y \in \mathbb{Z}^+\}$ is a lattice. Here, for any $x, y \in \mathbb{Z}^+$, $lub\{x, y\} = LCM\{x, y\}$ and $glb\{x, y\} = GCD\{x, y\}$.

Example:

The following poset is NOT a lattice.

Let $S = \{1, 2, 3\}$ and $Q \subset \mathcal{P}(S)$ (all proper subsets) where $\phi \notin Q$. Poset (Q, ρ) , where $\rho = \{(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \subseteq \mathcal{B} \text{ and } x, y \in Q\}$ is NOT a lattice. Here, the pair of elements $\{1, 2\}$ and $\{1, 3\}$ in Q do not have a *lub*, whereas the pair of elements $\{1\}$ and $\{2\}$ in Q do not have a *glb*.

Aritra Hazra (CSE, IITKGP)

Thank You!

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020 12 / 12