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Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A x B, is defined by, A x B={(a,b) | a€ A, b € B}

Generically, Ay x Ay X -+ x Ak = {(x1, %0, ..., xk) | Vi, x; € A;}
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Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A x B, is defined by, A x B={(a,b) | a€ A, b € B}

Generically, Ay x Ay x -+ x Ay = {(x1, %2, .., xk) | Vi, x; € A;}
Ordered Pairs: The elements of (A x B) are called ordered pairs.

Generically, the elements, (x1,x2,...,xk) € A1 X Az X -+ X Ay
(k-fold Cartesian product), are called ordered k-tuples.
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Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A x B, is defined by, A x B={(a,b) | a€ A, b € B}
Generically, A1 x Ay X -+« x A = {(x1, %2, ..., xk) | Vi, x; € A;}
Ordered Pairs: The elements of (A x B) are called ordered pairs.
Generically, the elements, (x1, x2,...,xk) € A1 X Ay X -+ x Ay
(k-fold Cartesian product), are called ordered k-tuples.

Cardinality: Let, |A1] = m, |A2| = na, ..., | Ak| = nk. Then,
| AL x Ag x - x Ay = |AL||Az| -+ - [Ax| = ninz - - - nie.
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Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A x B, is defined by, A x B={(a,b) | a€ A, b € B}

Generically, A1 x Ay X -+« x A = {(x1, %2, ..., xk) | Vi, x; € A;}
Ordered Pairs: The elements of (A x B) are called ordered pairs.
Generically, the elements, (x1,x2,...,xk) € A1 X Az X -+ X Ay
(k-fold Cartesian product), are called ordered k-tuples.
Cardinality: Let, |A1] = m, |A2| = na, ..., | Ak| = nk. Then,
| AL x Ag x - x Ay = |AL||Az| -+ - [Ax| = ninz - - - nie.

Properties: For (a, b), (c,d) € A x B, we have (a, b) = (c, d) if and only if
a=band c=d.
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Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A x B, is defined by, A x B={(a,b) | a€ A, be B}
Generically, Ay x Ay X -+ x Ak = {(x1, %0, ..., xk) | Vi, x; € A;}
Ordered Pairs: The elements of (A x B) are called ordered pairs.
Generically, the elements, (x1,x2,...,xk) € A1 X Az X -+ X Ay
(k-fold Cartesian product), are called ordered k-tuples.
Cardinality: Let, |A1] = m, |A2| = na, ..., | Ak| = nk. Then,
| AL x Ag x - x Ay = |AL||Az| -+ - [Ax| = ninz - - - nie.
Properties: For (a, b), (c,d) € A x B, we have (a, b) = (¢, d) if and only if
a=band c=d.
Note that, A x B # B x A, but |A x B| = |A||B| = |B x A|.
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Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A x B, is defined by, A x B={(a,b) | a€ A, b € B}
Generically, Ay x Ay X -+ x Ak = {(x1, %0, ..., xk) | Vi, x; € A;}
Ordered Pairs: The elements of (A x B) are called ordered pairs.
Generically, the elements, (x1,x2,...,xk) € A1 X Az X -+ X Ay
(k-fold Cartesian product), are called ordered k-tuples.
Cardinality: Let, |Ai| = nyi, |Az| = na, ..., | Ak| = nk. Then,
| AL x Ag x - x Ay = |AL||Az| -+ - [Ax| = ninz - - - nie.
Properties: For (a, b), (c,d) € A x B, we have (a, b) = (¢, d) if and only if
a=band c=d.
Note that, A x B # B x A, but |A x B| = |A||B| = |B x A|.

Other Properties: Let A,B,C e U (YAXxp=9pxA=0¢
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Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A x B, is defined by, A x B={(a,b) | a€ A, b € B}
Generically, Ay x Ay X -+ x Ak = {(x1, %0, ..., xk) | Vi, x; € A;}
Ordered Pairs: The elements of (A x B) are called ordered pairs.
Generically, the elements, (x1,x2,...,xk) € A1 X Az X -+ X Ay
(k-fold Cartesian product), are called ordered k-tuples.
Cardinality: Let, |Ai| = nyi, |Az| = na, ..., | Ak| = nk. Then,
| AL x Ag x - x Ay = |AL||Az| -+ - [Ax| = ninz - - - nie.
Properties: For (a, b), (c,d) € A x B, we have (a, b) = (¢, d) if and only if
a=band c=d.
Note that, A x B # B x A, but |A x B| = |A||B| = |B x A|.

Other Properties: Let A,B,C e U (YAXxp=9pxA=0¢
(i) Ax (BNC)=(AxB)N(AxC) (iii) A x (BUC) = (AxB)U(AXC)
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Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A x B, is defined by, A x B={(a,b) | a€ A, be B}
Generically, Ay x Ay X -+ x Ak = {(x1, %0, ..., xk) | Vi, x; € A;}
Ordered Pairs: The elements of (A x B) are called ordered pairs.
Generically, the elements, (x1, x2,...,xk) € A1 X Ay X -+ x Ay
(k-fold Cartesian product), are called ordered k-tuples.
Cardinality: Let, |Ai| = nyi, |Az| = na, ..., | Ak| = nk. Then,
| AL x Ag x - x Ay = |AL||Az| -+ - [Ax| = ninz - - - nie.
Properties: For (a, b), (c,d) € A x B, we have (a, b) = (¢, d) if and only if
a=band c=d.
Note that, A x B # B x A, but |A x B| = |A||B| = |B x A|.

Other Properties: Let A,B,C e U (YAXxp=9pxA=0¢
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Cartesian Product

Definition: Cartesian Product or Cross Product of two sets, A and B, denoted
as A x B, is defined by, A x B={(a,b) | a€ A, be B}
Generically, Ay x Ay X -+ x Ak = {(x1, %0, ..., xk) | Vi, x; € A;}
Ordered Pairs: The elements of (A x B) are called ordered pairs.
Generically, the elements, (x1, x2,...,xk) € A1 X Ay X -+ x Ay
(k-fold Cartesian product), are called ordered k-tuples.
Cardinality: Let, |Ai| = nyi, |Az| = na, ..., | Ak| = nk. Then,
| AL x Ag x - x Ay = |AL||Az| -+ - [Ax| = ninz - - - nie.
Properties: For (a, b), (c,d) € A x B, we have (a, b) = (¢, d) if and only if
a=band c=d.
Note that, A x B # B x A, but |A x B| = |A||B| = |B x A|.

Other Properties: Let A,B,C e U (YAXxp=9pxA=0¢
(i) Ax (BNC)=(AxB)N(AxC) (iii) A x (BUC) = (AxB)U(AXC)
(iv) ( ANB)xC=(AxC)N(BxC) (v) (AUB)xC=(AxC)U(BxC(C)
(Vi) (A—B)xC=(AxC)—(BxC) (Vi) Ax (B=C)=(AxB)—(AxC)
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Relations and Examples

(Binary) Relation

Definition: A (binary) relation, p, between two sets, A and B, is defined as,
p C A x B. If an ordered pair, (a,b) € p (or a p b), then the
element, a € A, is said to be related to the element, b € B.
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(Binary) Relation

Definition: A (binary) relation, p, between two sets, A and B, is defined as,
p C A x B. If an ordered pair, (a,b) € p (or a p b), then the
element, a € A, is said to be related to the element, b € B.

@ Any subset of (A x A) (or A?) is called a relation on A.
@ The relation, p = A x B, is called the universal relation.
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Relations and Examples

(Binary) Relation

Definition: A (binary) relation, p, between two sets, A and B, is defined as,
p C A x B. If an ordered pair, (a,b) € p (or a p b), then the
element, a € A, is said to be related to the element, b € B.

@ Any subset of (A x A) (or A?) is called a relation on A.
@ The relation, p = A x B, is called the universal relation.

Count: Total number of (binary) relations between two sets, A and B

(where, |A| = m and |B| = n), is the number of possible subsets of
(A x B), ie 2m.

v
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Relations and Examples

(Binary) Relation

Definition: A (binary) relation, p, between two sets, A and B, is defined as,
p C A x B. If an ordered pair, (a,b) € p (or a p b), then the
element, a € A, is said to be related to the element, b € B.

@ Any subset of (A x A) (or A?) is called a relation on A.
@ The relation, p = A x B, is called the universal relation.

Count: Total number of (binary) relations between two sets, A and B
(where, |A| = m and |B| = n), is the number of possible subsets of
(A x B),ie 2m.

v

Example
Let A ={1,2,3} and B = {a, b}. So, the Cartesian products are defined as,
A x B=1{(1,a),(2,a),(3,a), (1, b),(2,b),(3,b)} and
Bx A={(a1),(a,2),(a,3),(b,1),(b,2),(b,3)}

V.
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Relations and Examples

(Binary) Relation

Definition: A (binary) relation, p, between two sets, A and B, is defined as,
p C A x B. If an ordered pair, (a,b) € p (or a p b), then the
element, a € A, is said to be related to the element, b € B.

@ Any subset of (A x A) (or A?) is called a relation on A.
@ The relation, p = A x B, is called the universal relation.

Count: Total number of (binary) relations between two sets, A and B
(where, |A| = m and |B| = n), is the number of possible subsets of
(A x B),ie 2m.

v

Example

Let A ={1,2,3} and B = {a, b}. So, the Cartesian products are defined as,
A x B=1{(1,a),(2,a),(3,a), (1, b),(2,b),(3,b)} and
Bx A={(a1),(a,2),(a,3),(b,1),(b,2),(b,3)}
Clearly, A x B # B x A, however |[A x B| =6 = |B x A|.
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Relations and Examples

(Binary) Relation

Definition: A (binary) relation, p, between two sets, A and B, is defined as,
p C A x B. If an ordered pair, (a,b) € p (or a p b), then the
element, a € A, is said to be related to the element, b € B.

@ Any subset of (A x A) (or A?) is called a relation on A.
@ The relation, p = A x B, is called the universal relation.

Count: Total number of (binary) relations between two sets, A and B
(where, |A| = m and |B| = n), is the number of possible subsets of
(A x B),ie 2m.

v

Example

Let A= {1,2,3} and B = {a, b}. So, the Cartesian products are defined as,
A x B={(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)} and
B x A={(a1),(a,2),(a,3),(b,1),(b,2),(b,3)}
Clearly, A x B # B x A, however |[A x B| =6 = |B x A|.
There can be a total of 2° = 64 different (binary) relations possible. Some are:
P1 = {(173)7(1717)7(17(:)} or P2 :{(273)7(373)7(17b)v(?"/b)}'

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3/12

v




Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A] =n, as p C A x A.
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p
Count: 27"
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €Ep
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)
Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €Ep

n?+n

Count: 2 2
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p

I72 n
Count: 22" (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p
n2 n
Count: 22" (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)

Transitive: p is transitive if Vx,y,z € A, (x,y),(v,z) € p=(x,2) €p
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p
n2 n
Count: 22" (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)
Transitive: p is transitive if Vx,y,z € A, (x,y),(v,z) € p=(x,2) €p
Count: Unknown (still an open-problem!)
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p
n2 n
Count: 22" (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)
Transitive: p is transitive if Vx,y,z € A, (x,y),(v,z) € p=(x,2) €p
Count: Unknown (still an open-problem!)

Antisymmetric: p is antisymmetric if Vx,y € A, (x,y),(y,x) €Ep= (x =y)
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p
Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)
Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p
Count: 2# (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)
Transitive: p is transitive if Vx,y,z € A, (x,y),(v,z) € p=(x,2) €p
Count: Unknown (still an open-problem!)

Antisymmetric: p is antisymmetric if Vx,y € A, (x,y),(y,x) €Ep= (x =y)

nzfn

Count: 2"372
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p
n2 n
Count: 22" (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)
Transitive: p is transitive if Vx,y,z € A, (x,y),(v,z) € p=(x,2) €p
Count: Unknown (still an open-problem!)
Antisymmetric: p is antisymmetric if Vx,y € A, (x,y),(y,x) €Ep= (x =y)
nzfn
Count: 2"37 2 (element (x, x) can either be included or excluded;

element (x,y) have three options — (i) take only (x,y), (ii) take only
(v, x), or (iii) take neither (x,y) nor (y,x). What if take both?)
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p
n2 n
Count: 22" (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)
Transitive: p is transitive if Vx,y,z € A, (x,y),(v,z) € p=(x,2) €p
Count: Unknown (still an open-problem!)
Antisymmetric: p is antisymmetric if Vx,y € A, (x,y),(y,x) €Ep= (x =y)
n?—n
Count: 2"37 2 (element (x, x) can either be included or excluded;
element (x,y) have three options — (i) take only (x,y), (ii) take only
(v, x), or (iii) take neither (x,y) nor (y,x). What if take both?)
Irreflexive: p is irreflexive if Ix € A, (x,x) € p
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p
n2 n
Count: 22" (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)
Transitive: p is transitive if Vx,y,z € A, (x,y),(v,z) € p=(x,2) €p
Count: Unknown (still an open-problem!)
Antisymmetric: p is antisymmetric if Vx,y € A, (x,y),(y,x) €Ep= (x =y)
n?—n
Count: 2"37 2 (element (x, x) can either be included or excluded;
element (x,y) have three options — (i) take only (x,y), (ii) take only
(v, x), or (iii) take neither (x,y) nor (y,x). What if take both?)
Irreflexive: p is irreflexive if Ix € A, (x,x) € p

Asymmetric: p is asymmetric if 3x,y € A, (x,¥) €EpA(y,x) € p
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p
n2 n
Count: 22" (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)
Transitive: p is transitive if Vx,y,z € A, (x,y),(v,z) € p=(x,2) €p
Count: Unknown (still an open-problem!)
Antisymmetric: p is antisymmetric if Vx,y € A, (x,y),(y,x) €Ep= (x =y)
n?—n
Count: 2"37 2 (element (x, x) can either be included or excluded;
element (x,y) have three options — (i) take only (x,y), (ii) take only
(v, x), or (iii) take neither (x,y) nor (y,x). What if take both?)
Irreflexive: p is irreflexive if Ix € A, (x,x) € p

Asymmetric: p is asymmetric if 3x,y € A, (x,¥) €EpA(y,x) € p
Non-Transitive: p is non-transitive if Ix,y,z € A, (x,y),(y,2z) EpA(x,2) € p
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Types and Properties of Relations

Let a relation, p, is defined over the set, A with |A| = n, as p C A x A. (Count: 2"2)
Reflexive: p is reflexive if Vx € A, (x,x) € p

Count: 27" (after choosing all n number of (x,x) pairs, any subset
from (n* — n) pairs can be taken as relation keeping reflexivity)

Symmetric: p is symmetric if Vx,y € A, (x,y) € p= (y,x) €p
n2 n
Count: 22" (selecting an (x,y) + (x, x) pair in (5) + n ways, any
subset from ('21) + n pairs can be taken as relation keeping symmetry)
Transitive: p is transitive if Vx,y,z € A, (x,y),(v,z) € p=(x,2) €p
Count: Unknown (still an open-problem!)
Antisymmetric: p is antisymmetric if Vx,y € A, (x,y),(y,x) €Ep= (x =y)
n?—n
Count: 2"37 2 (element (x, x) can either be included or excluded;
element (x,y) have three options — (i) take only (x,y), (ii) take only
(v, x), or (iii) take neither (x,y) nor (y,x). What if take both?)
Irreflexive: p is irreflexive if Ix € A, (x,x) € p

Asymmetric: p is asymmetric if 3x,y € A, (x,¥) €EpA(y,x) € p
Non-Transitive: p is non-transitive if Ix,y,z € A, (x,y),(y,2z) EpA(x,2) € p
Not Antisymmetric: p is not antisymmetric if Ix,y € A, (x,y),(y,x) € pA(x £ y)
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Examples of Relations

@ Reflexive and Symmetric, but NOT Transitive:
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Examples of Relations

Reflexive and Symmetric, but NOT Transitive:
Y
p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
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Examples of Relations

@ Reflexive and Symmetric, but NOT Transitive:
p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
(Reflexive as x> > 0, Symmetric as xy = yx, NOT Transitive for x =2,y = 0,z = —1)
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Examples of Relations

@ Reflexive and Symmetric, but NOT Transitive:
p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
(Reflexive as x> > 0, Symmetric as xy = yx, NOT Transitive for x =2,y = 0,z = —1)
@ Symmetric and Transitive, but NOT Reflexive:
p is defined over R as, p = {(x,y) | xy > 0 and x,y € R}

()-(v2)
2

NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as xz = > 0 since xy > 0,yz > 0, y2 >0
Yy Y =Yy Y y: )
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Examples of Relations

@ Reflexive and Symmetric, but NOT Transitive:
p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
(Reflexive as x> > 0, Symmetric as xy = yx, NOT Transitive for x =2,y = 0,z = —1)
@ Symmetric and Transitive, but NOT Reflexive:
p is defined over R as, p = {(x,y) | xy > 0 and x,y € R}

()-(v2)
2

NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as xz = > 0 since xy > 0,yz > 0, y2 >0
Yy Y =Yy Y y: )

© Reflexive and Transitive, but NOT Symmetric (Antisymmetric):
p is defined over R as, p = {(x,y) | x <y and x,y € R}
(Reflexive as x < x, NOT Symmetric for x = 0.1,y = 1.0, Transitive as x < y < z)
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Examples of Relations
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p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
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p is defined over R as, p = {(x,y) | x <y and x,y € R}
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Examples of Relations

@ Reflexive and Symmetric, but NOT Transitive:
p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
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Examples of Relations

@ Reflexive and Symmetric, but NOT Transitive:
p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
(Reflexive as x> > 0, Symmetric as xy = yx, NOT Transitive for x =2,y = 0,z = —1)
@ Symmetric and Transitive, but NOT Reflexive:
p is defined over R as, p = {(x,y) | x¥ > 0 and x,y € R}
() -(v2)
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NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as xz = > 0 since xy > 0,yz > 0, y2 >0
Yy Y =Yy Y y: )

© Reflexive and Transitive, but NOT Symmetric (Antisymmetric):
p is defined over R as, p = {(x,y) | x <y and x,y € R}
(Reflexive as x < x, NOT Symmetric for x = 0.1,y = 1.0, Transitive as x < y < z)
Q NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric:
p is defined over Z as, p={(x,y) | y=x+1and x,y € Z}

(NOT Reflexive as x # x + 1, NOT Symmetricas y = x +1 = x =y — 1, NOT Transitive as z = y + 1 = x + 2)
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Examples of Relations

@ Reflexive and Symmetric, but NOT Transitive:
p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
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p is defined over R as, p = {(x,y) | x <y and x,y € R}
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(NOT Reflexive as x # x + 1, NOT Symmetric as y = x + 1 = x = y — 1, NOT Transitive as z = y + 1 = x + 2)

@ Only Reflexive:  Relation p = {(A, B) | Person-A knows Person-B}
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Examples of Relations

@ Reflexive and Symmetric, but NOT Transitive:
p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
(Reflexive as x> > 0, Symmetric as xy = yx, NOT Transitive for x =2,y = 0,z = —1)
@ Symmetric and Transitive, but NOT Reflexive:
p is defined over R as, p = {(x,y) | xy > 0 and x,y € R}
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(NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as xz =
© Reflexive and Transitive, but NOT Symmetric (Antisymmetric):
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Q Only Symmetric:
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@ Only Transitive:  Relation p = {(A,B) | AC Band A, B € U}
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Examples of Relations

@ Reflexive and Symmetric, but NOT Transitive:
p is defined over Z as, p = {(x,y) | xy > 0 and x,y € Z}
(Reflexive as x> > 0, Symmetric as xy = yx, NOT Transitive for x =2,y = 0,z = —1)
@ Symmetric and Transitive, but NOT Reflexive:
p is defined over R as, p = {(x,y) | xy > 0 and x,y € R}

()-(v2)
2

NOT Reflexive for x = 0, Symmetric as xy = yx, Transitive as xz = > 0 since xy > 0,yz > 0, y2 >0
Yy Y =Yy Y y: )

© Reflexive and Transitive, but NOT Symmetric (Antisymmetric):
p is defined over R as, p = {(x,y) | x <y and x,y € R}
(Reflexive as x < x, NOT Symmetric for x = 0.1,y = 1.0, Transitive as x < y < z)
NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Antisymmetric:
p is defined over Z as, p={(x,y) | y=x+1and x,y € Z}

©

(NOT Reflexive as x % x + 1, NOT Symmetric as y = x + 1 = x = y — 1, NOT Transitive as z = y + 1 = x + 2)
Only Reflexive:  Relation p = {(A, B) | Person-A knows Person-B}
Only Symmetric: ~ Relation p = {(A,B) | A+ B=5and A,B € Z}
Only Transitive:  Relation p = {(A,B) | AC B and A,B € U}

Only Antisymmetric:  Left for You to find as an Exercise!

©000
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Equivalence Relation and Equivalence Classes

Equivalence Relation: A relation p C A x A on set A is called an equivalence relation if
it is reflexive, symmetric and transitive.
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Equivalence Relation and Equivalence Classes

Equivalence Relation: A relation p C A x A on set A is called an equivalence relation if
it is reflexive, symmetric and transitive.
Example: p = {(x,y) | (x — y) is divisible by 5 and x,y € Z}
@ Reflexive since (x — x) = 0 is divisible by 5.
@ Symmetric since (y — x) = —(x — y) is divisible by 5.
@ Transitive since (x — z) = (x — y) + (y — z) is divisible by 5.
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Equivalence Relation and Equivalence Classes

Equivalence Relation: A relation p C A x A on set A is called an equivalence relation if
it is reflexive, symmetric and transitive.

Example: p = {(x,y) | (x — y) is divisible by 5 and x,y € Z}
@ Reflexive since (x — x) = 0 is divisible by 5.
@ Symmetric since (y — x) = —(x — y) is divisible by 5.
@ Transitive since (x — z) = (x — y) + (y — z) is divisible by 5.
Fallacy: Does Symmetric + Transitive = Reflexive? Why define Reflexivity?
[ from (x,y) € p= (y,x) € pand (x,y),(y,x) € p=(x,x) € p]
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Reason: NO, since for all x, an y may not be found/associated!
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Reason: NO, since for all x, an y may not be found/associated!
Equivalence Class: Let p be an equivalence relation on A. For each y € A, the
equivalence class is denoted by [y] = {x | (x,y) € p and x € A}.
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Equivalence Relation and Equivalence Classes

Equivalence Relation: A relation p C A x A on set A is called an equivalence relation if
it is reflexive, symmetric and transitive.
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[ from (x,y) € p= (y,x) € pand (x,y),(y,x) € p=(x,x) € p]
Reason: NO, since for all x, an y may not be found/associated!
Equivalence Class: Let p be an equivalence relation on A. For each y € A, the
equivalence class is denoted by [y] = {x | (x,y) € p and x € A}.

Example: In the relation, p = {(x,y) | (x — y) is divisible by 3 and x,y € Z}, the
four equivalence classes are defined as:

® [0]={...,-6,-3,0,43,+6,...} = {3k | ke Z}
o [1]={..,-5-2,1,+4,47,...} ={3k+1| keZ}
o [2]={ . ,-4,-1,2,45+48,...} ={3k+2| ke Z}
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@ Reflexive since (x — x) = 0 is divisible by 5.
@ Symmetric since (y — x) = —(x — y) is divisible by 5.
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equivalence class is denoted by [y] = {x | (x,y) € p and x € A}.

Example: In the relation, p = {(x,y) | (x — y) is divisible by 3 and x,y € Z}, the
four equivalence classes are defined as:

® [0]={...,-6,-3,0,43,+6,...} = {3k | ke Z}
o [1]={..,-5-2,1,+4,47,...} ={3k+1| keZ}
o [2]={ . ,-4,-1,2,45+48,...} ={3k+2| ke Z}

Note: [0] = [-3] =[+3] =[-6] =[+6] =---  (from definition)
[0] #[1] #[2] and Z = [0] U [1] U [2] (details in next slide)
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Equivalence Classes and Partitions

Theorem: If p is an equivalence relation on A and x,y € A, then

() x el (i) Coy) epiffx] =Dy and (i) [x] = [y] or [X]N[y] = ¢

Proof:
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() x el (i) Coy) epiffx] =Dy and (i) [x] = [y] or [X]N[y] = ¢

Proof:

@ From Reflexive property, (x,x) € p.
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Equivalence Classes and Partitions

Theorem: If p is an equivalence relation on A and x,y € A, then

|(9i) X < (i) (xy) epiff[x] =[] and (i) [x] = [y] or ] N [y] = ¢
@ From Reflexive property, (x,x) € p.

Q@ //f] Letac[x]= (a,x)€ p. As (x,y) € p, so using transitivity, we get
(a,y) € p= a € [y]. Hence, [x] C [y].
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Equivalence Classes and Partitions

Theorem: If p is an equivalence relation on A and x,y € A, then

() x el (i) Coy) epiffx] =Dy and (i) [x] = [y] or [X]N[y] = ¢

Proof:
@ From Reflexive property, (x,x) € p.

Q@ //f] Letac[x]= (a,x)€ p. As (x,y) € p, so using transitivity, we get
(a,y) € p= a € [y]. Hence, [x] C [y]. Again, let b € [y] = (b, y) € p. By symmetry,
(x,¥) € p= (y,x) € p. So, using transitivity, (b, x) € p = b € [x]. Hence, [y] C [x].
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Theorem: If p is an equivalence relation on A and x,y € A, then
() x el (i) Coy) epiffx] =Dy and (i) [x] = [y] or [X]N[y] = ¢
Proof:
@ From Reflexive property, (x,x) € p.
Q@ //f] Letac[x]= (a,x)€ p. As (x,y) € p, so using transitivity, we get
(a,y) € p= a € [y]. Hence, [x] C [y]. Again, let b € [y] = (b, y) € p. By symmetry,
(x,y) € p= (v, x) € p. So, using transitivity, (b, x) € p = b € [x]. Hence, [y] C [x].
[ Only-If | x € [x] and [x] = [y] implies x € [y] = (x,y) € p.
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Equivalence Classes and Partitions

Theorem: If p is an equivalence relation on A and x,y € A, then

S) Xf_e Xl @) (oy) €piff ] =[y;  and (i) [x] = [y] or ] N [y] = ¢

@ From Reflexive property, (x,x) € p.

Q@ //f] Letac[x]= (a,x)€ p. As (x,y) € p, so using transitivity, we get
(a,y) € p= a € [y]. Hence, [x] C [y]. Again, let b € [y] = (b, y) € p. By symmetry,
(x,y) € p= (v, x) € p. So, using transitivity, (b, x) € p = b € [x]. Hence, [y] C [x].
[ Only-If | x € [x] and [x] = [y] implies x € [y] = (x,y) € p.

@ Assume [x] # [y], then [x] N [y] = ¢ must hold. If otherwise [x] N [y] # ¢, then let u € [x]
and u € [y]. Thus, (u,x) € p and by symmetry, (x, u) € p. With (u,y) € p, applying
transitivity we get, (x,y) € p = [x] = [y], which contradicts the assumption!
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Theorem: If p is an equivalence relation on A and x,y € A, then

S) Xf_G Xl @) (oy) €piff ] =[y;  and (i) [x] = [y] or ] N [y] = ¢

@ From Reflexive property, (x,x) € p.

Q@ //f] Letac[x]= (a,x)€ p. As (x,y) € p, so using transitivity, we get
(a,y) € p= a € [y]. Hence, [x] C [y]. Again, let b € [y] = (b, y) € p. By symmetry,
(x,y) € p= (v, x) € p. So, using transitivity, (b, x) € p = b € [x]. Hence, [y] C [x].
[ Only-If | x € [x] and [x] = [y] implies x € [y] = (x,y) € p.

@ Assume [x] # [y], then [x] N [y] = ¢ must hold. If otherwise [x] N [y] # ¢, then let u € [x]
and u € [y]. Thus, (u,x) € p and by symmetry, (x, u) € p. With (u,y) € p, applying
transitivity we get, (x,y) € p = [x] = [y], which contradicts the assumption!

Partitions of a Set (Revisited)

Given set A and index set Z, let Vi, ¢ # A; C A. Then {A;};c7 induces a partition on A if:
HA=U A, and (i) AinAj=¢, Vi,jeZ(i#)).
i€eT
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Equivalence Classes and Partitions

Theorem: If p is an equivalence relation on A and x,y € A, then
() xe[xl: (i) (x,y) epiffx]=[yl; and (i) [x] =[y] or [x]N[y] = ¢
Proof:
ﬂ From Reflexive property, (x,x) € p.
Q@ //f] Letac[x]= (a,x)€ p. As (x,y) € p, so using transitivity, we get
(a,y) € p= a € [y]. Hence, [x] C [y]. Again, let b € [y] = (b,y) € p. By symmetry,
(x,¥) € p= (y,x) € p. So, using transitivity, (b, x) € p = b € [x]. Hence, [y] C [x].
[ Only-If ] x € [x] and [x] = [y] implies x € [y] = (x,y) € p.
@ Assume [x] # [y], then [x] N [y] = ¢ must hold. If otherwise [x] N [y] # ¢, then let u €
and u € [y]. Thus, (u,x) € p and by symmetry, (x, u) € p. With (u,y) € p, applying
transitivity we get, (x,y) € p = [x] = [y], which contradicts the assumption!

(x]

Partitions of a Set (Revisited)

Given set A and index set Z, let Vi, ¢ # A; C A. Then {A;};c7 induces a partition on A if:
HA=U A, and (i) AinAj=¢, Vi,jeZ(i#)).
i€eT

Results: (i) Any equivalence relation p on set A induces a partition of A.
Proof:  Follows from the above theorem.
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Theorem: If p is an equivalence relation on A and x,y € A, then

|(:i) Xf_G Xl @) (oy) €piff ] =[y;  and (i) [x] = [y] or ] N [y] = ¢

@ From Reflexive property, (x,x) € p.

Q@ //f] Letac[x]= (a,x)€ p. As (x,y) € p, so using transitivity, we get
(a,y) € p= a € [y]. Hence, [x] C [y]. Again, let b € [y] = (b, y) € p. By symmetry,
(x,y) € p= (v, x) € p. So, using transitivity, (b, x) € p = b € [x]. Hence, [y] C [x].
[ Only-If | x € [x] and [x] = [y] implies x € [y] = (x,y) € p.

@ Assume [x] # [y], then [x] N [y] = ¢ must hold. If otherwise [x] N [y] # ¢, then let u €
and u € [y]. Thus, (u,x) € p and by symmetry, (x, u) € p. With (u,y) € p, applying
transitivity we get, (x,y) € p = [x] = [y], which contradicts the assumption!

(x]

Partitions of a Set (Revisited)

Given set A and index set Z, let Vi, ¢ # A; C A. Then {A;};c7 induces a partition on A if:
HA=U A, and (i) AinAj=¢, Vi,jeZ(i#)).
i€eT

Results: (i) Any equivalence relation p on set A induces a partition of A.
Proof:  Follows from the above theorem.
(i) Any partition of .4 gives rise to an equivalence relation p on A.
Proof:  Left for You as an Exercise!
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Partial Order and Hasse Diagram

Partial Order: A relation p C A x A on set A is called a partial ordering relation (or
partial order) if it is reflexive, antisymmetric and transitive.

We call (A, p) as a Poset (Partial Ordered Set).
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Partial Order and Hasse Diagram

Partial Order: A relation p C A x A on set A is called a partial ordering relation (or
partial order) if it is reflexive, antisymmetric and transitive.

We call (A, p) as a Poset (Partial Ordered Set).

Example: Let S ={1,2,3} and p={(A,B) | AC B and A, B € P(S)},
therefore (P(S), p) or (P(S), <) is a poset.
Also, (P(S),2) is a poset and called dual of the poset (P(S),C).
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Partial Order: A relation p C A x A on set A is called a partial ordering relation (or
partial order) if it is reflexive, antisymmetric and transitive.

We call (A, p) as a Poset (Partial Ordered Set).
Example: Let S ={1,2,3} and p={(A,B) | AC B and A, B € P(S)},
therefore (P(S), p) or (P(S), <) is a poset.
Also, (P(S),2) is a poset and called dual of the poset (P(S),C).
Covering Relation: Let (A, p) is a poset and p, g, r € A. We call g as the cover for p
(denoted as p < q) when (p, q) € p, and no element r € A exists such
that p < r < g, thatis (p,r) € p and (r,q) € p.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 8/12



Partial Order and Hasse Diagram

Partial Order: A relation p C A x A on set A is called a partial ordering relation (or
partial order) if it is reflexive, antisymmetric and transitive.

We call (A, p) as a Poset (Partial Ordered Set).
Example: Let S ={1,2,3} and p={(A,B) | AC B and A, B € P(S)},

therefore (P(S), p) or (P(S), <) is a poset.
Also, (P(S),2) is a poset and called dual of the poset (P(S),C).

Covering Relation: Let (A, p) is a poset and p, g, r € A. We call g as the cover for p
(denoted as p < q) when (p, q) € p, and no element r € A exists such
that p < r < g, thatis (p,r) € p and (r,q) € p.

Hasse Diagram: A directed acyclic graph (DAG) with elements of set A as nodes and
(p, q) as directed edges from p to q (p,q € A) iff p < g (g covers p).
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Partial Order: A relation p C A x A on set A is called a partial ordering relation (or
partial order) if it is reflexive, antisymmetric and transitive.

We call (A, p) as a Poset (Partial Ordered Set).
Example: Let S ={1,2,3} and p={(A,B) | AC B and A, B € P(S)},

therefore (P(S), p) or (P(S), <) is a poset.
Also, (P(S),2) is a poset and called dual of the poset (P(S),C).

Covering Relation: Let (A, p) is a poset and p, g, r € A. We call g as the cover for p
(denoted as p < q) when (p, q) € p, and no element r € A exists such
that p < r < g, thatis (p,r) € p and (r,q) € p.

Hasse Diagram: A directed acyclic graph (DAG) with elements of set A as nodes and
(p, q) as directed edges from p to q (p,q € A) iff p < g (g covers p).

Example: Note that, ({2}, {1,3}) ¢ p and
{1,2} < {1,2,3} (forming the cover), but
{1} 4{1,2,3} as {1} < {1,3} < {1,2,3}.
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Partial Order and Hasse Diagram

Partial Order: A relation p C A x A on set A is called a partial ordering relation (or
partial order) if it is reflexive, antisymmetric and transitive.

We call (A, p) as a Poset (Partial Ordered Set).
Example: Let S ={1,2,3} and p={(A,B) | AC B and A, B € P(S)},

therefore (P(S), p) or (P(S), <) is a poset.
Also, (P(S),2) is a poset and called dual of the poset (P(S),C).

Covering Relation: Let (A, p) is a poset and p, g, r € A. We call g as the cover for p
(denoted as p < q) when (p, q) € p, and no element r € A exists such
that p < r < g, thatis (p,r) € p and (r,q) € p.

Hasse Diagram: A directed acyclic graph (DAG) with elements of set A as nodes and
(p, q) as directed edges from p to q (p,q € A) iff p < g (g covers p).

Example: Note that, ({2}, {1,3}) ¢ p and
{1,2} < {1,2,3} (forming the cover), but
{1} 4{1,2,3} as {1} < {1,3} < {1,2,3}.

Total Order: If (A, p) is a Poset, we call A is totally ordered (or linearly ordered) if
for all x,y € A either (x,y) € p or (y,x) € p. In this case, p is also
called a total order (or linear order).
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Properties of Partial Orders

Maximal Element: In the poset (A, p), an element x € A is called a maximal element of
AifVac A(a# x)= (x,a)€p] (=dac Al(x,a) € p=(a=x)]).
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Minimal Element: In the poset (A, p), an element y € A is called a minimal element of
AifVbe A[(b#y) = (by) €] (= 3be Al(b.y) € p—(b=y)]).

Example: In the poset (P(S),C) where S = {1, 2,3}, we have {1,2,3} and {} as
the maximal and minimal elements, respectively.
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the maximal and minimal elements, respectively.

If (A, p) is a poset and A is finite, then A has both a maximal and a minimal element. J
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Maximal Element: In the poset (A, p), an element x € A is called a maximal element of
AifVac A(a# x)= (x,a)€p] (=dac Al(x,a) € p=(a=x)]).

Minimal Element: In the poset (A, p), an element y € A is called a minimal element of
Aifvbe A(b#y) = (by) € p] (=3bc Al(by)cp=(b=y)]).

Example: In the poset (P(S),C) where S = {1, 2,3}, we have {1,2,3} and {} as

the maximal and minimal elements, respectively.

If (A, p) is a poset and A is finite, then A has both a maximal and a minimal element. J

Least Element: Let (A, p) is a poset. An element x € A is called the least element if
Vaec A, (x,a) € p.
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AifVac A(a# x)= (x,a)€p] (=dac Al(x,a) € p=(a=x)]).

Minimal Element: In the poset (A, p), an element y € A is called a minimal element of
AifVbEAL(bEY) = (by) &pl (= b Al(b.y) e p— (b))

Example: In the poset (P(S),C) where S = {1, 2,3}, we have {1,2,3} and {} as
the maximal and minimal elements, respectively.

If (A, p) is a poset and A is finite, then A has both a maximal and a minimal element. J

Least Element: Let (A, p) is a poset. An element x € A is called the least element if
Vaec A, (x,a) € p.

Greatest Element: Let (A, p) is a poset. An element y € A is called the greatest
element if Va € A, (a,y) € p.
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the maximal and minimal elements, respectively.

If (A, p) is a poset and A is finite, then A has both a maximal and a minimal element. J

Least Element: Let (A, p) is a poset. An element x € A is called the least element if
Vaec A, (x,a) € p.

Greatest Element: Let (A, p) is a poset. An element y € A is called the greatest
element if Va € A, (a,y) € p.

Example: In the poset (P(S),C) where S = {1,2,3}, we have {} and {1, 2,3} as
the least and greatest elements, respectively.
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Properties of Partial Orders

Maximal Element: In the poset (A, p), an element x € A is called a maximal element of
AifVac A(a# x)= (x,a)€p] (=dac Al(x,a) € p=(a=x)]).

Minimal Element: In the poset (A, p), an element y € A is called a minimal element of
AifVbEAL(bEY) = (by) &pl (= b Al(b.y) e p— (b))

Example: In the poset (P(S),C) where S = {1, 2,3}, we have {1,2,3} and {} as
the maximal and minimal elements, respectively.

If (A, p) is a poset and A is finite, then A has both a maximal and a minimal element. J

Least Element: Let (A, p) is a poset. An element x € A is called the least element if
Vaec A, (x,a) € p.

Greatest Element: Let (A, p) is a poset. An element y € A is called the greatest
element if Va € A, (a,y) € p.

Example: In the poset (P(S),C) where S = {1,2,3}, we have {} and {1, 2,3} as
the least and greatest elements, respectively.

If (A, p) is a poset has a least (greatest) element, then that element is unique. J
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Properties of Partial Orders

Lower Bound: Let (A, p) is a poset and B C A. An element x € A is called a lower
bound of B if Vb € B, (x, b) € p.
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Lower Bound: Let (A, p) is a poset and B C A. An element x € A is called a lower
bound of B if Vb € B, (x, b) € p.

Upper Bound: Let (A, p) is a poset and B C A. An element y € A is called a upper
bound of B if Vb € B, (b,y) € p.
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Upper Bound: Let (A, p) is a poset and B C A. An element y € A is called a upper
bound of B if Vb € B, (b,y) € p.

Greatest Lower Bound: Let (A, p) is a poset. An element x’ € A is called the greatest
lower bound (glb) of B if it is a lower bound of B and (x”, x") € p for all
other lower bounds x” of B.
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Properties of Partial Orders

Lower Bound: Let (A, p) is a poset and B C A. An element x € A is called a lower
bound of B if Vb € B, (x, b) € p.

Upper Bound: Let (A, p) is a poset and B C A. An element y € A is called a upper
bound of B if Vb € B, (b,y) € p.

Greatest Lower Bound: Let (A, p) is a poset. An element x’ € A is called the greatest
lower bound (glb) of B if it is a lower bound of B and (x”, x") € p for all
other lower bounds x” of B.

Least Upper Bound: Let (A, p) is a poset. An element y’ € A is called the least upper
bound (lub) of B if it is an upper bound of B and (y’,y") € p for all
other upper bounds y” of B.

Example: In the poset (P(S),C) where S = {1,2,3} and let
B ={{1},{2},{1,2}} C P(S). Then, {1,2} and {1,2,3} both are the
upper bounds for B in (P(S), p); whereas {1,2} is the lub (and is in B).
However, the glb for B is {}, i.e. ¢, which does not belong to 5.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 10 /12



Properties of Partial Orders

Lower Bound: Let (A, p) is a poset and B C A. An element x € A is called a lower
bound of B if Vb € B, (x, b) € p.

Upper Bound: Let (A, p) is a poset and B C A. An element y € A is called a upper
bound of B if Vb € B, (b,y) € p.

Greatest Lower Bound: Let (A, p) is a poset. An element x’ € A is called the greatest
lower bound (glb) of B if it is a lower bound of B and (x”, x") € p for all
other lower bounds x” of B.

Least Upper Bound: Let (A, p) is a poset. An element y’ € A is called the least upper
bound (lub) of B if it is an upper bound of B and (y’,y") € p for all
other upper bounds y” of B.

Example: In the poset (P(S),C) where S = {1,2,3} and let
B ={{1},{2},{1,2}} C P(S). Then, {1,2} and {1,2,3} both are the
upper bounds for B in (P(S), p); whereas {1,2} is the lub (and is in B).
However, the glb for B is {}, i.e. ¢, which does not belong to 5.

If (A, p) is a poset and B C A, then B has at most one lub (glb). J
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Definition

A lattice is a poset, (A, p), in which for every pair of elements a, b € A, the lub{a, b}

and glb{a, b} both exists in A.
A lattice is complete in which every subset of elements has a lub and glb.
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Definition

A lattice is a poset, (A, p), in which for every pair of elements a, b € A, the lub{a, b}
and glb{a, b} both exists in A.
A lattice is complete in which every subset of elements has a lub and glb.

Examples: All the following posets are lattice.

@ Poset (N, p), where p = {(x,y) | x <y and x,y € N} is a lattice.
Here, for any x,y € N, lub{x, y} = max{x, y} and glb{x, y} = min{x, y}.
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A lattice is a poset, (A, p), in which for every pair of elements a, b € A, the lub{a, b}
and glb{a, b} both exists in A.
A lattice is complete in which every subset of elements has a lub and glb.

Examples: All the following posets are lattice.

@ Poset (N, p), where p = {(x,y) | x <y and x,y € N} is a lattice.
Here, for any x,y € N, lub{x, y} = max{x, y} and glb{x, y} = min{x, y}.
Q@ Poset (P(S),p), where p = {(A,B) | AC B and A,B € P(S)} is a lattice.
Here, for any A, B € P(S), lub{A,B} = AU B and glb{A,B} = AN B.
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Definition

A lattice is a poset, (A, p), in which for every pair of elements a, b € A, the lub{a, b}
and glb{a, b} both exists in A.
A lattice is complete in which every subset of elements has a lub and glb.

Examples: All the following posets are lattice.

@ Poset (N, p), where p = {(x,y) | x <y and x,y € N} is a lattice.
Here, for any x,y € N, lub{x, y} = max{x, y} and glb{x, y} = min{x, y}.

Q@ Poset (P(S),p), where p = {(A,B) | AC B and A,B € P(S)} is a lattice.
Here, for any A, B € P(S), lub{A,B} = AU B and glb{A,B} = AN B.

© Poset (ZT, p), where p = {(x,y) | x divides y and x,y € Z"} is a lattice.
Here, for any x,y € Z*t, lub{x,y} = LCM{x, y} and glb{x,y} = GCD{x, y}.
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A lattice is a poset, (A, p), in which for every pair of elements a, b € A, the lub{a, b}

and glb{a, b} both exists in A.
A lattice is complete in which every subset of elements has a lub and glb.

Examples: All the following posets are lattice.

@ Poset (N, p), where p = {(x,y) | x <y and x,y € N} is a lattice.
Here, for any x,y € N, lub{x, y} = max{x, y} and glb{x, y} = min{x, y}.

Q@ Poset (P(S),p), where p = {(A,B) | AC Band A, B € P(S)} is a lattice.
Here, for any A, B € P(S), lub{A, B} = AU B and glb{A,B} = AN B.

© Poset (ZT, p), where p = {(x,y) | x divides y and x,y € Z"} is a lattice.
Here, for any x,y € Z*t, lub{x,y} = LCM{x, y} and glb{x,y} = GCD{x, y}.

Example: The following poset is NOT a lattice.

Let S ={1,2,3} and Q C P(S) (all proper subsets) where ¢ ¢ Q. Poset (Q, p), where
p={(A,B) | ACBand x,y € Q} is NOT a lattice.

Here, the pair of elements {1,2} and {1,3} in Q do not have a lub, whereas the pair of
elements {1} and {2} in Q do not have a gib.

v
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Thank You!
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