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Introduction

Recurrence Relations are Mathematical Equations: A recurrence relation is an
equation which is defined in terms of itself.
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In ction

Recurrence Relations are Mathematical Equations: A recurrence relation is an
equation which is defined in terms of itself.
Natural Computable Functions as Recurrences: Many natural functions are
expressed using recurrence relations.
@ (linear) f(n)=f(n—1)+1,f(1)=1 = f(n)=n
@ (polynomial) f(n)=f(n—1)+n,f(1)=1 = f(n)= %(n2 +n)
@ (exponential) f(n) =2.f(n—1),f(0)=1 = f(n)=2"
@ (factorial) f(n)=n.f(n—1),f(0)=1 = f(n)=nl

2/36

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020



In tion

Recurrence Relations are Mathematical Equations: A recurrence relation is an
equation which is defined in terms of itself.

Natural Computable Functions as Recurrences: Many natural functions are
expressed using recurrence relations.

@ (linear) f(n)=f(n—1)+1,f(1)=1 = f(n)=

@ (polynomial) f(n)=f(n—1)+n,f(1)=1 = f(n)= %(n + n)
@ (exponential) f(n) =2.f(n—1),f(0)=1 = f(n)=2"
@ (factorial) f(n)=n.f(n—1),f(0)=1 = f(n)=nl

Recurrence is Mathematical Induction:

Recurrence:  T(n) =2T(n— 1)+ 1 with base condition, T(0) = 0.
Base-condition check: ~ T(0) =2° -1
Induction Hypothesis:  T(n—1)=2""1 -1

Proof: T(n)=2T(h—1)4+1=202""1-1)+1=2"-1
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expressed using recurrence relations.
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Recurrence:  T(n) =2T(n— 1)+ 1 with base condition, T(0) = 0.
Base-condition check: ~ T(0) =2° -1
Induction Hypothesis:  T(n—1)=2""1 -1
Proof: T(n)=2T(h—1)4+1=202""1-1)+1=2"-1
Types of Recurrence Relations:
@ First Order, Second Order, ..., Higher Order
@ Linear vs. Non-Linear

@ Homogeneous vs. Non-Homogeneous
@ Constant vs. Variable Coefficients

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020



In tion

Recurrence Relations are Mathematical Equations: A recurrence relation is an
equation which is defined in terms of itself.

Natural Computable Functions as Recurrences: Many natural functions are
expressed using recurrence relations.

@ (linear) f(n)=f(n—1)+1,f(1)=1 = f(n)=
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Recurrence is Mathematical Induction:
Recurrence:  T(n) =2T(n— 1)+ 1 with base condition, T(0) = 0.
Base-condition check: ~ T(0) =2° -1
Induction Hypothesis:  T(n—1)=2""1 -1
Proof: T(n)=2T(h—1)4+1=202""1-1)+1=2"-1
Types of Recurrence Relations:
@ First Order, Second Order, ..., Higher Order
@ Linear vs. Non-Linear
@ Homogeneous vs. Non-Homogeneous
@ Constant vs. Variable Coefficients

Applications: Algorithm Analysis, Counting, Problem Solving, Reasoning etc.
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Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.
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Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.

Recursive Solution: (Proposed by Jacob Steiner in 1826)

@ Observation-0: No line is parallel and co-linear with another.
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Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.

Recursive Solution: (Proposed by Jacob Steiner in 1826)

@ Observation-0: No line is parallel and co-linear with another.

@ Observation-1: (n+ 1)" line, when introduced into a plane with n
lines, intersects with all n line exactly once.
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Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.

Recursive Solution: (Proposed by Jacob Steiner in 1826)

@ Observation-0: No line is parallel and co-linear with another.

@ Observation-1: (n+ 1)" line, when introduced into a plane with n
lines, intersects with all n line exactly once.

© Observation-2: When traversed from one endpoint to another of a
newly introduced line, every time at crossing-point of intersection
with another line, the new line has created one new region.
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lines, intersects with all n line exactly once.

© Observation-2: When traversed from one endpoint to another of a
newly introduced line, every time at crossing-point of intersection
with another line, the new line has created one new region.

@ Observation-3: After last intersection, the line cuts the infinite
ending region into two (that is, introducing the final new region).
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Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.

Recursive Solution: (Proposed by Jacob Steiner in 1826)

@ Observation-0: No line is parallel and co-linear with another.

@ Observation-1: (n+ 1)" line, when introduced into a plane with n
lines, intersects with all n line exactly once.

© Observation-2: When traversed from one endpoint to another of a
newly introduced line, every time at crossing-point of intersection
with another line, the new line has created one new region.

@ Observation-3: After last intersection, the line cuts the infinite
ending region into two (that is, introducing the final new region).

Recurrence Relation: L, = maximum number of regions created by n lines in a plane.

Lo Lh—i+n, ifn>0
" 1, ifn=0
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Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.

Recursive Solution: (Proposed by Jacob Steiner in 1826)

@ Observation-0: No line is parallel and co-linear with another.

@ Observation-1: (n+ 1)" line, when introduced into a plane with n
lines, intersects with all n line exactly once.

© Observation-2: When traversed from one endpoint to another of a
newly introduced line, every time at crossing-point of intersection
with another line, the new line has created one new region.

@ Observation-3: After last intersection, the line cuts the infinite
ending region into two (that is, introducing the final new region).

Recurrence Relation: L, = maximum number of regions created by n lines in a plane.

Lh—i+n, ifn>0
1, ifn=0

Number of Regions: L, =Lp—1+n=L,2+(n—1)+n=~L,3+(n—2)+(n—1)+n
= =Lo+1+2+3+--+(n—-2)+(n—1)+n=1+3 =2 1
i=1

L, =
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Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped)
in a plane.
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Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped)
in a plane.

Recursive Solution: (Variant of Maximum Regions by Straight Lines Problem)

@ Observation-0: No V-shaped bent-line tip will coincide with the tip
of another bent-line.
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Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped)
in a plane.

Recursive Solution: (Variant of Maximum Regions by Straight Lines Problem)

@ Observation-0: No V-shaped bent-line tip will coincide with the tip
of another bent-line.

@ Observation-1: A bent-line is like two straight lines except that

regions merge when the two lines do not extend past their
intersection point.
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Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped)
in a plane.

Recursive Solution: (Variant of Maximum Regions by Straight Lines Problem)

@ Observation-0: No V-shaped bent-line tip will coincide with the tip
of another bent-line.

@ Observation-1: A bent-line is like two straight lines except that
regions merge when the two lines do not extend past their
intersection point.

© Observation-2: The tip point must lie beyond the intersections
with the other lines — that is all we lose; that is, we lose only two
regions per line.
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Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped)
in a plane.

Recursive Solution: (Variant of Maximum Regions by Straight Lines Problem)

@ Observation-0: No V-shaped bent-line tip will coincide with the tip
of another bent-line.

@ Observation-1: A bent-line is like two straight lines except that
regions merge when the two lines do not extend past their
intersection point.

© Observation-2: The tip point must lie beyond the intersections
with the other lines — that is all we lose; that is, we lose only two
regions per line.

Recurrence Relation: V,, = maximum number of regions created by n bent-lines.

[ Lyn—2n, ifn>0
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Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped)
in a plane.

Recursive Solution: (Variant of Maximum Regions by Straight Lines Problem)

@ Observation-0: No V-shaped bent-line tip will coincide with the tip
of another bent-line.

@ Observation-1: A bent-line is like two straight lines except that
regions merge when the two lines do not extend past their
intersection point.

© Observation-2: The tip point must lie beyond the intersections
with the other lines — that is all we lose; that is, we lose only two
regions per line.

Recurrence Relation: V,, = maximum number of regions created by n bent-lines.

[ Lyn—2n, ifn>0
V”_{ 1, ifn=0

Number of Regions: V, = Loy —2n= 2220 11 _2p=2p2 —p 41
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Recurrent Problems

Tower of Hanoi: n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all n disks (having
different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that —

@ Always smaller sized disk is placed above larger sized disk.
@ At start, all n disks are stacked together in Peg-A in their
descending order of size (bottom-up).

v
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Tower of Hanoi: n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all n disks (having
different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that —

@ Always smaller sized disk is placed above larger sized disk.
@ At start, all n disks are stacked together in Peg-A in their
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Recursive Solution: (Proposed by Francois Edouard Anatole Lucas in 1883)
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Tower of Hanoi: n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all n disks (having
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descending order of size (bottom-up).
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as auxiliary. Move Largest disk directly from Peg-A to Peg-B.
Move (n — 1) disks from Peg-C to Peg-B using Peg-A as auxiliary.

Recurrence Relation: T, = number of movements for transferring n disks.

Tn:{ Tn71+1+Tn—i7 ::Zii = Th=2Tp 1+1(n>1), Ty =1
, =
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Recurrent Problem: Number of steps required in transferring all n disks (having
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Recurrence Relation: T, = number of movements for transferring n disks.

Tn:{ Tn71+1+Tn—i7 ::Zii = Th=2Tp 1+1(n>1), Ty =1
, =

Number of Moves: T, =2Tp_14+1=2?T, »+2+1=23T, 3+224+2+1="--

n—1
:2n—1T1_‘_2n—2+2n—3+.”+22_‘_21+20: Ezl:2n_1
i=0
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Recurrent Problems

Tower of Hanoi: n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from
Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that —

@ Always smaller sized disk is placed above larger sized disk.
@ At start, all n disks are stacked together in Peg-A in their
descending order of size (bottom-up).
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Recurrent Problems

Tower of Hanoi: n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from
Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that —

@ Always smaller sized disk is placed above larger sized disk.
@ At start, all n disks are stacked together in Peg-A in their
descending order of size (bottom-up).
Recursive Solution: (Proposed by J.S. Frame and B.M. Stewart in 1941)
@ If n < 3, Solve the problem directly using 3 pegs.
@ Fix a value of k in the range 1 < k < n.
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Recurrent Problems

Tower of Hanoi: n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from
Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that —

@ Always smaller sized disk is placed above larger sized disk.
@ At start, all n disks are stacked together in Peg-A in their
descending order of size (bottom-up).

Recursive Solution: (Proposed by J.S. Frame and B.M. Stewart in 1941)

@ If n < 3, Solve the problem directly using 3 pegs.
@ Fix a value of k in the range 1 < k < n.

© Keep the k largest disks on Peg-A, and transfer the smallest
(n — k) disks from Peg-A to Peg-D.
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Recurrent Problems

Tower of Hanoi: n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from
Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that —

@ Always smaller sized disk is placed above larger sized disk.
@ At start, all n disks are stacked together in Peg-A in their
descending order of size (bottom-up).

Recursive Solution: (Proposed by J.S. Frame and B.M. Stewart in 1941)

If n < 3, Solve the problem directly using 3 pegs.

Fix a value of k in the range 1 < k < n.

Keep the k largest disks on Peg-A, and transfer the smallest

(n — k) disks from Peg-A to Peg-D.

Transfer the largest k disks from Peg-A to Peg-B without
disturbing the smallest (n — k) disks already sitting on Peg-D.
(Since larger disk can never be above smaller disk, Peg-D is unusable in
this part, that is, we solve 3-peg Tower-of-Hanoi problem on k disks.)

© 006
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Recurrent Problems

Tower of Hanoi: n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from
Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that —

)
)

Recursive Solution:

© 006

o

Always smaller sized disk is placed above larger sized disk.
At start, all n disks are stacked together in Peg-A in their
descending order of size (bottom-up).

(Proposed by J.S. Frame and B.M. Stewart in 1941)

If n < 3, Solve the problem directly using 3 pegs.

Fix a value of k in the range 1 < k < n.

Keep the k largest disks on Peg-A, and transfer the smallest

(n — k) disks from Peg-A to Peg-D.

Transfer the largest k disks from Peg-A to Peg-B without
disturbing the smallest (n — k) disks already sitting on Peg-D.
(Since larger disk can never be above smaller disk, Peg-D is unusable in
this part, that is, we solve 3-peg Tower-of-Hanoi problem on k disks.)
Transfer the smallest (n — k) disks from Peg-D to Peg-B without
disturbing the largest k disks on Peg-B.

(In this step, all the four pegs can be used.)
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Recurrent Problems

Tower of Hanoi

Step-0: Initial Configuration

n Disk Transfer wi

Step-1: Recursive Solution for Smaller Part

Peg-A Peg-B Peg-C

Step-2: Movement of Larger Part usi

L om

Peg-A Peg-B Peg-C

Peg-D Peg-A Peg-B Peg-C Peg-D
ng 3-Pegs Step-4: Recursive Solution for Smaller Part
Peg-D Peg-A Peg-B Peg-C Peg-D

CS21001
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Recurrent Problems

Tower of Hanoi n Disk Transfer wi

Step-0: Initial Configuration Step-1: Recursive Solution for Smaller Part
I |

Peg-A Peg-B Peg-C Peg-D Peg-A Peg-B Peg-C Peg-D
Step-2: Movement of Larger Part using 3-Pegs Step-4: Recursive Solution for Smaller Part
Peg-A Peg-B Peg-C Peg-D Peg-A Peg-B Peg-C Peg-D

Recurrence Relation: H, = number of movements for transferring n disks with 4-pegs.

T, = number of movements for transferring n disks with 3-pegs.

o= Hok+ Tt Hooi = 2H,_+2k—1, ifn>3
" Th - 2”—].7 |f0§n§3

R R RRRRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRREERRRRRRRRRRRRRRRRRRBBBiiiiiEESSSESEm———;
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Recurrent Proble

Tower of Hanoi: n Disk Transfer with 4 Pe

Step-0: Initial Configuration Step-1: Recursive Solution for Smaller Part

Peg-A Peg-B Peg-C Peg-D Peg-A Peg-B Peg-C Peg-D
Step-2: Movement of Larger Part using 3-Pegs Step-4: Recursive Solution for Smaller Part
Peg-A Peg-B Peg-C Peg-D Peg-A Peg-B Peg-C Peg-D

Recurrence Relation: H, = number of movements for transferring n disks with 4-pegs.
T, = number of movements for transferring n disks with 3-pegs.
o= { Hokt Tt Hooe = 2H,_+2k—1, ifn>3
» [l T, = 27"—1, ifo<n<3
Number of Moves: Depends on best choice of k. For simplicity, let us assume n = uk.
Un = 2Up—k + 25 = 22Up—ok + (2 + 1).25 = U3k + (22 + 2+ 1).2F
SR 2T U 4 (242 £ 20 4 02 0t 1 00) ok

(i) 27).2k = 2tk = 2tk (by Paul Stockmeyer in 1994)
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Recurrent Problems

Tower of Hanoi: n Disk Transfer with 4 Pe

Step-0: Initial Configuration Step-1: Recursive Solution for Smaller Part

Peg-A Peg-B Peg-C Peg-D Peg-A Peg-B Peg-C Peg-D
Step-2: Movement of Larger Part using 3-Pegs Step-4: Recursive Solution for Smaller Part
Peg-A Peg-B Peg-C Peg-D Peg-A Peg-B Peg-C Peg-D

Recurrence Relation: H, = number of movements for transferring n disks with 4-pegs.
T, = number of movements for transferring n disks with 3-pegs.
o= { Hokt Tt Hooe = 2H,_+2k—1, ifn>3
’ " Th - 2”—].7 |f0§n§3
Number of Moves: Depends on best choice of k. For simplicity, let us assume n = uk.
Un = 2Up—k + 25 = 22Up—ok + (2 + 1).25 = U3k + (22 + 2+ 1).2F
SR 2T U 4 (242 £ 20 4 02 0t 1 00) ok
(Ti2l).2k = 2utk = 2%tk (by Paul Stockmeyer in 1994)

Since, (g + k) can be minimized for k = \/ﬁ therefore U, ~ pa )
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: t,.1 = c.t,, where n > 0 and c is a constant

Boundary Condition: to = B, where B is a constant
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: t,.1 = c.t,, where n > 0 and c is a constant
Boundary Condition: ty = B, where B is a constant

Solution: t, = C.tpe1 = Citpea =+ =C tpj=--- = c".tg = B.c", for n > 0
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: t,.1 = c.t,, where n > 0 and c is a constant

Boundary Condition: to = B, where B is a constant

Solution: t, = C.tpe1 = Citpea =+ =C tpj=--- = c".tg = B.c", for n > 0

Example

| 5\

©Q a2, =33, 1 where n>1 and a» = 18. Clearly, a, = 32.30 =18 = ag = 2. So,
a, = 2.3" for n > 0 is the unique solution.

N
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: t,.1 = c.t,, where n > 0 and c is a constant

Boundary Condition: to = B, where B is a constant

Solution: t, = C.tpe1 = Citpea =+ =C tpj=--- = c".tg = B.c", for n > 0

Example

| 5\

©Q a2, =33, 1 where n>1 and a» = 18. Clearly, a, = 32.30 =18 = ag = 2. So,
a, = 2.3" for n > 0 is the unique solution.

@ Number of Different Summands of n: s,11 = 2.s, where n > 1 with boundary
condition s; = 1.

N
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: t,.1 = c.t,, where n > 0 and c is a constant
Boundary Condition: to = B, where B is a constant

Solution: t, = C.tpe1 = Citpea =+ =C tpj=--- = c".tg = B.c", for n > 0

Example

| A\

©Q a2, =33, 1 where n>1 and a» = 18. Clearly, a, = 32.30 =18 = ag = 2. So,
a, = 2.3" for n > 0 is the unique solution.

@ Number of Different Summands of n: s,11 = 2.s, where n > 1 with boundary
condition s; = 1. To directly apply the formula proposed, let t, = sp+1, which
formulates the reccurence as, t, = 2.t,—1 where n > 0 with to = 1. So, t, = 1.2".
Now, sp, = tp—1 = 2" for n > 1.

Different Summands of 3 Different Summands of 4
(1)3 (2)1+2 1) 4 2)1+3 3)2+2 (4)1+1+2
(3)24+1 (#)1+1+1 | (17)3+1 (2")142+41 (3")24141 (4")1+1+1+1
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: tn1 = f(n).t,, where n >0

Boundary Condition: to = B, where B is a constant
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: tn1 = f(n).t,, where n >0

Boundary Condition: to = B, where B is a constant

Solution: t, = f(n—1).tp—1 = f(n—2).f(n—1).thp=--- = B.[k]ill f(n— k)]
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: tn1 = f(n).t,, where n >0

Boundary Condition: to = B, where B is a constant

Solution: t, = f(n—1).tp—1 = f(n—2).f(n—1).thp=--- = B.[k]ill f(n— k)]

Example: (Factorials) f, = n.f,—1, n > 1 and fo = 1. Solution: f, = n! (n > 0).
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: t,41 = f(n).t,, where n >0

Boundary Condition: to = B, where B is a constant
Solution: ty = f(n—1).ts1=f(n—2).f(n—1).tno=---= B.[ [] f(n— k)]
k=1

Example: (Factorials) f, = n.f,—1, n > 1 and fo = 1. Solution: f, = n! (n > 0).

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: tf,; = c.tf, where t, > 0 for n > 0 and c, k are constants

Boundary Condition: to = B, where B is a constant
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: t,41 = f(n).t,, where n >0

Boundary Condition: to = B, where B is a constant
Solution: ty = f(n—1).ts1=f(n—2).f(n—1).tno=---= B.[ [] f(n— k)]
k=1

Example: (Factorials) f, = n.f,—1, n > 1 and fo = 1. Solution: f, = n! (n > 0).

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: tf,; = c.tf, where t, > 0 for n > 0 and c, k are constants
Boundary Condition: to = B, where B is a constant

Solution: Let r, = t. So, the recurrence becomes, rni1 = c.r, for n > 0 and
ro = B¥. Hence, tk = r, = B*.c" implying t, = B.({/c)" for n > 0.

v
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Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: t,41 = f(n).t,, where n >0

Boundary Condition: to = B, where B is a constant
Solution: ty = f(n—1).ts1=f(n—2).f(n—1).tno=---= B.[ [] f(n— k)]
k=1

Example: (Factorials) f, = n.f,—1, n > 1 and fo = 1. Solution: f, = n! (n > 0).

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: tf,; = c.tf, where t, > 0 for n > 0 and c, k are constants
Boundary Condition: to = B, where B is a constant

Solution: Let r, = t. So, the recurrence becomes, rni1 = c.r, for n > 0 and
ro = B. Hence, t& = r, = B*.c" implying t, = B.({/c)" for n > 0.
Example (a small Variation): log, an+1 = 2.log, a, for n > 0 and ag = 2.
Putting b, = log, an gives b,y1 = 2.b, and by = 1.
So, b, = 2" and hence a, = 22" for n > 0.

v
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Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: tn41 + d.t, = f(n) or alternatively, t,41 = c.t, + f(n), where f(n) # 0
(which means non-homogeneous) for n > 0 and ¢ = —d is a constant

Boundary Condition: ty = B, where B is a constant
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Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: tn41 + d.t, = f(n) or alternatively, t,41 = c.t, + f(n), where f(n) # 0
(which means non-homogeneous) for n > 0 and ¢ = —d is a constant

Boundary Condition: ty = B, where B is a constant
Solution: t, = c.ta— 1+f(n—1)—c o+t f(n—2)+f(n—1)

=c t,,,—l—Zc f(n—i+k)y=--- =B.c" +Zc f(k), forn>0
k=0
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Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: tn41 + d.t, = f(n) or alternatively, t,41 = c.t, + f(n), where f(n) # 0
(which means non-homogeneous) for n > 0 and ¢ = —d is a constant

Boundary Condition: ty = B, where B is a constant

Solution: t, = c.tp— 1+f(n—1)—c tno + f(n—2)—|—f(n—1)

=¢ t,,,—l—Zc f(n—i+k)y=--- =B.c" +Zc f(k), forn>0
k=0
Example: @ (Comparisons in Sorting) — Bubble, Selection and Insertion
an=ap—1+ (n—1) where n > 2 and a; = 0.
Hence, the solution, a, =0+ > ;"; L= "22_" = 0(n?)
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Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: tn41 + d.t, = f(n) or alternatively, t,41 = c.t, + f(n), where f(n) # 0
(which means non-homogeneous) for n > 0 and ¢ = —d is a constant

Boundary Condition: ty = B, where B is a constant

Solution: t, = c.tp— 1+f(n—1)—c tno + f(n—2)+f(n—1)—

=c it i+ Zc f(n—i+k)y=--- =B.c" +Zc f(k), forn>0
k=0
Example: @ (Comparisons in Sorting) — Bubble, Selection and Insertion
an=ap—1+ (n—1) where n > 2 and a; = 0.
Hence, the solution, a, =0+ > ;"; L= "22_" = 0(n?)

@ (n'" term in Sequence) 0,2, 6, 12,20,30,42,...
an = ap—1 + 2n where n > 1 and ag = 0. (How?)
Since ag —ag=2,a —a; =4,a3 —ap=06,a —a3 =8 a5 —ag =10, ag — a5 = 12,
therefore a, —ag =2+ 4+ ---+2n = n? + n, implies a, = n? + n.
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Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t,11 + d.t, = f(n) or alternatively, t,11 = c.t, + f(n), where f(n) # 0
(which means non-homogeneous) for n > 0 and ¢ = —d is a constant

Boundary Condition: ty = B, where B is a constant

Solution: t, = c.ty— 1+f(n—1)—c tno + f(n—2)—|—f(n—1)

=cltpi+ Zc f(n—i+k)y=--- =B.c" +Zc .f(k), forn >0
k=0
Example: @ (Comparisons in Sorting) — Bubble, Selection and Insertion
an=ap—1+ (n—1) where n > 2 and a; = 0.
Hence, the solution, a, =0+ > ;"; g = "22_" = 0(n?)

@ (n'" term in Sequence) 0,2, 6, 12,20,30,42, e
an = ap—1 + 2n where n > 1 and ag = 0. (How?)
Since ap —ag =2 a —ay =4 a3 —a)=06,a —a3 =8, a5 —ag = 10, 3 — a5 = 12,
therefore a, —ag =2+4+---+2n= n? + n, implies an=n%+ n.

First-Order Linear Non-Homogeneous Recurrence with Variable Coefficients
General Form: t,.1 = f(n).t, + g(n), where g(n) # 0 for n > 0 and to = B (constant)

v
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Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t,11 + d.t, = f(n) or alternatively, t,11 = c.t, + f(n), where f(n) # 0
(which means non-homogeneous) for n > 0 and ¢ = —d is a constant

Boundary Condition: ty = B, where B is a constant

Solution: t, = c.ty— 1+f(n—1)—c tno + f(n—2)—|—f(n—1)

= t,,,—i—Zc f(n—i+k)y=--- =B.c" +Zc .f(k), forn >0
k=0
Example: @ (Comparisons in Sorting) — Bubble, Selection and Insertion
an=ap—1+ (n—1) where n > 2 and a; = 0.
Hence, the solution, a, =0+ > ;"; g = "22_" = 0(n?)

@ (n'" term in Sequence) 0,2, 6, 12,20,30,42,
ap = ap_1+ 2n where n > 1 and ag = 0. (How?)
Since ap —ag =2 a —ay =4 a3 —a)=06,a —a3 =8, a5 —ag = 10, 3 — a5 = 12,
therefore a, —ag =2+4+---+2n= n? + n, implies ap, = n? + n.

First-Order Linear Non-Homogeneous Recurrence with Variable Coefficients
General Form: t,.1 = f(n).t, + g(n), where g(n) # 0 for n > 0 and to = B (constant)

n—1 n—1 k-1
Generic Solution: t, = B.[ [] f(k)] + > [ I f(n—j)].g(n— k), for n>0
k=0 k=1 j=1

y
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Go.tp, + Ci.tho1 + Go.th2 =0 (n > 2) and ty = Do, t; = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Go.tp, + Ci.tho1 + Go.th2 =0 (n > 2) and ty = Do, t; = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.

Characteristic Equation: Seeking a solution, t, = ¢.x" (¢, x # 0), after substitution,
GCocx"+ CcexX" P+ Gex"2=0 = GX+Cx+GC=0
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Go.tp, + Ci.tho1 + Go.th2 =0 (n > 2) and ty = Do, t; = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.

Characteristic Equation: Seeking a solution, t, = ¢.x" (¢, x # 0), after substitution,
GCocx"+ CcexX" P+ Gex"2=0 = GX+Cx+GC=0

. .. —C1+4/C2—4Gy € —C1—/C2—4GyC,
Equation Roots: 2 Distinct Real Roots as, Ry = I gy — =

2Go ) 2Go
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Go.tp, + Ci.tho1 + Go.th2 =0 (n > 2) and ty = Do, t; = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.

Characteristic Equation: Seeking a solution, t, = ¢.x" (¢, x # 0), after substitution,
GCocx"+ CcexX" P+ Gex"2=0 = GX+Cx+GC=0

. .. —C1+4/C2—4Gy € —C1—/C2—4GyC,
Equation Roots: 2 Distinct Real Roots as, Ry = L = — =

2Gy 2Gy
Exact Solution: As t, = Ai.R{ and t, = Ax.R; are linearly independent solutions, so

th= ALRD + A Ry = Ay (FSEV GGy g (ZOZV GGGy

2Go 2Co
(Here, A1 and A are arbitrary constants)
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients
General Form: Go.tp, + Ci.tho1 + Go.th2 =0 (n > 2) and ty = Do, t; = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.
Characteristic Equation: Seeking a solution, t, = ¢.x" (¢, x # 0), after substitution,
GCocx"+ CcexX" P+ Gex"2=0 = GX+Cx+GC=0
— /c2_ =N EA
Equation Roots: 2 Distinct Real Roots as, Ry = ar 2%0 4C°C27R2 = “ 22) e

Exact Solution: As t, = Ai.R{ and t, = Ax.R; are linearly independent solutions, so
—C1+4/C2—4G C —C1—+/C2—4GC
th = AL.R] + AR} = Al,(%“‘”)" + Az.(%)"
(Here, A1 and A are arbitrary constants)

Constant Determination: A; + A, = to = Do and A; — A, = 29081600

\/C2—4GyC,
because, D; = t; = (A1 T Az)( = 2%0) a4 (A1 = Az)(lzTH)
o = %(Do + 2C0D1+C1D0) =il Al = %(Do _ 2C0D1+C1D0)_

\/C2—4Go G, \C2—4G G
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Go.tp, + Ci.tho1 + Go.th2 =0 (n > 2) and ty = Do, t; = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.

Characteristic Equation: Seeking a solution, t, = ¢.x" (¢, x # 0), after substitution,
GCocx"+ CcexX" P+ Gex"2=0 = GX+Cx+GC=0
. .. —C1+4/C2—4Gy € —C1—/C2—4GyC,
Equation Roots: 2 Distinct Real Roots as, Ry = 2610 02 Ry = 261) 0=

Exact Solution: As t, = Ai.R{ and t, = Ax.R; are linearly independent solutions, so

th= ALRD + A Ry = Ay (FSEV GGy g (ZOZV GGGy

2Go 2Co
(Here, A1 and A are arbitrary constants)

Constant Determination: A; + A, = to = Do and A; — A, = 29081600

\/C2—4GyC,
because, D; = t; = (A1 T Az)( = 2%0) a4 (A1 = Az)(lzTH)
o = %(Do + 2C0D1+C1D0) =il Al = %(Do _ 2C0D1+C1D0)_

\/C2—4Go G, \C2—4G G

Unique Solution:
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Go.tp, + Ci.tho1 + Go.th2 =0 (n > 2) and ty = Do, t; = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.

Characteristic Equation: Seeking a solution, t, = ¢.x" (¢, x # 0), after substitution,

GCocx"+ CcexX" P+ Gex"2=0 = GX+Cx+GC=0

. .. —C1+4/C2—4Gy € —C1—4/C2—4GyC,
Equation Roots: 2 Distinct Real Roots as, Ry = 2610 02 Ry = 261) 0=
Exact Solution: As t, = Ai.R{ and t, = Ax.R; are linearly independent solutions, so

_ 7 . N ror
th = AL.R" + AR = Al,(cﬁi \/22“0@) + A2,(C17 V. Ei=4G G

n
o)
(Here, A1 and A are arbitrary constants)
Constant Determination: A; + A, = tg = Dy and A; — A, = 250214600
\/C2—4G G,
\/C2—4Gy €,
G 1 0C2
because, D; = t; = (A1 T Az)( = ﬁ) a4 (A1 = Az)(T)
. _1 2GD1+C1Dy 1 _ 2GD1+CiDy
.A172<D0+7\/m) and A272<D0 7@)
1 0&2 h 02
Unique Solution:
PO [(Do+ 250D1+51D0> <7C1+1/C1274C0C2)n+ (Do B 2cool+ch0> <7C1ﬂ/c1?74c0c2
T2 N 2Gy NEETYYa
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Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: Fny2 = Fpi1 + Fp, wheren > 0and Fo =0,F =1
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Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: Fny2 = Fpi1 + Fp, wheren > 0and Fp =0,F =1
Substituting with F, = c.x” (¢, x # 0), we get cx™2 = x4 cx".
Characteristic Equation x> — x — 1 = 0 has two distinct roots, o = HTﬁ and = —

17\/3.
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Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: Fny2 = Fpi1 + Fp, wheren > 0and Fp =0,F =1
Substituting with F, = c.x” (¢, x # 0), we get cx™2 = x4 cx".

Characteristic Equation x> — x — 1 = 0 has two distinct roots, o = HTﬁ and f = 1’2‘/5.
145 1-/5 : . 1 1
Hence, F, = cl(%[)" + C2(T\[)", with the constants derived as, a1 = —z, @ = — .

Solution: (Binet Form) F, = % {a" = ﬂ"} (e =1— 3 is called the Golden Ratio)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 /36



Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: Fny2 = Fpi1 + Fp, wheren > 0and Fp =0,F =1
Substituting with F, = c.x” (¢, x # 0), we get cx™2 = x4 cx".

Characteristic Equation x> — x — 1 = 0 has two distinct roots, o = HTﬁ and f = 1’2‘/3.
Hence, F, = c1(1+—2‘/§)" + C2(l%ﬂ)", with the constants derived as, c1 = % o= —%.
Solution: (Binet Form) F, = % {a" = /3"} (e =1— 3 is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of S = {x1,x2,...,xp} is = a,
Ifn=0=>8=¢, ap = 1. fn=1=8={x} a=2
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Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: Fny2 = Fpi1 + Fp, wheren > 0and Fp =0,F =1
Substituting with F, = c.x” (¢, x # 0), we get cx™2 = x4 cx".

Characteristic Equation x> — x — 1 = 0 has two distinct roots, o = ”Tﬁ and f = 1’2‘/5.
Hence, F, = c1(1+—2‘/§)" + C2(l%ﬂ)", with the constants derived as, c1 = % o= —%.
Solution: (Binet Form) F, = % {a" = ﬂ"} (e =1— 3 is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of S = {x1,x2,...,xp} is = a,
Ifn=0=>8=¢, ap = 1. fn=1=8={x} a=2
Let n>2and AC S = {xi,x2,...,Xn—1, Xn}, an can be contributed from:

@ When x, € A = x,-1 € A, .. A may be counted in a,_> ways.
@ When x, € A, ... A may be counted in a,—1 ways.
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Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: Fny2 = Fpi1 + Fp, wheren > 0and Fp =0,F =1
Substituting with F, = c.x” (¢, x # 0), we get cx™2 = x4 cx".

Characteristic Equation x> — x — 1 = 0 has two distinct roots, o = ”Tﬁ and f = 1’2‘/5.
Hence, F, = c1(1+—2‘/§)" + C2(l%ﬂ)", with the constants derived as, c1 = % o= —%.
Solution: (Binet Form) F, = % {a" = ﬂ"} (e =1— 3 is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of S = {x1,x2,...,xp} is = a,
Ifn=0=>8=¢, ap = 1. fn=1=8={x} a=2
Let n>2and AC S = {xi,x2,...,Xn—1, Xn}, an can be contributed from:

@ When x, € A = x,-1 € A, .. A may be counted in a,_> ways.
@ When x, € A, ... A may be counted in a,—1 ways.

Recurrence Relation: a, = ap—1 + an—2 (n>2) and ap = 1,a; = 2.
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Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: Fny2 = Fpi1 + Fp, wheren > 0and Fp =0,F =1
Substituting with F, = c.x” (¢, x # 0), we get cx™2 = x4 cx".

Characteristic Equation x> — x — 1 = 0 has two distinct roots, o = ”Tﬁ and f = 1’2‘/5.
Hence, F, = c1(1+—2‘/§)" + C2(l%ﬂ)", with the constants derived as, c1 = % o= —%.
Solution: (Binet Form) F, = % {a" = ﬂ"} (e =1— 3 is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of S = {x1,x2,...,xp} is = a,
Ifn=0=>8=¢, ap = 1. fn=1=8={x} a=2
Let n>2and AC S = {xi,x2,...,Xn—1, Xn}, an can be contributed from:

@ When x, € A = x,-1 € A, .. A may be counted in a,_> ways.
@ When x, € A, ... A may be counted in a,—1 ways.
Recurrence Relation: a, = ap—1 + an—2 (n>2) and ap = 1,a; = 2.

Solution: a, = % [(%)"*2 — (1%/5),&2}' n>0 (Note that, a, = Fr2)
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Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive 0s)

Let, b, = number of such binary strings of length n;
b'”) = count of such strings ending with 0 and b\ = count of such strings ending with 1
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Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive 0s)

Let, b, = number of such binary strings of length n;
b'”) = count of such strings ending with 0 and b\ = count of such strings ending with 1
Recurrence Relation: b, = 2.b,(71_)1 + b£(21 = b,(71_)1 + bp—1 = by—2+ bp—1 (n > 3) and

b1 = 27 b2 = 3, implying bo = b2 e b1 = 1.
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Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive 0s)

Let, b, = number of such binary strings of length n;
b'”) = count of such strings ending with 0 and b\ = count of such strings ending with 1
Recurrence Relation: b, = 2.b,(71_)1 + b£(21 = b,(71_)1 + bp—1 = by—2+ bp—1 (n > 3) and

b1 = 27 b2 = 3, implying bo = b2 e b1 = 1.

Solution: b, = % {(#)"*2 — (#)"+2 ,n>0 (Note that, b, = Fny2)
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Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive 0s)

Let, b, = number of such binary strings of length n;
b'”) = count of such strings ending with 0 and b\ = count of such strings ending with 1
Recurrence Relation: b, = 2.b,(71_)1 + bfﬂl = b,(71_)1 + bp—1 = by—2+ bp—1 (n > 3) and
b1 = 27 b2 = 3, implying bo = b2 — b1 = 1.
Solution: b, = % {(#)"*2 = (#)"*2}, n>0 (Note that, b, = Fni2)

Example (2 x n Chessboard Tiling using Dominoes)

Let, t, = number of ways to tile 2 X n (n € Z") chessboard.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 13 /36



Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive 0s)

Let, b, = number of such binary strings of length n;
b'”) = count of such strings ending with 0 and b\ = count of such strings ending with 1
Recurrence Relation: b, = 2.b,(71_)1 + bfﬂl = b,(71_)1 + bp—1 = by—2+ bp—1 (n > 3) and

b1 = 27 b2 = 3, implying bo = b2 — b1 = 1.

Solution: b, = % {(%)"*2 = (#)"*2}, n>0 (Note that, b, = Fni2)

Example (2 x n Chessboard Tiling using Dominoes)

Let, t, = number of ways to tile 2 X n (n € Z") chessboard.
Recurrence Relation: t, = ty—1+ th2 (n>2)and t1 = 1,1, =2

2xn 2x1 1x2 th1 th2
Chessboard Dominoes Types of Tiling Covers
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Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive 0s)

Let, b, = number of such binary strings of length n;
b'”) = count of such strings ending with 0 and b\ = count of such strings ending with 1
Recurrence Relation: b, = 2.b,(71_)1 + bfﬂl = b,(71_)1 + bp—1 = by—2+ bp—1 (n > 3) and

b1 = 27 b2 = 3, implying bo = b2 — b1 = 1.

Solution: b, = % {(%)"*2 = (#)"*2}, n>0 (Note that, b, = Fni2)

Example (2 x n Chessboard Tiling using Dominoes)

Let, t, = number of ways to tile 2 X n (n € Z") chessboard.
Recurrence Relation: t, = ty—1+ th2 (n>2)and t1 = 1,1, =2

2xn 2x1 1x2 th1 th2
Chessboard Dominoes Types of Tiling Covers

Solution: t, = % {( 1+2\/§)n+1 = (#)"H}, n>0 (Note that, t, = Fnt1)
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Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0,1,2,...,9 and 4 binary operation symbols: +, —, %, /
e, = number of legal arithmetic expressions with n symbols.
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Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0,1,2,...,9 and 4 binary operation symbols: +, —, %, /

e, = number of legal arithmetic expressions with n symbols.

Note that, last symbol is always a digit. So, Two ways to construct recurrence for e,:
10e,-1 (last two symbols as digits) and 39e, > (last two symbol as operator and digit)
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Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0,1,2,...,9 and 4 binary operation symbols: +, —, %, /

e, = number of legal arithmetic expressions with n symbols.

Note that, last symbol is always a digit. So, Two ways to construct recurrence for e,:
10e,-1 (last two symbols as digits) and 39e, > (last two symbol as operator and digit)
Recurrence Relation: e, = 10e,—1 + 39e,—2 (n > 0) and e = 10, e, = 100 = ¢ = 0
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Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0,1,2,...,9 and 4 binary operation symbols: +, —, %, /

e, = number of legal arithmetic expressions with n symbols.

Note that, last symbol is always a digit. So, Two ways to construct recurrence for e,:
10e,-1 (last two symbols as digits) and 39e, > (last two symbol as operator and digit)
Recurrence Relation: e, = 10e,—1 + 39e,—2 (n > 0) and e, = 10, e, = 100 = ¢ =0
Characteristics Roots: Ri =5+ 3\/6 and R, =5 — 3\/6

Solution: e, = %6 [(5 +3v6)" — (5 — 3\/6)"], n>0
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Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0,1,2,...,9 and 4 binary operation symbols: +, —, %, /

en = number of legal arithmetic expressions with n symbols.

Note that, last symbol is always a digit. So, Two ways to construct recurrence for e,:
10e,-1 (last two symbols as digits) and 39e, > (last two symbol as operator and digit)
Recurrence Relation: e, = 10e,—1 + 39e,—> (n > 0) and e; = 10,e, = 100 = ey = 0
Characteristics Roots: Ri =5+ 3\/6 and R, =5 — 3\/6

Solution: e, = %E [(5 +3v6)" — (5 — 3\/6)"], n>0

v

Example (Count of Transmission Words with Constraints)

w, = number of n-length words using a, b, ¢ (three) letters that can be transmitted
where no word having two consecutive a's

4
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Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0,1,2,...,9 and 4 binary operation symbols: +, —, %, /

en = number of legal arithmetic expressions with n symbols.

Note that, last symbol is always a digit. So, Two ways to construct recurrence for e,:
10e,-1 (last two symbols as digits) and 39e, > (last two symbol as operator and digit)
Recurrence Relation: e, = 10e,—1 + 39e,—> (n > 0) and e; = 10,e, = 100 = ey = 0
Characteristics Roots: Ri =5+ 3\/6 and R, =5 — 3\/6

Solution: e, = %E [(5 +3v6)" — (5 — 3\/6)"], n>0

v

Example (Count of Transmission Words with Constraints)

w, = number of n-length words using a, b, ¢ (three) letters that can be transmitted
where no word having two consecutive a's
Two ways to construct recurrence for w;:

@ First letter is b or c: Number of words = w,_1 (each)

@ First letter is a, Second letter is b or c: Number of words = w,_> (each)

4
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Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0,1,2,...,9 and 4 binary operation symbols: +, —, %, /

en = number of legal arithmetic expressions with n symbols.

Note that, last symbol is always a digit. So, Two ways to construct recurrence for e,:
10e,-1 (last two symbols as digits) and 39e, > (last two symbol as operator and digit)
Recurrence Relation: e, = 10e,—1 + 39e,—> (n > 0) and e; = 10,e, = 100 = ey = 0
Characteristics Roots: Ri =5+ 3\/6 and R, =5 — 3\/6

Solution: e, = %E [(5 +3v6)" — (5 — 3\/6)"], n>0

v

Example (Count of Transmission Words with Constraints)

w, = number of n-length words using a, b, ¢ (three) letters that can be transmitted
where no word having two consecutive a's
Two ways to construct recurrence for w;:

@ First letter is b or c: Number of words = w,_1 (each)

@ First letter is a, Second letter is b or c: Number of words = w,_> (each)
Recurrence Relation:  w, = 2w,p—1 +2w,—2 (n >2) and wo =1, w; = 3

4
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Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0,1,2,...,9 and 4 binary operation symbols: +, —, %, /

en = number of legal arithmetic expressions with n symbols.

Note that, last symbol is always a digit. So, Two ways to construct recurrence for e,:
10e,-1 (last two symbols as digits) and 39e, > (last two symbol as operator and digit)
Recurrence Relation: e, = 10e,—1 + 39e,—> (n > 0) and e; = 10,e, = 100 = ey = 0
Characteristics Roots: Ri =5+ 3\/6 and R, =5 — 3\/6

Solution: e, = %E [(5 +3v6)" — (5 — 3\/6)"], n>0

v

Example (Count of Transmission Words with Constraints)

w, = number of n-length words using a, b, ¢ (three) letters that can be transmitted
where no word having two consecutive a's
Two ways to construct recurrence for w;:

@ First letter is b or c: Number of words = w,_1 (each)

@ First letter is a, Second letter is b or c: Number of words = w,_> (each)
Recurrence Relation:  w, = 2w,p—1 +2w,—2 (n > 2) and wo =1, w; = 3
Characteristics Roots: Ry =1++v3and R, =1— /3

Solution:  w, = (2;—\/?)(1 +/3)" + (%g)(l —v3)", n>0

4
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Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

pn = number of palindromic summands of n.
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Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

pn = number of palindromic summands of n.
Two ways to construct recurrence for pj:

@ Appending +1 at both sides of all the (n — 2)* palindromic summands.

@ Incrementing both ends of all the (n — 2)* palindromic summands by +1.

For 3: For 5: For 4: For 6:
)5 (1) 4 )6 @) 1+4+1
13 2)2+1+2 2)1+2+1 2)2+2+2 @) 1+14+2+141
214+14+1 [ 17)1+3+1 3)2+2 3)3+3 @3)1+2+2+1
27)1+1+1+1+1 (A1+1+14+1 | 4)2+1+1+2 (@A)14+1+1+1+1+1

4
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Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

pn = number of palindromic summands of n.
Two ways to construct recurrence for pj:

@ Appending +1 at both sides of all the (n — 2)* palindromic summands.

@ Incrementing both ends of all the (n — 2)* palindromic summands by +1.

For 3: For 5: For 4: For 6:
)5 (1) 4 )6 @) 1+4+1
13 2)2+1+2 2)1+2+1 2)2+2+2 @) 1+14+2+141
214+14+1 [ 17)1+3+1 3)2+2 3)3+3 @3)1+2+2+1
27)1+1+1+1+1 (A1+1+14+1 | 4)2+1+1+2 (@A)14+1+1+1+1+1

Recurrence Relation: p, =2p,—2 (n > 3) and p1 =1,p> =2

4
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Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

pn = number of palindromic summands of n.
Two ways to construct recurrence for pj:

@ Appending +1 at both sides of all the (n — 2)* palindromic summands.

@ Incrementing both ends of all the (n — 2)* palindromic summands by +1.

For 3: For 5: For 4: For 6:
)5 (1) 4 )6 @) 1+4+1
13 2)2+1+2 2)1+2+1 2)2+2+2 @) 1+14+2+141
214+14+1 [ 17)1+3+1 3)2+2 3)3+3 @3)1+2+2+1
27)1+1+1+1+1 (A1+1+14+1 | 4)2+1+1+2 (@A)14+1+1+1+1+1

Recurrence Relation: p, =2p,—2 (n > 3) and p1 =1,p> =2
Characteristics Roots: R = \/§ and R» = —\/5
Solution: p, = (% - 2—\1/5)(\/5)” - (% — ﬁ)(f\/i)” n>1

4
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Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

pn = number of palindromic summands of n.
Two ways to construct recurrence for pj:

@ Appending +1 at both sides of all the (n — 2)* palindromic summands.

@ Incrementing both ends of all the (n — 2)* palindromic summands by +1.

For 3: For 5: For 4: For 6:
)5 (1) 4 )6 @) 1+4+1
13 2)2+1+2 2)1+2+1 2)2+2+2 @) 1+14+2+141
214+14+1 [ 17)1+3+1 3)2+2 3)3+3 @3)1+2+2+1
27)1+1+1+1+1 (A1+1+14+1 | 4)2+1+1+2 (@A)14+1+1+1+1+1

Recurrence Relation: p, =2p,—2 (n > 3) and p1 =1,p> =2
Characteristics Roots: R = \/§ and R» = —\/5
Solution: p, = (% - 2—\1/5)(\/5)” - (% — ﬁ)(f\/i)” n>1

Observation: p, =22 (when n is even) and p, = 2'2) (when nis odd) (How?)

4
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Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

pn = number of palindromic summands of n.
Two ways to construct recurrence for pj:

@ Appending +1 at both sides of all the (n — 2)* palindromic summands.

@ Incrementing both ends of all the (n — 2)* palindromic summands by +1.

For 3: For 5: For 4: For 6:
)5 (1) 4 )6 @) 1+4+1
13 2)2+1+2 2)1+2+1 2)2+2+2 @) 1+14+2+141
214+14+1 [ 17)1+3+1 3)2+2 3)3+3 @3)1+2+2+1
27)1+1+1+1+1 (A1+1+14+1 | 4)2+1+1+2 (@A)14+1+1+1+1+1

Recurrence Relation: p, =2p,—2 (n > 3) and p1 =1,p> =2
Characteristics Roots: R = \/§ and R» = —\/5
Solution: p, = (% - 2—\1/5)(\/5)” - (% — ﬁ)(f\/i)” n>1

Observation: p, =22 (when n is even) and p, = 2'2) (when nis odd) (How?)
Reason: For n =2k (k € Z%), pn = (3 + 2%/5)(\/5)2" +(3- 2—\1/5)(—\/5)2’( =7"=7

[NEY

4
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Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

pn = number of palindromic summands of n.
Two ways to construct recurrence for pj:

@ Appending +1 at both sides of all the (n — 2)* palindromic summands.

@ Incrementing both ends of all the (n — 2)* palindromic summands by +1.

For 3: For 5: For 4: For 6:
)5 (1) 4 )6 @) 1+4+1
13 2)2+1+2 2)1+2+1 2)2+2+2 @) 1+14+2+141
214+14+1 [ 17)1+3+1 3)2+2 3)3+3 @3)1+2+2+1
27)1+1+1+1+1 (A1+1+14+1 | 4)2+1+1+2 (@A)14+1+1+1+1+1

Recurrence Relation: p, =2p,—2 (n > 3) and p1 =1,p> =2
Characteristics Roots: R = \/§ and R» = —\/5
Solution: p, = (% - 2—\1/5)(\/5)” - (% — ﬁ)(f\/i)” n>1

Observation: p, =22 (when n is even) and p, = 2'2) (when nis odd) (How?)
Reason: For n =2k (k € Z%), pn = (3 + 2%/5)(\/5)2’( +(3- 2—\1/5)(—\/5)2’( — 2k =
For n=2k — 1 (k € Z%), pn = (3 + 355) (V21 4 (3 — 22) (—v2)2h—t = 2¢-1 = 213

4
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Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows:  (Let ro = a and 1 = b)
n=qn+r0<n<ng=>1), n=q@nL+tr0<n<ng=>1), n=grt+tn(0<n<rnsqg>1)

n—2=dn—1m—-1+rm (0<rm <r_1,qp—1 > 1), rh—1=0qnm (gn = 2asrm < rp_1)
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(g0 2 2) A (ra = F2)
(gh—1 2 ) A(ra—1 = F3) A (ra 2 F2)

(g3 2 1) A(r3 = Fp—1) A (s = Fp—2)
(92 > 1) A(r2 > Fp) A(r3 2 Fp—1)

n=qr+n30<mn<nqg=>1),

Estimation of remainders are done as follows:

=
=
=

4

Example (Number of Divisions in Euclidean GCD Computatio

Computation of GCD(a, b) is done as follows:  (Let ro = a and 1 = b)
n=qn+n0<mn<n,q >1),

n—2=dn—1m—-1+rm (0<rm <r_1,qp—1 > 1), rh—1=0qnm (gn = 2asrm < rp_1)

(F, = n*" Fibonacci Number)
m>1=F
fn—1=qntn =221 =2=F3

rn—2=dn—1fn—1+m 2 1rp_1+m=FR+FR=F

n=qgrt+n>lnt+n=F_1+F_5=F

b=n=aqrn+mn>ln+n=F+F_1=F4
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Example (Number of Divisions in Euclidean GCD Computatio

Computation of GCD(a, b) is done as follows:  (Let ro = a and 1 = b)

n=qn+r0<n<n,q=>1),

n=qr+n30<mn<nqg=>1),

n—2=dn—1m—-1+rm (0<rm <r_1,qp—1 > 1), rh—1=0qnm (gn = 2asrm < rp_1)

Estimation of remainders are done as follows:  (F, = n'" Fibonacci Number)

(rn >0) =

(gn = 2)A(m = F) =
(gh—1 2 DA (-1 2 FB)A(m 2 FR) =

(a3 21 A(3 2 Fp_1)A(a 2 Fp2) =
(2> 1) A(2=>F)A(s > Fy1) =

Important Property of Fibonacci Numbers: F, > "2 (for n > 3), where oo =

m>1=F
fn—1=qnm 22.1=2=F;3
rn—2=dn—1fn—1+m 2 1rp_1+m=FR+FR=F

n=qnr+mn>1ln+n=F_1+F,_2=F,

b=n=aqrn+mn>ln+n=F+F_1=F4

1+v5
2

n=qr3+trn0<rn<rnsg>1)
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Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows:  (Let ro = a and 1 = b)
n=qn+r0<n<ng=>1), n=q@nL+tr0<n<ng=>1), n=grt+tn(0<n<rnsqg>1)
n—2=dn—1m—-1+rm (0<rm <r_1,qp—1 > 1), rh—1=0qnm (gn = 2asrm < rp_1)
Estimation of remainders are done as follows:  (F, = n'" Fibonacci Number)
(m>0 = m>1=F
(gn 22)A(rm2F) = rh-1=qumm=221=2=F
(-1 2 DA(m—1 2 FB)A(m2F) = rnmo=da-1mat+tm2lnat+tnm=FR+R=F~K

(3=21)A(32F_1)A(a =2 Fr2) = n=aq@rt+n>2lnt+tn=F_1+F _,=F
(22 1)A(p=F)A(3 2 Fy—1) = b=n=q@n+n>lnt+n=Ff+F_1="F4;

Important Property of Fibonacci Numbers: F, > "2 (for n > 3), where oo = HT‘/S

Let, GCD(a, b) uses n Divisions (a > b >2). So, b > Fypy > a1 = (251,
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Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows:  (Let ro = a and 1 = b)
n=qn+r0<n<ng=>1), n=q@nL+tr0<n<ng=>1), n=grt+tn(0<n<rnsqg>1)
n—2=dn—1m—-1+rm (0<rm <r_1,qp—1 > 1), rh—1=0qnm (gn = 2asrm < rp_1)
Estimation of remainders are done as follows:  (F, = n'" Fibonacci Number)
(m>0 = m>1=F
(gn 22)A(rm2F) = rh-1=qumm=221=2=F
(-1 2 DA(m—1 2 FB)A(m2F) = rnmo=da-1mat+tm2lnat+tnm=FR+R=F~K

(321 A (32 Foo1)A(a > Fp2) = rn=@gntn>lntn=F_1+F_>=F
(22 A(22F)A(32Fo1) = b=n=@nt+tn2lnt+tn=FR+F_1=F4a
Important Property of Fibonacci Numbers: F, > a2 (for n > 3), where o = HT\/S
Let, GCD(a, b) uses n Divisions (a > b >2). So, b > Fpi1 > " ! = (HTVg)"*l.

s b>a" = logyb > (n—1)logyy o > 222 (as logyy o = logy, (1525) & 0.209 > 1).
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Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows:  (Let ro = a and 1 = b)
n=qn+r0<n<ng=>1), n=q@nL+tr0<n<ng=>1), n=grt+tn(0<n<rnsqg>1)
n—2=dn—1m—-1+rm (0<rm <r_1,qp—1 > 1), rh—1=0qnm (gn = 2asrm < rp_1)
Estimation of remainders are done as follows:  (F, = n'" Fibonacci Number)
(m>0 = m>1=F
(gn 22)A(rm2F) = rh-1=qumm=221=2=F
(-1 2 DA(m—1 2 FB)A(m2F) = rnmo=da-1mat+tm2lnat+tnm=FR+R=F~K

(3=21)A(32F_1)A(a =2 Fr2) = n=aq@rt+n>2lnt+tn=F_1+F _,=F
(22 1)A(p=F)A(3 2 Fy—1) = b=n=q@n+n>lnt+n=Ff+F_1="F4;

Important Property of Fibonacci Numbers: F, > "2 (for n > 3), where oo = HT‘/S

Let, GCD(a, b) uses n Divisions (a > b >2). So, b > Fypy > a1 = (251,
s b>a" = logyb > (n—1)logyy o > 222 (as logyy o = logy, (1525) & 0.209 > 1).
If b is k-digit decimal number, 10" < b < 10" = k > log;y b > 21 = n < 5k + 1.
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Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows:  (Let ro = a and 1 = b)
n=qan+n(0<n<nqg=>1), n=@nr+n(0<n<nge=>1), n=qgr+tn(0<rn<<rnqg>1)
rh—2=qn—1rm—1+m (0 <r <r_1,qp—1 =2 1), rp—1=2anrm (qn = 2asrp < rp_1)
Estimation of remainders are done as follows:  (F, = n'" Fibonacci Number)
(>0 = m>1=F
(gn = 2) A (m = F2) = fn—1=qntn =221 =2=F3
(-1 2 DA(m—1 2 FB)A(m2F) = rnmo=da-1mat+tm2lnat+tnm=FR+R=F~K

(3> 1) A(32>2Fp_1)A(a >2Fp2) = n=agrt+n>lntn=F_1+F 2=F
(22 1)A(p=F)A(3 2 Fy—1) = b=n=q@n+n>lnt+n=Ff+F_1="F4;

Important Property of Fibonacci Numbers: F, > "2 (for n > 3), where oo = HT‘/S

Let, GCD(a, b) uses n Divisions (a > b >2). So, b > Fypy > a1 = (251,
s b>a" = logyb > (n—1)logyy o > 222 (as logyy o = logy, (1525) & 0.209 > 1).
If b is k-digit decimal number, 10" < b < 10" = k > log;y b > 21 = n < 5k + 1.

Lamé’s Theorem: Number of divisions performed in Euclidean GCD computation GCD(a, b)
(a>b>2,a,beZ+) is at most 5 times the number of decimal digits in b.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 /36



Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows:  (Let ro = a and 1 = b)
n=qan+n(0<n<nqg=>1), n=@nr+n(0<n<nge=>1), n=qgr+tn(0<rn<<rnqg>1)
rh—2=qn—1rm—1+m (0 <r <r_1,qp—1 =2 1), rp—1=2anrm (qn = 2asrp < rp_1)
Estimation of remainders are done as follows:  (F, = n'" Fibonacci Number)
(>0 = m>1=F
(gn = 2) A (m = F2) = fn—1=qntn =221 =2=F3
(-1 2 DA(m—1 2 FB)A(m2F) = rnmo=da-1mat+tm2lnat+tnm=FR+R=F~K

(3> 1) A(32>2Fp_1)A(a >2Fp2) = n=agrt+n>lntn=F_1+F 2=F
(22 1)A(p=F)A(3 2 Fy—1) = b=n=q@n+n>lnt+n=Ff+F_1="F4;

Important Property of Fibonacci Numbers: F, > "2 (for n > 3), where oo = HT‘/S

Let, GCD(a, b) uses n Divisions (a > b >2). So, b > Fypy > a1 = (251,
s b>a" = logyb > (n—1)logyy o > 222 (as logyy o = logy, (1525) & 0.209 > 1).
If b is k-digit decimal number, 10" < b < 10" = k > log;y b > 21 = n < 5k + 1.

Lamé’s Theorem: Number of divisions performed in Euclidean GCD computation GCD(a, b)
(a>b>2,a,beZ+) is at most 5 times the number of decimal digits in b.
Corollary: Number of divisions, n < 1+ 5log;q b < 9logigb = n = O(logyq b)
(as, b > 2 = 4logyy b > logyp2* > 1)
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020



Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.

Characteristic Equation: Seeking a solution, t, = c.x" (¢, x # 0), after substitution,
GCocX"+ CcxX" P+ Gex"2=0 = GX+CGx+GC=0
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.

Characteristic Equation: Seeking a solution, t, = c.x" (¢, x # 0), after substitution,
GCocX"+ CcxX" P+ Gex"2=0 = GX+CGx+GC=0

Equation Roots: Complex Conjugate Pair as Roots, Ry = x + iy, R, = x — iy

OR, Ry = r.(cos8 + isin@), Ry = r.(cos 6 — isin0)
where, r:\/x2+y2,9:tan’1(£) (i = v/—1)
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.tp + Ci.ta—1 + Go.th2 =0 (n > 2) and to = Dy, t1 = Dx;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.

Characteristic Equation: Seeking a solution, t, = c.x" (¢, x # 0), after substitution,
GCocX"+ CcxX" P+ Gex"2=0 = GX+CGx+GC=0
Equation Roots: Complex Conjugate Pair as Roots, Ry = x + iy, R, = x — iy
OR, Ry = r.(cos8 + isin@), Ry = r.(cos 6 — isin0)
where, r = /x4 y2,60 = tan=1(¥) (i=+v-1)
Exact Solution: t, = A1.R + A2.Ry = Ar.(x + iy)" + Az.(x — iy)"
= (/%2 + y2)"[A1.(cos(nB) + isin(nB)) + Az.(cos(nf) — isin(nh))]
= (/X2 + y2)"[By. cos(nf) + Bs.sin(nb)], where
B1 = (A2 + Az), Bo = i(A1 — A2) (Here, A1, As, B1, By are arbitrary constants)
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.
Characteristic Equation: Seeking a solution, t, = c.x" (¢, x # 0), after substitution,
GCocX"+ CcxX" P+ Gex"2=0 = GX+CGx+GC=0
Equation Roots: Complex Conjugate Pair as Roots, Ry = x + iy, R, = x — iy
OR, Ry = r.(cos8 + isin@), Ry = r.(cos 6 — isin0)
where, r = /x4 y2,60 = tan=1(¥) (i=+v-1)
Exact Solution: t, = A1.R + A2.Ry = Ar.(x + iy)" + Az.(x — iy)"
= (/%2 + y2)"[A1.(cos(nB) + isin(nB)) + Az.(cos(nf) — isin(nh))]
= (/X2 + y2)"[By. cos(nf) + Bs.sin(nb)], where
B1 = (A2 + Az), Bo = i(A1 — A2) (Here, A1, As, B1, By are arbitrary constants)
Constant Determination: tg = Dy = B; and B, = @

because, t; = Dy = (\/x2 + y2).(B1.cos6 + By sin6) = (By.x + By.y).
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.tp + Ci.ta—1 + Go.th2 =0 (n > 2) and to = Dy, t1 = Dx;
Co(# 0), Ci, Go(# 0) and Dy, Dy all are constants.
Characteristic Equation: Seeking a solution, t, = c.x" (¢, x # 0), after substitution,
GCocX"+ CcxX" P+ Gex"2=0 = GX+CGx+GC=0
Equation Roots: Complex Conjugate Pair as Roots, Ry = x + iy, R, = x — iy
OR, Ry = r.(cos8 + isin@), Ry = r.(cos 6 — isin0)
where, r = /x4 y2,60 = tan=1(¥) (i=+/-1)
Exact Solution: t, = A1.R + A2.Ry = Ar.(x + iy)" + Az.(x — iy)"
= (/%2 + y2)"[A1.(cos(nB) + isin(nB)) + Az.(cos(nf) — isin(nh))]

= (/X2 + y2)"[By. cos(nf) + Bs.sin(nb)], where
B1 = (A2 + Az), Bo = i(A1 — A2) (Here, A1, As, B1, By are arbitrary constants)

Constant Determination: tg = Dy = B; and B, = @
because, t; = Dy = (\/x2 + y2).(B1.cos6 + By sin6) = (By.x + By.y).

Unique Solution: th = (/X2 + y2)" {Do,cos(nﬁ) + (@),sin(ne)]
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

b b 0 0 O 0O 0 0O O O
b b b 0 O 0O 0 0O O O
0O b b b 0 0O 0 0O O O
0O 0 b b b --- 0 0 0O O O
ForbeR", D,=| . . . . . . . . . . | forn>1.
o 0 0o 0 0 --- b b b 0 O
0O 0 O O O 0O b b b 0
0O 0 O O O 0O 0 b b b
0O 0 O O O 0O 0 0 b b
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

ocooT T
oOT T T
o o T O

For b € R", D, =

o O O o
o O O o
o O oo

0

o T OO
o O OO
o oo

o O O o
o O O o
oo oT -

0

o O o

oo T T -

o O O o

O T T T -

o O O o
o O O o

o T T O
o T © O

, forn>1.

and
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

b b 0 0 O
b b b 0 0
0 b b b O
0 0 b b b
For b € R", D, = .
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O

b b
D1:|b\:b,D2:‘ i ‘:0,03:

Recurrence Relation:

o o

0

0

o oo

oo oT -

o o o

0

o O o

oo T T -

0
b
b
n

o O O o

O T T T -

o O O o
o O O o

o T T O
o T © O

=_p

D, = b.Dy—1 — b.b.D, > (n > 3)

, forn>1.

and
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

b b 0 0 O 0O 0 0 0O O
b b b 0 0 0O 0 0 O O
0 b b b 0 0O 0 0 0O o
0 0 b b b --- 0 0 0O O O
ForbeR", D,=| . . . . . . . . . . | forn>1.
o 0o 0o o 0 --- b b b 0 O
0O 0 0 0O O 0O b b b O
0O 0 0 0 O 0 0 b b b
0O 0 0 0 O 0 0 0O b b
b b b b 0
D1:|b\:b,D2:‘b b‘:o,m: b b b |=—band
0 b b
Recurrence Relation: D, = b.Dp—1 — b.b.Dp—2 (n > 3)
Complex Conjugate Pair Roots: Ry = b[3 + ?]7/?2 =b[3 - l?]
Solution: D, = b".[A1.(3 + )" + Ax(3 — i.52)"] = b"[Bicos(Z) + B sm(%)]
Constants: b= D1 = b.[Bi. ( )+ B ()], 0=Ds= b [Bi(~-2) + Bo.(32)]
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

oo T T

For b € R", D, =

o O oo -

b b
D1:|b\:b,D2:‘ i

Recurrence Relation:

Complex Conjugate Pair Roots:
D, = b".[A1(5 + 1-
b= Dy = b. [Bl( )+BQ(V§)}

Solution:

Constants:

oOT T T

o O oo -

D, = b.D,—

Therefore, = B, =1, B, =

o o T O

o O oo

1

Vel

o o OO

o O oo

0

o O OO
o oo

o O oo -

b
0
0
0

b b
=0,Ds=| b b
0 b

1 — b.
Rl_b;
V2)" 4 A

2

b.Dy >
[

0

o O o

oo T T -

(n=>

(V3
> .
ﬁ)"} =b" [Bl cos
0

o O O o
o O O o
o O O o

, forn>1.

O T T T -
o T T O
o T © O

0
b | = —b®and
b
n>

]7R2
2

Dy = b2.[B1.(—1) + Bo. (%

7’7) + B> sm(%)]

)]

implying D, = b"[ cos(%5") + (5) sin(5)], n > 1
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
CGo(# 0), Ci(# 0), Go(£ 0) and Do, D; all are constants.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 19 /36



Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
CGo(# 0), Ci(# 0), Go(£ 0) and Do, D; all are constants.

Characteristic Equation: Seeking a solution, t, = c.x" (¢, x # 0), after substitution,
GCocx"+ CcxX" P+ Gex" =0 = CGX+Cx+GC=0
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
CGo(# 0), Ci(# 0), Go(£ 0) and Do, D; all are constants.

Characteristic Equation: Seeking a solution, t, = c.x" (¢, x # 0), after substitution,
GCocx"+ CcxX" P+ Gex" =0 = CGX+Cx+GC=0

Equation Roots: 2 Equal Roots, R = Ry = R, = —2%10 (here, C2 = 4G G)
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
CGo(# 0), Ci(# 0), Go(£ 0) and Do, D; all are constants.
Characteristic Equation: Seeking a solution, t, = c.x" (¢, x # 0), after substitution,
GCocx"+ CcxX" P+ Gex" =0 = CGX+Cx+GC=0

Equation Roots: 2 Equal Roots, R = R, = R, = —2%10 (here, C? = 4G G)

Exact Solution: Forming two linearly independent solutions using,

th = AL.R" = A1.(—3%)" and t, = A>.g(n).R" = Az.g(n).(—5%)"
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Solving Second-Order Recurrence Relations
Second-Order Linear Homogeneous Recurrence with Constant Coefficients
General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;

Co(# 0), Ci(# 0), Go(# 0) and Do, Dy all are constants
Characteristic Equation: Seeking a solution, t, = c¢.x" (¢, x # 0), after substitution
= GxX+Gx+G=0

Co.cx" + Crex" '+ Gex"? =0
(here, C2 = 4G G)

— __G
=R = 2Co

2 Equal Roots, R = R;
Forming two linearly independent solutions using,

ty = A1.R" = A1 (—3&)" and t, = A2 g(n).R" = As.g(n).(—5&)"
)"+ C1 g(n—1).(—32)""1 + Gg(n —2).(—5%)""2 =0

= Go.g(n).(—
:>g( )—2g(n—1)—|—g(n—2)—0 (as, C2—4C0C2 and Coycl CQ#O)

Equation Roots:

Exact Solution:
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
CGo(# 0), Ci(# 0), Go(£ 0) and Do, D; all are constants.

Characteristic Equation: Seeking a solution, t, = c¢.x" (¢, x # 0), after substitution
GCocx"+ CcxX" P+ Gex" =0 = CGX+Cx+GC=0

2 Equal Roots, R =R = R, = —2%10 (here, C2 = 4G G)

Forming two linearly independent solutions using,
th = AL.R" = A1.(—3%)" and t, = A>.g(n).R" = Az2.g(n).(— 2%0)"

= C0~g(")-(—m)" + Cl.g(n —1).(— 2610 )" 14 G.g(n— 2).(— 26 )" 2=
= g( ) — 2g(n — 1) —|—g(n — 2) =0 (as, Clz = 4COC2 and CO, Cl. CQ # O)

is satisfied by, g(n) = an+ b (constants a( 0), b, with simplest g(n) = n)
G )n

o iy = (Al + A, I‘I) ( 26

Equation Roots:

Exact Solution:
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
CGo(# 0), Ci(# 0), Go(£ 0) and Do, D; all are constants.

Characteristic Equation: Seeking a solution, t, = c¢.x" (¢, x # 0), after substitution
GCocx"+ CcxX" P+ Gex" =0 = CGX+Cx+GC=0

2 Equal Roots, R =R = R, = —2%10 (here, C2 = 4G G)

Forming two linearly independent solutions using,
th = AL.R" = A1.(—3%)" and t, = A>.g(n).R" = Az2.g(n).(— 2%0)"

= C0~g(")-(—m)" + Cl.g(n —1).(— 2610 )" 14 G.g(n— 2).(— 26 )" 2=
= g( ) — 2g(n — 1) —|—g(n — 2) =0 (as, Clz = 4COC2 and CO, Cl. CQ # O)

is satisfied by, g(n) = an+ b (constants a( 0), b, with simplest g(n) = n)
G )n

o iy = (Al + A, I‘I) ( 26

Equation Roots:

Exact Solution:

Constant Determination: to = Dy = A1 and
2Cy Dy +C; D
t1:D1=(A1+A2).(—2%)):>A2:*70 15; —
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
CGo(# 0), Ci(# 0), Go(£ 0) and Do, D; all are constants.

Characteristic Equation: Seeking a solution, t, = c¢.x" (¢, x # 0), after substitution
GCocx"+ CcxX" P+ Gex" =0 = CGX+Cx+GC=0

2 Equal Roots, R =R = R, = —2%10 (here, C2 = 4G G)

Forming two linearly independent solutions using,
th = AL.R" = A1.(—3%)" and t, = A>.g(n).R" = Az2.g(n).(— 2%0)"

= C0~g(")-(—m)" + Cl.g(n —1).(— 2610 )" 14 G.g(n— 2).(— 26 )" 2=
= g( ) — 2g(n — 1) —|—g(n — 2) =0 (as, Clz = 4COC2 and CO, Cl. CQ # O)

is satisfied by, g(n) = an+ b (constants a( 0), b, with simplest g(n) = n)
G )n

o iy = (Al + A, I‘I) ( 26

Equation Roots:

Exact Solution:

Constant Determination: to = Dy = A1 and
_ _ G _ 2GDi+G D
t1 = D1 = (A +A2).(—ﬁ) = Ay = -
- . 2Gy Dy G, D G
Unique Solution: tn = [Do — (%)n](—ﬁ)"
v
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Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: GCo.t, + Ci.th—1 + Go.th—2 =0 (n > 2) and to = Do, t1 = Ds;
CGo(# 0), Ci(# 0), Go(£ 0) and Do, D; all are constants.

Characteristic Equation: Seeking a solution, t, = c¢.x" (¢, x # 0), after substitution
GCocx"+ CcxX" P+ Gex" =0 = CGX+Cx+GC=0

2 Equal Roots, R =R = R, = —2%10 (here, C2 = 4G G)

Forming two linearly independent solutions using,
th = AL.R" = A1.(—3%)" and t, = A>.g(n).R" = Az2.g(n).(— fclo)"

= C0~g(")-(—m)" + Cl.g(n —1).(— 2610 )" 14 G.g(n— 2).(— 26 )" 2=
= g( ) — 2g(n — 1) —|—g(n — 2) =0 (as, Clz = 4COC2 and CO, Cl. CQ # O)

is satisfied by, g(n) = an+ b (constants a( 0), b, with simplest g(n) = n)
G )n

o iy = (Al + A, I‘I) ( 26

Equation Roots:

Exact Solution:

Constant Determination: to = Dy = A1 and
t1= Dy = (A1 + Ay).(—52) = A, = — 200G
Unique Solution: tn = [Do — (%).n}(—%)"
v
Generic Solution: t, = (A1 + As.n+ Ay.n® + - + A 1.0""1).R", for all k equal rootsJ
Autumn 2020 19 /36
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

2 1 0 0 O 0O 0 0 0 o
1 2 1 0 O 0O 0 0 0 O
0o 1 2 1 0 0O 0 0 0 o
o o1 21 --- 0 O O O O
Dp=1|. . . . . - . . . . .| forn>1.
0O 0 0 0O O -1 2 1 0 O
0O 0 0 0 O 0O 1 2 1 0
0O 0 0 0 O o 0 1 2 1
0O 0 0 0 O 0O 0 0 1 2
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

2 1 0 0 O 0O 0 0 0 o
1 2 1 0 O 0O 0 0 0 O
0o 1 2 1 0 0O 0 0 0 o
o o1 21 --- 0 O O O O
Dp=1|. . . . . - . . . . .| forn>1.
o o o o0 -1 2 1 0O
0O 0 0 0 O 0O 1 2 1 0
0O 0 0 0 O o 0 1 2 1
0O 0 0 0 O 0O 0 0 1 2
5 1 2 1 0
D1:|2\:27D2:|1 2|:3,D3: 1 2 1 |=4and
0 1 2
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

2 1 0 0 O 0 0 0 0 O
1 2 1 0 O 0 0 0 0 O
0 1 2 1 0 0 0 0 0 O
00121 --- 0 0 O0 O O
Dp=1|. . . . . - . . . . .| forn>1.
o o0 o o o0 --- 1 2 1 0 O
0 0 0 0 O 01 2 1 0
0 0 0 0 O 0 0 1 2 1
0 0 0 0 O 0 0 0 1 2
5 1 2 1 0
DI:|2\:27DQ:| L5 |:3,03: 1 2 1 |=4and
0 1 2
Recurrence Relation: D, = 2D,—1 — Dy—> (n > 3)
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

2 1 0 0 O 0O 0 0 0 o
1 2 1 0 O 0O 0 0 0 O
0o 1 2 1 0 0O 0 0 0 o
o o1 21 --- 0 O O O O
Dp=1|. . . . . - . . . . .| forn>1.
0O 0 0 0O O -1 2 1 0 O
0O 0 0 0 O 0O 1 2 1 0
0O 0 0 0 O o 0 1 2 1
0O 0 0 0 O 0O 0 0 1 2
5 1 2 1 0
D1:|2\:27D2:|1 2|:3,D3: 1 2 1 |=4and
0 1 2
Recurrence Relation: D, = 2D,—1 — Dy—> (n > 3)
Equal Real Roots: R =1
Solution: D, = (A1 + A2.n).1" = (A1 + Az.n)
Constants: 2=D1=A1+A; 3=D,=A; +2A; = A=A =1
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Solving Second-Order Recurrence Relations

Example (Finding Value of n x n Determinant)

2 1 0 0 O 0O 0 0 0 o
1 2 1 0 O 0O 0 0 0 O
0o 1 2 1 0 0O 0 0 0 o
o o1 21 --- 0 O O O O
Dp=1|. . . . . - . . . . .| forn>1.
0O 0 0 0O O -1 2 1 0 O
0O 0 0 0 O 0O 1 2 1 0
0O 0 0 0 O o 0 1 2 1
0O 0 0 0 O 0O 0 0 1 2
5 1 2 1 0
D1:|2\:27D2:|1 2|:3,D3: 1 2 1 |=4and
0 1 2
Recurrence Relation: D, = 2D,—1 — Dy—> (n > 3)
Equal Real Roots: R =1
Solution: D, = (A1 + A2.n).1" = (A1 + Az.n)
Constants: 2=D1=A1+A; 3=D,=A; +2A; = A=A =1
Therefore, D,=1+n, n>1
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k
where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,
and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)

Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k

where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,

and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)
Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant
Characteristic Equation: Seeking a solution as, t, = ¢.x" (¢, x # 0)

After substitution, Co.c.x” + Cr.cx" 14 + Ccx" % =0

Since ¢,x #0, 50 Qo.x*+ Q. x* 14 - + C1x+C=0
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k

where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,

and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)
Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant
Characteristic Equation: Seeking a solution as, t, = ¢.x" (¢, x # 0)

After substitution, Co.c.x” + Cr.cx" 14 + Ccx" % =0

Since ¢,x #0, 50 Qo.x*+ Q. x* 14 - + C1x+C=0
Characteristic Roots: k roots as, Ri, Rz, ..., R, such that

Co.Rf + CL.RF '+ -+ C_1.Ri + Cc = 0, where 1 < i < k
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k

where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,

and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)
Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant
Characteristic Equation: Seeking a solution as, t, = ¢.x" (¢, x # 0)

After substitution, Co.c.x” + Cr.cx" 14 + Ccx" % =0

Since ¢,x #0, 50 Qo.x*+ Q. x* 14 - + C1x+C=0
Characteristic Roots: k roots as, Ri, Rz, ..., R, such that

Co.Rf + CL.RF '+ -+ C_1.Ri + Cc = 0, where 1 < i < k
Classification of Roots: (u+2v+w = k and 1 < «;, 8, B, v < k)
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k
where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,
and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)

Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant

Characteristic Equation: Seeking a solution as, t, = ¢.x" (¢, x # 0)

After substitution, Co.c.x” + Cr.cx" 14 + Ccx" % =0
Since ¢,x #0, 50 Qo.x*+ Q. x* 14 - + C1x+C=0

Characteristic Roots: k roots as, Ri, Rz, ..., R, such that
Co.Rf + CL.RF '+ -+ C_1.Ri + Cc = 0, where 1 < i < k

Classification of Roots: (u+2v+w = k and 1 < «;, 8, B, v < k)

0 Real Distinct Roots: u such roots, Ra;, Ray,-- ., Ra,
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k

where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,

and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)
Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant
Characteristic Equation: Seeking a solution as, t, = ¢.x" (¢, x # 0)

After substitution, Co.c.x” + Cr.cx" 14 + Ccx" % =0

Since ¢,x #0, 50 Qo.x*+ Q. x* 14 - + C1x+C=0
Characteristic Roots: k roots as, Ri, Rz, ..., R, such that

Co.Rf + CL.RF '+ -+ C_1.Ri + Cc = 0, where 1 < i < k
Classification of Roots: (u+2v+w = k and 1 < «;, 8, B, v < k)

0 Real Distinct Roots: u such roots, Ra;, Ray,-- ., Ra,
@ Complex Conjugate Pair Roots: v such root pairs,

(Rg, s RBI,) = x; £ iy; = rj(cos 0; % isin §)), where r; = \,’X/Z +y?, 0 = tan l(':—;)
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k

where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,

and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)
Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant
Characteristic Equation: Seeking a solution as, t, = ¢.x" (¢, x # 0)

After substitution, Co.c.x” + Cr.cx" 14 + Ccx" % =0

Since ¢,x #0, 50 Qo.x*+ Q. x* 14 - + C1x+C=0
Characteristic Roots: k roots as, Ri, Rz, ..., R, such that

Co.Rf + CL.RF '+ -+ C_1.Ri + Cc = 0, where 1 < i < k
Classification of Roots: (u+2v+w = k and 1 < «;, 8, B, v < k)

0 Real Distinct Roots: u such roots, Ra;, Ray,-- ., Ra,
@ Complex Conjugate Pair Roots: v such root pairs,

<R5/‘ RBI,> = x; £ iy; = r/(cos 0; % isin 6)), where r; = \,/x/Z + y,z‘ 0, = tan l(i_;)
© Real Equal Roots: w such roots, Ry=Ry =Ry, =---=R,,
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k

where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,

and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)
Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant
Characteristic Equation: Seeking a solution as, t, = ¢.x" (¢, x # 0)

After substitution, Co.c.x” + Cr.cx" 14 + Ccx" % =0

Since ¢,x #0, 50 Qo.x*+ Q. x* 14 - + C1x+C=0
Characteristic Roots: k roots as, Ri, Rz, ..., R, such that

Co.Rf + CL.RF '+ -+ C_1.Ri + Cc = 0, where 1 < i < k
Classification of Roots: (u+2v+w = k and 1 < «;, 8, B, v < k)

0 Real Distinct Roots: u such roots, Ra;, Ray,-- ., Ra,
@ Complex Conjugate Pair Roots: v such root pairs,

<R5/‘ RBI,> = x; £ iy) = rj(cos 0, £ isin 0;), where r; = \//X/Z + y,z‘ 0, = tan l(i_;)
© Real Equal Roots: w such roots, Ry=Ry =Ry, =---=R,,

Generic Solution: t, = > Au, Rl + 3 (AR, + Agy.RG,) + RS- A, .n't
=1 =1 I=1
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k
where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,
and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)

Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant

Characteristic Equation: Seeking a solution as, t, = ¢.x" (¢, x # 0)

After substitution, Co.c.x” + Cr.cx" 14 + Ccx" % =0
Since ¢,x #0, 50 Qo.x*+ Q. x* 14 - + C1x+C=0

Characteristic Roots: k roots as, Ri, Rz, ..., R, such that
Co.Rf + CL.RF '+ -+ C_1.Ri + Cc = 0, where 1 < i < k

Classification of Roots: (u+2v+w = k and 1 < «;, 8, B, v < k)

0 Real Distinct Roots: u such roots, Ra;, Ray,-- ., Ra,
@ Complex Conjugate Pair Roots: v such root pairs,

(Rs,, d’> (Rs,, Rq/> ..... . (Rs, . Rg;) having the form,

<R5/‘ B,’> = x; £ iy; = r/(cos 0 £ isin 0)), where r; = \/W‘ 0, = tan l(;—;)
© Real Equal Roots: w such roots, Ry = Ry, = Ry, = -+ = R,

Generic Solution: t, = > A..Rl + z (As-RE, +Agr.RG) + RY. - A, .n't
I=1 I=1

=3 A. Rl + Z rf'.(Bg,- cos nfy + Bg.sin ) + RY. 3° A, .n't
1=1 =1
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Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + C.tp—k = f(n) =0, for n > k

where the order k € Z*, Co(#£0), Gi, G, . .., Ck(5£ 0) are real constants,

and t, (n > 0) be a discrete function. (f(n) # 0 for non-homogeneous)
Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant
Characteristic Equation: Seeking a solution as, t, = ¢.x" (¢, x # 0)

After substitution, Co.c.x” + Cr.cx" 14 + Ccx" % =0

Since ¢,x #0, 50 Qo.x*+ Q. x* 14 - + C1x+C=0
Characteristic Roots: k roots as, Ri, Rz, ..., R, such that

Co.Rf + CL.RF '+ -+ C_1.Ri + Cc = 0, where 1 < i < k
Classification of Roots: (u+2v+w = k and 1 < «;, 8, B, v < k)

0 Real Distinct Roots: u such roots, Ra;, Ray,-- ., Ra,
@ Complex Conjugate Pair Roots: v such root pairs,

<R5/‘ RBI,> = x; £ iy) = rj(cos 0, £ isin 0;), where r; = \//X/Z + y,z‘ 0, = tan l(i_;)
© Real Equal Roots: w such roots, Ry=Ry =Ry, =---=R,,

Generic Solution: t, = > Au, Rl + 3 (AR, + Agy.RG,) + RS- A, .n't
=1 =1 I=1
=3 Aa.RI + ,Z rf'.(Bg,. cos nf; + Bgy.sin nfy) + RY. /ZIAW,,n’*1
1=1 =1 =

(AQI,A,Q/,A‘S,/,AAI,I, B/’I’ Bﬂ,’ are constants and B/’I = Aﬁ/ + AB/” B/’I = I’(Aﬁ/ — A‘Sll)7 i=+-1
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Solving Third-Order Recurrence Relations

Example (Tiling Problem)

Let, t, = number of ways to tile 2 x n (n € Z") chessboard
Tile Types: one L-shaped and one 1 x 1
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Solving Third-Order Recurrence Relations

Example (Tiling Problem)

Let, t, = number of ways to tile 2 x n (n € Z") chessboard
Tile Types: one L-shaped and one 1 x 1

2xn th-1 th-3

th-3

I m -

\_\

Chessboard Tiles Types of Tiling Covers Types of Tiling Covers (Case-2)

(Case-1)
th-2 th-2 th-2

th-2

- |

Types of Tiling Covers (Case-3)

4
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Solving Third-Order Recurrence Relations

Example (Tiling Problem)

Let, t, = number of ways to tile 2 x n (n € Z") chessboard
Tile Types: one L-shaped and one 1 x 1

2xn th-1 th-3 th-3
Chessboard Tiles Types of Tiling Covers Types of Tiling Covers (Case-2)
(Case-1)
th-2 th-2 th-2 th-2

Types of Tiling Covers (Case-3)

Recurrence Relation: t, = ty—1 + 4th—2 + 2th—3 (n > 4) and t1 = 1,1, =5, t3 = 11

4
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Solving Third-Order Recurrence Relations

Example (Tiling Problem)

Let, t, = number of ways to tile 2 x n (n € Z") chessboard
Tile Types: one L-shaped and one 1 x 1

2xn th-1 th-3 th-3
Chessboard Tiles Types of Tiling Covers Types of Tiling Covers (Case-2)
(Case-1)
th-2 th-2 th-2 th-2

Types of Tiling Covers (Case-3)

Recurrence Relation: t, = ty—1 + 4th—2 + 2t,—3 (n > 4) and t1 = 1,1, =5, t3 = 11
Characteristics Roots: Ry = —1, R = 1 ++/3, R3 =1-+/3
Solution: t, = 1.(—1)" + (Z5).(1 + V3)" + (— ) (1—+/3)"

=(-1)"+ (%) [A+v3)"-1-v3)"]. nx1

EI %I“
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Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + C.t,-1 = K.B" (n>1) and to = D
(Here, B(# 0), C(# 0), D, K are all arbitrary constants)
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Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + C.t,-1 = K.B" (n>1) and to = D
(Here, B(# 0), C(# 0), D, K are all arbitrary constants)

Homogeneous Solution Part: t{") = A.(—C)" (Ais an arbitrary constant)
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Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + C.t,-1 = K.B" (n>1) and to = D
(Here, B(# 0), C(# 0), D, K are all arbitrary constants)

Homogeneous Solution Part: t{") = A.(—C)" (Ais an arbitrary constant)

A1.B", if B" # (—C)"

Aon.B", if B" = (—C)" (A1, Az are constants)

Particular Solution Part: ¢ — {
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Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + C.t,-1 = K.B" (n>1) and to = D
(Here, B(# 0), C(# 0), D, K are all arbitrary constants)

Homogeneous Solution Part: t{") = A.(—C)" (Ais an arbitrary constant)

A1.B", if B" # (—C)"

; ; . 4P
Particular Solution Part: t,” = { Aon.B", if B" = (—C)" (A1, Az are constants)

. (b 0 _ A(=C)"+ A..B", if B"#(-C)"
Exact Solution: t, =ty +ty = { (At As.n).B", if B" = (—C)"

23 /36
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Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + C.t,-1 = K.B" (n>1) and to = D
(Here, B(# 0), C(# 0), D, K are all arbitrary constants)

Homogeneous Solution Part: t{") = A.(—C)"

. . o[ ALB", B (=C)
Particular Solution Part: t,” = { Aon.B", if B" = (—C)" (A1, Az are constants)

(A is an arbitrary constant)

. (b 0 _ A(=C)"+ A..B", if B"#(-C)"
Exact Solution: t, =ty +ty = { (At As.n).B", if B" = (—C)"

Constant Determination: A;.B" + C.A;.B"!' = K.B" = A, = K&

B+C
Ay.n.B"+ C.A.(n—1).B"™ ' =K.B"= A, = K
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Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + C.t,-1 = K.B" (n>1) and to = D
(Here, B(# 0), C(# 0), D, K are all arbitrary constants)

Homogeneous Solution Part: t{") = A.(—C)"

. . o[ ALB", B (=C)
Particular Solution Part: t,” = { Aon.B", if B" = (—C)" (A1, Az are constants)

(A is an arbitrary constant)

. (b 0 _ A(=C)"+ A..B", if B"#(-C)"
Exact Solution: t, =ty +ty = { (At As.n).B", if B" = (—C)"
Constant Determination: A;.B" + C.A;.B"!' = K.B" = A, = K&

B+C
Ay.n.B"+ C.A.(n—1).B"™ ' =K.B"= A, = K

. B B A+A1 = A= DB+BD+CC7KB
FlnaIIy,to—D—{ A = A—D
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Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + C.t,-1 = K.B" (n>1) and to = D
(Here, B(# 0), C(# 0), D, K are all arbitrary constants)

Homogeneous Solution Part: t{") = A.(—C)" (Ais an arbitrary constant)

. . Cw_ [ ALB", ifB"#£(=C)"

Particular Solution Part: t,” = { Aon.B", if B" = (—C)" (A1, Az are constants)
e A(=C)"+ALB", if B"#(=C)"
Exact Solution: t, =t +ty = { (At Asn).B", if B = (—C)"
Constant Determination: A1.B" + C.AL.B"' = K.B" = A1 = £:&

Ay.n.B"+ C.A.(n—1).B"™ ' =K.B"= A, = K

A+A1 = A= DB+BD+CC7KB

A =>A=D

(PHHe ) (-0 + (55¢) B
(D+K.n).B" = (D+ K.n).(—C)" °

Finally, to = D = {

Unique Solution: t, = { n>1
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Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T,:  Moving n disks with 3 pegs requires — (i) twice the movement of
(n — 1) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: T, =2T,_1+1(n>1)and To =0
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Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T,:  Moving n disks with 3 pegs requires — (i) twice the movement of
(n — 1) disks, and (ii) once the movement of the largest disk.

Recurrence Relation: T, =2T,_1+1(n>1)and To =0

Homogeneous Solution: T = A2
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Strategy for T,:  Moving n disks with 3 pegs requires — (i) twice the movement of
(n — 1) disks, and (ii) once the movement of the largest disk.

Recurrence Relation: T, =2T,_1+1(n>1)and To =0

Homogeneous Solution: T = A2

Particular Solution: ~ T{” = A;.1" = A1, hence Ay = 2A; +1= A = —1
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Strategy for T,:  Moving n disks with 3 pegs requires — (i) twice the movement of
(n — 1) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: T, =2T,_1+1(n>1)and To =0
Homogeneous Solution: T = A2
Particular Solution: ~ T{” = A;.1" = A1, hence Ay = 2A; +1= A = —1
Final Solution: T, =A2"—1, with To=0=A2"-1=A=1,
implying T7,=2"—-1, n>0.
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-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T,:  Moving n disks with 3 pegs requires — (i) twice the movement of
(n — 1) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: T, =2T,_1+1(n>1)and To =0
Homogeneous Solution: T = A2
Particular Solution: ~ T{” = A;.1" = A1, hence Ay = 2A; +1= A = —1
Final Solution: T, =A2"—1, with To=0=A2"-1=A=1,
implying T7,=2"—-1, n>0.

A,

Example (Comparisons to find Min-Max from 2" Element Set)

Strategy for M,:  Divide 2"-element set into two. Find Min-Max from both sets + two
comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set.
Recurrence Relation: M, =2M,-1+2 (n>2)and M; =1
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Strategy for M,:  Divide 2"-element set into two. Find Min-Max from both sets + two
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-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T,:  Moving n disks with 3 pegs requires — (i) twice the movement of
(n — 1) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: T, =2T,_1+1(n>1)and To =0
Homogeneous Solution: T = A2
Particular Solution: ~ T{” = A;.1" = A1, hence Ay = 2A; +1= A = —1
Final Solution: T, =A2"—1, with To=0=A2"-1=A=1,
implying T7,=2"—-1, n>0.

A,

Example (Comparisons to find Min-Max from 2" Element Set)

Strategy for M,:  Divide 2"-element set into two. Find Min-Max from both sets + two
comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set.
Recurrence Relation: M, =2M,_1+2 (n>2)and M; =1

Homogeneous Solution: Mﬁh) = A.2"

Particular Solution: M%) = A;.1" = A;, hence A =2A; +2 = A; = —2
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-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T,:  Moving n disks with 3 pegs requires — (i) twice the movement of
(n — 1) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: T, =2T,_1+1(n>1)and To =0
Homogeneous Solution: T = A2
Particular Solution: ~ T{” = A;.1" = A1, hence Ay = 2A; +1= A = —1
Final Solution: T, =A2"—1, with To=0=A2"-1=A=1,
implying T7,=2"—-1, n>0.

A,

Example (Comparisons to find Min-Max from 2" Element Set)

Strategy for M,:  Divide 2"-element set into two. Find Min-Max from both sets + two
comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set.
Recurrence Relation: M, =2M,_1+2 (n>2)and M; =1
Homogeneous Solution: Mﬁh) = A.2"
Particular Solution: M%) = A;.1" = A;, hence A =2A; +2 = A; = —2
Final Solution: M, =A2" -2 with My=1= A2l — 2= A= %,

implying M, =(2)2"-2, n>1.

A\,
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Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

S, = number of n-length strings constructed using ¥ = {0,1,2,...,9} having even 1s.
Two ways to contribute to Sp:

@ n'" symbol is not 1: S,_; ways for each 9 such cases.

@ n'" symbol is 1: Odd number of 1s in (n — 1)-length part = (10" ' — S,_1)
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Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

S, = number of n-length strings constructed using ¥ = {0,1,2,...,9} having even 1s.
Two ways to contribute to Sp:
@ n'" symbol is not 1: S,_; ways for each 9 such cases.
@ n'" symbol is 1: Odd number of 1s in (n — 1)-length part = (10" ' — S,_1)
Recurrence Relation: S, =9S,1 + (10"* — S,_1) =8S,-1 + 10""! (n > 2) and
S1 = 9 (all digits except 1)
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Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

S, = number of n-length strings constructed using ¥ = {0,1,2,...,9} having even 1s.
Two ways to contribute to Sp:
@ n'" symbol is not 1: S,_; ways for each 9 such cases.
@ n'" symbol is 1: Odd number of 1s in (n — 1)-length part = (10" ' — S,_1)
Recurrence Relation: S, =9S,1 + (10"* — S,_1) =8S,-1 + 10""! (n > 2) and
S1 = 9 (all digits except 1)
Homogeneous Solution: s = Agn
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Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

S, = number of n-length strings constructed using ¥ = {0,1,2,...,9} having even 1s.
Two ways to contribute to Sp:

@ n'" symbol is not 1: S,_; ways for each 9 such cases.
@ n'" symbol is 1: Odd number of 1s in (n — 1)-length part = (10" ' — S,_1)
Recurrence Relation: S, =9S,1 + (10"* — S,_1) =8S,-1 + 10""! (n > 2) and
S1 = 9 (all digits except 1)
Homogeneous Solution: s = Agn
Particular Solution: ~ S{” = A;.10""%,  hence 10A; = 8A; + 10 = A; =5
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Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

S, = number of n-length strings constructed using ¥ = {0,1,2,...,9} having even 1s.
Two ways to contribute to Sp:

@ n'" symbol is not 1: S,_; ways for each 9 such cases.
@ n'" symbol is 1: Odd number of 1s in (n — 1)-length part = (10" ' — S,_1)
Recurrence Relation: S, =9S,1 + (10"* — S,_1) =8S,-1 + 10""! (n > 2) and
S1 = 9 (all digits except 1)
Homogeneous Solution: s = Agn
Particular Solution: ~ S{” = A;.10""%,  hence 104; = 8A; + 10 = A; =5
Final Solution: 5, = A.8"+5.10"", with$ =9=8A+5=A=3,
implying S, =(3).8"+5.10"", n>1
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Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

S, = number of n-length strings constructed using ¥ = {0,1,2,...,9} having even 1s.
Two ways to contribute to Sp:

@ n'" symbol is not 1: S,_; ways for each 9 such cases.

@ n'" symbol is 1: Odd number of 1s in (n — 1)-length part = (10" ' — S,_1)
Recurrence Relation: S, =9S,1 + (10"* — S,_1) =8S,-1 + 10""! (n > 2) and

S1 = 9 (all digits except 1)
Homogeneous Solution: Sgh) = A.8"
Particular Solution: S’ = A;.10""!,  hence 10A; = 8A; +10 = A; =5
Final Solution: 5, = A.8"+5.10"", with$ =9=8A+5=A=3,
implying S, = (%).8" +5.10"%, n>1.

Example (Edges in Hasse Diagram)

P(S) = Power Set of n-element set S forming Poset (P(S), C).
E, = number of edges in Hasse Diagram in poset (P(S), Q)
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Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

S, = number of n-length strings constructed using ¥ = {0,1,2,...,9} having even 1s.
Two ways to contribute to Sp:

@ n'" symbol is not 1: S,_; ways for each 9 such cases.

@ n'" symbol is 1: Odd number of 1s in (n — 1)-length part = (10" ' — S,_1)
Recurrence Relation: S, =9S,1 + (10"* — S,_1) =8S,-1 + 10""! (n > 2) and

S1 = 9 (all digits except 1)
Homogeneous Solution: Sgh) = A.8"
Particular Solution: S’ = A;.10""!,  hence 10A; = 8A; +10 = A; =5
Final Solution: 5, = A.8"+5.10"", with$ =9=8A+5=A=3,
implying S, = (%).8" +5.10"%, n>1.

Example (Edges in Hasse Diagram)

P(S) = Power Set of n-element set S forming Poset (P(S), C).
E, = number of edges in Hasse Diagram in poset (P(S),C)
Recurrence Relation:  Epy1 =2E,+2" (n>1) and E; =1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 25 /36



-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

S, = number of n-length strings constructed using ¥ = {0,1,2,...,9} having even 1s.
Two ways to contribute to Sp:

@ n'" symbol is not 1: S,_; ways for each 9 such cases.

@ n'" symbol is 1: Odd number of 1s in (n — 1)-length part = (10" ' — S,_1)
Recurrence Relation: S, =9S,1 + (10"* — S,_1) =8S,-1 + 10""! (n > 2) and

S1 = 9 (all digits except 1)
Homogeneous Solution: Sgh) = A.8"
Particular Solution: S’ = A;.10""!,  hence 10A; = 8A; +10 = A; =5
Final Solution: 5, = A.8"+5.10"", with$ =9=8A+5=A=3,
implying S, = (%).8" +5.10"%, n>1.

Example (Edges in Hasse Diagram)

P(S) = Power Set of n-element set S forming Poset (P(S), C).

E, = number of edges in Hasse Diagram in poset (P(S),C)

Recurrence Relation:  Epy1 =2E,+2" (n>1) and E; =1

Solution: E, = E\"” + EP = A2" + A;.n.2" with A=0,A; = %
implies E, = n2"" '  p >1
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms (Koch's Snowflake, 1904)
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Rk
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms (Koch's Snowflake, 1904)

Formulating the Recurrence Relation:
ap = ? (3-sided), i i zcz
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms (Koch's Snowflake, 1904)

Formulating the Recurrence Relation:
gy = 2 (3-sided), i i
e = L () A = & (4 x 3 = 12-sided),
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)
an, = area of 3-sided regular polygon after n transforms (Koch's Snowflake, 1904)

Formulating the Recurrence Relation:

o = \/5 . (3-sided),
31:‘/_+3(‘/_)[]2 7 (4 x 3 = 12-sided), /N
a2 =24+ 43(P)[F =92 (4 x3=148sided)

26 /36
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms (Koch's Snowflake, 1904)
Formulating the Recurrence Relation:

o = \/5 (3-sided),
31:‘/_+3(‘/_)[]2 7 (4 x 3 = 12-sided), /N

ay = f 3,413 (\f) (%] 102‘7/§ (4% x 3 = 48-sided)

5=BALES(DEE (8 x3=1925de) )3 ﬁ
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:

gy = 2 (3-sided),
31:‘/_+3(‘/_)[]2 (4 x 3 = 12-sided),
a2 =24+ 43(P)[F =192 (4 x3=148sided)
a= 102{ +423.(2).[%]2 (4% x 3 = 192-sided)
Recurrence Relation:

ani1 = ap +4"3.( ) [ = an + (5)-(3)

T

(n>0)

(Koch's Snowflake, 1904)

AR
Rk
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:

gy = 2 (3-sided),
31:‘/_+3(‘/_)[]2 (4 x 3 = 12-sided),
a2 =24+ 43(P)[F =192 (4 x3=148sided)
a= 102{ +423.(2).[%]2 (4% x 3 = 192-sided)
Recurrence Relation:

ani1 = an +4"3.(Z).[7] = an + (35)-(3)" (n>0)
Solution: a, = a3 + al?) = A1"+B.(3)"=A+B.(3)"

T

(Koch's Snowflake, 1904)

AR
Rk
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:

gy = 2 (3-sided),
31:‘/_+3(‘/_)[]2 (4 x 3 = 12-sided),
a2 =24+ 43(P)[F =192 (4 x3=148sided)
a= 102{ +423.(2).[%]2 (4% x 3 = 192-sided)
Recurrence Relation:

ani1 = an +4"3.(Z).[7] = an + (35)-(3)" (n>0)
Solution: a, = a3 + al?) = Al1"+B.(3)"=A+B.

So, B = (*g)(m) and

T

—GAE) =

(Koch's Snowflake, 1904)

AR
éiéiiﬁ
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms (Koch's Snowflake, 1904)
Formulating the Recurrence Relation:

o = \/5 (3-sided),
31:‘/_+3(‘/_)[]2 7 (4 x 3 = 12-sided), /N

ay = f 3,413 (\f) (%] 102‘7/§ (4% x 3 = 48-sided)

a= 102{ +423.(2).[%]2 (4% x 3 = 192-sided)

Recurrence Relation:

ani1 = an +4"3.(Z).[7] = an + (35)-(3)" (n>0)

Solution: a, = a3 + al?) = Al1"+B.(3)"=A+B.

(
So, B=(-23)(;25) and a,=A+(-3
NOW ap = \f —A— (5\1/5)(3)—1 = A— 6
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms (Koch's Snowflake, 1904)
Formulating the Recurrence Relation:

o = \/5 (3-sided),
31:‘/_+3(‘/_)[]2 7 (4 x 3 = 12-sided), /N

ay = f 3,413 (\f) (%] 102‘7/§ (4% x 3 = 48-sided)

a= 102{ +423.(2).[%]2 (4% x 3 = 192-sided)
Recurrence Relation:
ani1 = an + 473.(2) [ F = an + (525)-(8)" (n20)

Solution: a, = ay”) + alf) = A1" + B.(4)" = A+ B.(})"
So, B = (72)(4_1%) and a2, = A+ (-2)(H)E) =A- (%))
Now, aoz?zA—(lﬁ)(% 1‘1 :1>A:5Lﬁ 1
Finally, a, = 55 — (535)(5)" ' = GR)6 - (5)". n20
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms

Formulating the Recurrence Relation:

gy = 2 (3-sided),

31:‘/_+3(‘/_)[]2 (4 x 3 = 12-sided),

2= 4413 (%3) [%]? 103 (42 x 3 = 48-sided)

a3 = 102{ +423.(2).[%]2 (4® x 3 = 192-sided)

Recurrence Relation:

ani1 = an +4"3.(Z).[7] = an + (35)-(3)" (n>0)

Solution: a, = a3 + al?) = Al”—Q—B(%) =A+B(
So, B=(—3)(5,5) and =A+ (-2

Now, ap = \[ =A- (—) 5
Finally, a, = 5\[3 (%)(g

T

(Koch's Snowflake, 1904)

Generalized Recurrence Relations for Area under Regular Polygon Fractals

For 4-sided (unit-length) Regular Polygon:

ant1 = an + 5”.4.1.[3ﬁ]2 = &, - (E)E)f
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Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake — Concept of Fractals)

an, = area of 3-sided regular polygon after n transforms

Formulating the Recurrence Relation:

gy = 2 (3-sided),

31:‘/_+3(‘/_)[]2 (4 x 3 = 12-sided),

2= 4413 (%3) [%]? 103 (42 x 3 = 48-sided)

a3 = 102{ +423.(2).[%]2 (4® x 3 = 192-sided)

Recurrence Relation:

ani1 = an +4"3.(Z).[7] = an + (35)-(3)" (n>0)

Solution: a, = a3 + al?) = Al”—Q—B(%) =A+B(
So, B=(—3)(5,5) and =A+ (-2

Now, ap = \[ =A- (—) 5
Finally, a, = 5\[3 (%)(g

T

(Koch's Snowflake, 1904)

Generalized Recurrence Relations for Area under Regular Polygon Fractals

For 4-sided (unit-length) Regular Polygon:
For k-sided (m-length) Regular Polygon:

ant1 = a,+ 5" 41 2] = a, +

ant1 = an+ (k+1)".k. [4 o (180° 1. [3n+1]2

(5)-(3)"
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Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + Gi.th—1 + Go.tp—» = K.B" (n > 1) and ty = Do, t1 = D;
(Here, B(# 0), Ci, Go(# 0), Do, D1, K are all arbitrary constants)

V.
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Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + Gi.th—1 + Go.tp—» = K.B" (n > 1) and ty = Do, t1 = D;
(Here, B(# 0), Ci, Go(# 0), Do, D1, K are all arbitrary constants)
Homogeneous Solution Part: (A1, Az are constants)
£ _ A1.R{ + A>.R;, for distinct roots
" 7| (A1+ Axn).R", for equal roots

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020



Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients
General Form: t, + Gi.th—1 + Go.tp—» = K.B" (n > 1) and ty = Do, t1 = D;

(Here, B(# 0), Ci, Go(# 0), Do, D1, K are all arbitrary constants)
Homogeneous Solution Part:

(A1, Az are constants)
£ _ A1.R{ + A>.R;, for distinct roots
" 7| (A1+ Axn).R", for equal roots

Particular Solution Part: (A", A", A" are constants)

A’.B", for distinct roots when Ry # B # R,
HP) _ A”.n.B", for distinct roots when R = Ry or R = R»
T A'.B", for equal roots when B # R
A" n?.B", for equal roots when B = R
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Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: t, + Gi.th—1 + Go.tp—» = K.B" (n > 1) and ty = Do, t1 = D;
(Here, B(# 0), Ci, Go(# 0), Do, D1, K are all arbitrary constants)

Homogeneous Solution Part: (A1, Az are constants)

£ _ A1.R{ + A>.R;, for distinct roots
" 7| (A1+ Axn).R", for equal roots
Particular Solution Part: (A", A", A" are constants)

A’.B", for distinct roots when Ry # B # R,
HP) _ A”.n.B", for distinct roots when R = Ry or R = R»
" A'.B", for equal roots when B # R
A" n?.B", for equal roots when B = R

Exact Solution: t, = t\" + t/(7p) =

n
(A1.R + A2.R) + A'.B", for distinct roots when Ry # B # R;
(A1.R{ + A2.R§) + A”.n.B", for distinct roots when R = R; or R = R>
(A1 + Az.n).R" + A’.B", for equal roots when B # R
(A1 + A2.n).R" + A" .n2.B", for equal roots when B = R

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures Autumn 2020 27 /36



Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients
General Form: t, + CGi.th—1 + G.th—o = K.B" (n > 1) and ty = Do, t1 = D;

(Here, B(# 0), Ci, Go(# 0), Do, D1, K are all arbitrary constants)
Homogeneous Solution Part: (A1, Az are constants)

£ _ A1.R{ + A>.R;, for distinct roots

" 7| (A1+ Axn).R", for equal roots

Particular Solution Part: (A", A" A" are constants)
A’.B", for distinct roots when Ry # B # R,
HP) _ A”.n.B", for distinct roots when R = Ry or R = R»

A'.B", for equal roots when B # R
A" n?.B", for equal roots when B = R

Exact Solution: &, = t{" + ¢ =
(A1.R + A2.R) + A'.B", for distinct roots when Ry # B # R;
(A1.R{ + A2.R§) + A”.n.B", for distinct roots when R = R; or R = R>
(A1 + Az.n).R" + A’.B", for equal roots when B # R
(A1 + A2.n).R" + A" .n2.B", for equal roots when B = R

Constant Determination: Left For You as an Exercise!
Unique Solution: Left For You as an Exercise!
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Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients
General Form: t, + CGi.th—1 + G.th—o = K.B" (n > 1) and ty = Do, t1 = D;

(Here, B(# 0), Ci, Go(# 0), Do, D1, K are all arbitrary constants)
Homogeneous Solution Part: (A1, Az are constants)

£ _ A1.R{ + A>.R;, for distinct roots

" 7| (A1+ Axn).R", for equal roots

Particular Solution Part: (A", A" A" are constants)
A’.B", for distinct roots when Ry # B # R,
HP) _ A”.n.B", for distinct roots when R = Ry or R = R»

A'.B", for equal roots when B # R
A" n?.B", for equal roots when B = R

Exact Solution: &, = t{" + ¢ =
(A1.R + A2.R) + A'.B", for distinct roots when Ry # B # R;
(A1.R{ + A2.R§) + A”.n.B", for distinct roots when R = R; or R = R>
(A1 + Az.n).R" + A’.B", for equal roots when B # R
(A1 + A2.n).R" + A" .n2.B", for equal roots when B = R

Constant Determination: Left For You as an Exercise!
Unique Solution: Left For You as an Exercise!
Homework: What happens for Complex Conjugate Pair Roots 7
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Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)
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Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)

Characteristic Roots (Homogeneous Consideration): Ry =3, R; =1
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Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)

Characteristic Roots (Homogeneous Consideration): Ry =3, R> =1
Homogeneous Solution: t,gh) =A1.3"+ A 1" = A1.3" + A

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 28 /36



Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)

Characteristic Roots (Homogeneous Consideration): Ry =3, R> =1
Homogeneous Solution: ) = A1.3" + A 1" = AL3" + Ay
Particular Solution:  t) = A.n.1" = A.n

Hence, (n+2)A—4(n+1)A+3nA=—-200 = A =100
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Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)

Characteristic Roots (Homogeneous Consideration): Ry =3, R> =1
Homogeneous Solution: t,gh) =A1.3"+ A 1" = A1.3" + A
Particular Solution:  t) = A.n.1" = An
Hence, (n+2)A—4(n+1)A+3nA=—-200 = A =100
Final Solution: t, = A1.3" + Ax + 100n = 100.3” 4+ 2900 + 100n, n > 0
(as to = 3000 = A; + Az, t1 = 3300 = 3.A; + A2 + 100 produces A; = 100, A> = 2900)
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Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)

Characteristic Roots (Homogeneous Consideration): Ry =3, R> =1
Homogeneous Solution: t,gh) =A1.3"+ A 1" = A1.3" + A
Particular Solution: tﬁ") = Anl" = An
Hence, (n+2)A—4(n+1)A+3nA=—-200 = A =100
Final Solution: t, = A1.3" + Ax + 100n = 100.3” 4+ 2900 + 100n, n > 0
(as to = 3000 = A; + Az, t1 = 3300 = 3.A;1 + Az + 100 produces A1 = 100, A> = 2900) )

Example (Total Additions to Compute Fibonacci Number)

a, = total number of additions to compute n™ Fibonacci number
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Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)

Characteristic Roots (Homogeneous Consideration): Ry =3, R> =1
Homogeneous Solution: t,gh) =A1.3"+ A 1" = A1.3" + A
Particular Solution: tﬁ") = Anl" = An
Hence, (n+2)A—4(n+1)A+3nA=—-200 = A =100
Final Solution: t, = A1.3" + Ax + 100n = 100.3” 4+ 2900 + 100n, n > 0
(as to = 3000 = A; + Az, t1 = 3300 = 3.A;1 + Az + 100 produces A1 = 100, A> = 2900)

Example (Total Additions to Compute Fibonacci Number)

a, = total number of additions to compute n™ Fibonacci number
Recurrence Relation:  a, = a,—1+an—2+ 1 (n>2) and ap = a1 = 0 (initial cases)
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Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)

Characteristic Roots (Homogeneous Consideration): Ry =3, R> =1
Homogeneous Solution: t,gh) =A1.3"+ A 1" = A1.3" + A
Particular Solution: tﬁ") = Anl" = An

Hence, (n+2)A—4(n+1)A+3nA=—-200 = A =100
Final Solution: t, = A1.3" + Ax + 100n = 100.3” 4+ 2900 + 100n, n > 0
(as to = 3000 = A; + Az, t1 = 3300 = 3.A;1 + Az + 100 produces A1 = 100, A> = 2900) )

Example (Total Additions to Compute Fibonacci Number)

a, = total number of additions to compute n™ Fibonacci number
Recurrence Relation:  a, = a,—1+an—2+ 1 (n>2) and ap = a1 = 0 (initial cases)
Homogeneous Solution:  a%) = A; (H‘/_) + A (B2 ‘/_)
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Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)

Characteristic Roots (Homogeneous Consideration): Ry =3, R> =1
Homogeneous Solution: t,gh) =A1.3"+ A 1" = A1.3" + A
Particular Solution: tﬁ") = Anl" = An

Hence, (n+2)A—4(n+1)A+3nA=—-200 = A =100
Final Solution: t, = A1.3" + Ax + 100n = 100.3” 4+ 2900 + 100n, n > 0
(as to = 3000 = A; + Az, t1 = 3300 = 3.A;1 + Az + 100 produces A1 = 100, A> = 2900) )

Example (Total Additions to Compute Fibonacci Number)

a, = total number of additions to compute n™ Fibonacci number

Recurrence Relation:  a, = a,—1+an—2+ 1 (n>2) and ap = a1 = 0 (initial cases)
Homogeneous Solution:  a%) = A; (H‘/_) + A (B2 ‘/_)

Particular Solution: aff) =A1"=A, henceA=A+A+1=A=-1
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Solving Non-Homogeneous Recurrence Relations

Example (Solve: t,i» — 4tyi1 + 3t, = —200 (n > 0), to = 3000, t; = 3300)

Characteristic Roots (Homogeneous Consideration): Ry =3, R> =1
Homogeneous Solution: t,gh) =A1.3"+ A 1" = A1.3" + A
Particular Solution: tﬁ") = Anl" = An
Hence, (n+2)A—4(n+1)A+3nA=—-200 = A =100
Final Solution: t, = A1.3" + Ax + 100n = 100.3” 4+ 2900 + 100n, n > 0
(as to = 3000 = A; + Az, t1 = 3300 = 3.A;1 + Az + 100 produces A1 = 100, A> = 2900) )

Example (Total Additions to Compute Fibonacci Number)

a, = total number of additions to compute n™ Fibonacci number

Recurrence Relation:  a, = a,—1+an—2+ 1 (n>2) and ap = a1 = 0 (initial cases)
Homogeneous Solution:  a%) = A; (H‘/_) + A (B2 ‘/_)

Particular Solution: aE,P Al"=A hence A=A+A+1=>A= -1

Final Solution: 2, = Ar.(X58)" + A, (352)" — 1, with A = 152 4, = -1,
ian:(%)(lJEf) (1 \/_)(1 \/_) 1— f(1+f)n+17%.(177\/§)n+171' n>0

4
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Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + Ce.tp—k = f(n) # 0, for n > k
where the order k € Z*, Co(#0), Ci, G, . .., Ck(5£ 0) are real constants.

Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant
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Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + Ce.tp—k = f(n) # 0, for n > k

where the order k € Z*, Co(#0), Ci, G, . .., Ck(5£ 0) are real constants.
Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant

Homogeneous Solution: t\") (computed assuming f(n) = 0 as earlier)
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Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + Ce.tp—k = f(n) # 0, for n > k

where the order k € Z*, Co(#0), Ci, G, . .., Ck(5£ 0) are real constants.
Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant

Homogeneous Solution: t\") (computed assuming f(n) = 0 as earlier)

Particular Solution: Three cases to consider while constructing t,(,p):

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020 29 /36



Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + Ce.tp—k = f(n) # 0, for n > k

where the order k € Z*, Go(#£0), G, G, .

.., Ck(#£ 0) are real constants.

Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant

Homogeneous Solution: t\") (computed assuming f(n) = 0 as earlier)

Particular Solution: Three cases to consider while constructing £P):

n

@ Format of f(n) is a constant multiple of following table (middle
column) and is NOT associated with form of £

| Types || Format of 7 (n)

| Format for t(p)

n

Type-1

n™.R" (m € N,R € R)

R™( fjA,-.n")
=0

Type-2

R".sin(nf) or R". cos(n0)

R".(A;. sin(nf) + As. cos(nf))
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Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + Ce.tp—k = f(n) # 0, for n > k

where the order k € Z*, Go(#£0), G, G, .

.., Ck(#£ 0) are real constants.

Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant

Homogeneous Solution: t\") (computed assuming f(n) = 0 as earlier)

Particular Solution: Three cases to consider while constructing £P):

n

@ Format of f(n) is a constant multiple of following table (middle
column) and is NOT associated with form of £

| Types || Format of 7 (n)

| Format for t(p)

n

Type-1

n™.R" (m € N,R € R)

R™( fjA,-.n")
=0

Type-2

R".sin(nf) or R". cos(n0)

R".(A;. sin(nf) + As. cos(nf))

@ Format of f(n) is the sum of constant multiples of above table
(middle column) and is NOT associated with form of £
Take t{”) as the sum of above table entries (right columns)
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Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: Co.t, + Ci.tp—1 + Go.tn—2 + - -+ + Ce.tp—k = f(n) # 0, for n > k

where the order k € Z*, Go(#£0), G, G, .

.., Ck(#£ 0) are real constants.

Boundary Condition: t; = Dj, for each 0 < j < k — 1 and every D; is a constant

Homogeneous Solution: t\") (computed assuming f(n) = 0 as earlier)

Particular Solution: Three cases to consider while constructing £P):

n

@ Format of f(n) is a constant multiple of following table (middle
column) and is NOT associated with form of £

| Types || Format of 7 (n)

| Format for tﬁ”)

Type-1

n™.R" (m € N,R € R)

R™( fjA,-.n")
=0

Type-2

R".sin(nf) or R". cos(n0)

R".(;\;. sin(nf) + As. cos(nf))

@ Format of f(n) is the sum of constant multiples of above table
(middle column) and is NOT associated with form of £
Take t{”) as the sum of above table entries (right columns)

© A summand f'(n) from f(n) is an associated solution in t{":
@ Format of f'(n) is of Type-1 from above table:

t,(,P) — ns.t,(,p), i.e. multiply with smallest s so that no summand

of n°.f'(n) is associated with £
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Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.
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Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.

Recurrence Relation:  Hny1 = H,+n (n > 2) and H; = 0 (no handshakes with oneself)
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Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.
Recurrence Relation:  Hny1 = H,+n (n > 2) and H; = 0 (no handshakes with oneself)

Homogeneous Solution: HP = A1" = A
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-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.

Recurrence Relation:  Hny1 = H,+n (n > 2) and H; = 0 (no handshakes with oneself)

Homogeneous Solution: HP = A1" = A

Particular Solution: ~ H{” = n'.(A1.n+ Ag) (with A (const.) in H{", H) « n'.H{)
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-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.

Recurrence Relation:  Hny1 = H,+n (n > 2) and H; = 0 (no handshakes with oneself)

Homogeneous Solution: HP = A1" = A

Particular Solution: ~ H{” = n®.(A1.n+ Ag) (with A (const.) in H{”, H) « n'.H{)

Hence, (n+ 1) A1+ (n+1).Ac = nP. At + nAc+n = A =31 A =—1
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-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.
Recurrence Relation:  Hny1 = H,+n (n > 2) and H; = 0 (no handshakes with oneself)
Homogeneous Solution: HP = A1" = A
Particular Solution: ~ H{” = n®.(A1.n+ Ag) (with A (const.) in H{”, H) « n'.H{)
Hence, (n+ 1) A1+ (n+1).Ac = . At + nAc+n = A =1 A =1
Final Solution:  H,=A+31.n° —%.n, with i =0=A,
implying, H,=1.n"—1n= @ =), n>1
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-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.

Recurrence Relation:  Hny1 = H,+n (n > 2) and H; = 0 (no handshakes with oneself)

Homogeneous Solution: H,(,h) =A1"=A

Particular Solution: ng) = nl.(Al.n + Ao) (with A (const.) in H,gh), H,g") — nl.H,g"))
Hence, (n+ 1) A1+ (n+1).Ac = . At + nAc+n = A =1 A =1

Final Solution:  H,=A+31.n° —%.n, with i =0=A,

2
implying, H,=1.n"—1n= # =), n>1

NI
N

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

L, = number of regions formed by n non-parallel and non-colinear straight lines.

A\,
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-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.

Recurrence Relation:  Hny1 = H,+n (n > 2) and H; = 0 (no handshakes with oneself)

Homogeneous Solution: H,(,h) =A1"=A

Particular Solution: ng) = nl.(Al.n + Ao) (with A (const.) in H,gh), H,g") — nl.H,g"))
Hence, (n+ 1) A1+ (n+1).Ac = . At + nAc+n = A =1 A =1

Final Solution:  H,=A+31.n° —%.n, with i =0=A,

2
implying, H,=1.n"—1n= # =), n>1

NI
N

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

L, = number of regions formed by n non-parallel and non-colinear straight lines.
Recurrence Relation: L1 =L, + (n+1) (n>1) and Lo = 1 (whole 2-D plane)

A\,
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-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.

Recurrence Relation:  Hny1 = H,+n (n > 2) and H; = 0 (no handshakes with oneself)

Homogeneous Solution: H,(,h) =A1"=A

Particular Solution: ng) = nl.(Al.n + Ao) (with A (const.) in H,gh), H,g") — nl.H,g"))
Hence, (n+ 1) A1+ (n+1).Ac = . At + nAc+n = A =1 A =1

Final Solution:  H,=A+31.n° —%.n, with i =0=A,

2
implying, H,=1.n"—1n= # =), n>1

NI
N

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

L, = number of regions formed by n non-parallel and non-colinear straight lines.
Recurrence Relation: L1 =L, + (n+1) (n>1) and Lo = 1 (whole 2-D plane)
Homogeneous Solution: (P =A1"=A

A\,
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-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.

Recurrence Relation:  Hp11 = H,+n (n > 2) and H1 = 0 (no handshakes with oneself)

Homogeneous Solution: HP = A1" = A

Particular Solution: ng) = .(Al.n + Ao) (with A (const.) in H,gh), H,g") — nl.H,g"))
Hence, (n+ 1)%.A; + (n+ ).A =nA+nA+n =A==1A=-1

Final Solution:  H,=A+31.n° —%.n, with i =0=A,

2
implying, H,=1.n"—1n= # =), n>1

NI
N

Example (Regions formed by Non-parallel Non-colinear Straight Lines)
L, = number of regions formed by n non-parallel and non-colinear straight lines.
Recurrence Relation: L1 =L, + (n+1) (n>1) and Lo = 1 (whole 2-D plane)

Homogeneous Solution: (P =A1"=A
Particular Solution: L(np) = nl.(Al.n + Ao) (with A (const.) in L,7 ), L )« n L< ))

A\,
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-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.

Recurrence Relation:  Hp11 = H,+n (n > 2) and H1 = 0 (no handshakes with oneself)

Homogeneous Solution: HP = A1" = A

Particular Solution: ng) = .(Al.n + Ao) (with A (const.) in H,gh), H,g") — nl.H,g"))
Hence, (n+ 1)%.A; + (n+ ).A =nA+nA+n =A==1A=-1

Final Solution:  H,=A+31.n° —%.n, with i =0=A,

2
implying, H,=1.n"—1n= # =), n>1

NI
N

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

L, = number of regions formed by n non-parallel and non-colinear straight lines.

Recurrence Relation: L1 =L, + (n+1) (n>1) and Lo = 1 (whole 2-D plane)

Homogeneous Solution: (P =A1"=A

Particular Solution: L) = n'.(A1.n + Ao) (with A (const.) in L), L)« nt.L{P)
Hence, (n+ 1)%.A1 + (n+1).Ao = " A1+ nAo + (n+1) = A = % = Ao

A\,
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-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

H, = number of total distinct pairwise handshakes among n persons.

Recurrence Relation:  Hp11 = H,+n (n > 2) and H1 = 0 (no handshakes with oneself)

Homogeneous Solution: HP = A1" = A

Particular Solution: ng) = .(Al.n + Ao) (with A (const.) in H,gh), H,g") — nl.H,g"))
Hence, (n+ 1)%.A; + (n+ ).A =nA+nA+n =A==1A=-1

Final Solution:  H,=A+31.n° —%.n, with i =0=A,

2
implying, H,=1.n"—1n= # =), n>1

NI
N

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

L, = number of regions formed by n non-parallel and non-colinear straight lines.
Recurrence Relation: L1 =L, + (n+1) (n>1) and Lo = 1 (whole 2-D plane)
Homogeneous Solution: (P =A1"=A
Particular Solution: L) = n'.(A1.n + Ao) (with A (const.) in L), L)« nt.L{P)
Hence, (n+1)%. A1 + (n+1).Ac =" AL+ nAc+ (n+1) = A =1=A
Final Solution: L, =A+2.n*+31n withj =1=A,
implying, Hr,:l—o—%.nz—l—%.n:w—l—l, n > 0.

A\,
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Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for S, = >~ i?)
i=0

Recurrence Relation:  Spi1 =S, + (n+1)? (n > 0) and Sp =0
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Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for S, = >~ i?)
i=0

Recurrence Relation:  Spi1 =S, + (n+1)? (n > 0) and Sp =0
Homogeneous Solution: sh=A1"=A
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Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for S Z/ )

Recurrence Relation:  Spi1 =S, + (n+1)? (n > 0) and Sp =0
Homogeneous Solution: sh=A1"=A
Particular Solution: Sﬁp) = n.(Ao + Ai.n+ A2.I’12) = (Ao.n+ A1.n? + A2.I’l3)
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Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for S Z/ )

Recurrence Relation:  Spi1 =S, + (n+1)? (n > 0) and Sp =0
Homogeneous Solution: sh=A1"=A
Particular Solution: 5,(,P = n.(Ao + Ai.n+ A2.I72) = (Ao.n + A1.n? + A2.I’l3)
Hence, (n+1).Ao+ (n+1)%. A1 + (n+1)*. Ay = (n.Ag + n*. Ar 4+ n* . A2) + (n® +2n + 1)
implies, 34 + A1 = A1 +1 = A = % (comparing coefficients of nz)
3A2 +2A;1 + Ao = Ao + 2 : A1 = 5 (comparing coefficients of n)

A+Ai+A=1 =A=1: (comparing constant coefficients)

1=

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 31/36



Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for S Z/ )

Recurrence Relation:  Spi1 =S, + (n+1)? (n > 0) and Sp =0
Homogeneous Solution: sh=A1"=A
Particular Solution: SSP = n.(Ao + Ai.n+ A2.I’12) = (Ao.n+ A1.n? + A2.I’l3)
Hence, (n+1).Ao+ (n+1)%. A1 + (n+1)*. Ay = (n.Ag + n*. Ar 4+ n* . A2) + (n® +2n + 1)
implies, 34 + A1 = A1 +1 = A = % (comparing coefficients of nz)
3A2 +2A;1 + Ao = Ao + 2 : A1 = 2 (comparing coefficients of n)

A+A+A=1 = Ao : (comparing constant coefficients)
Final Solution: Sn:A—Q—é.n—Fl n? +— n’ W|th 50:O:A,
implying, H, = n+ 2 .n? + .n’ = %, n>0.
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Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for S Z/ )

Recurrence Relation:  Spi1 =S, + (n+1)? (n > 0) and Sp =0
Homogeneous Solution: S =A1"=A
Particular Solution: 5,(,p = n.(Ao + Ai.n+ Ag.n2) = (Ao.n + A1.n? + A2.I’l3)

Hence, (n+1).Ao+ (n+1)%. A1 + (n+1)*. Ay = (n.Ag + n*. Ar 4+ n* . A2) + (n® +2n + 1)
implies, 34 + A1 = A1 +1 = A = % (comparing coefficients of nz)
3A2 +2A; + Ao = A + 2 = A; = 1 (comparing coefficients of n)
A+A+A=1 = Ao : (comparing constant coefficients)
Final Solution: 5,,:A—0—é.n—|—l n? +— n’ W|th So=0=A,
implying, H, = n+2 n? + .n —%, n>0.

Example (Deriving Other Summation Formulas: ~ Try Yourself!)

)Y i=Ly=Li1+n QNP =C=C-1+n
i=0 i=0

Bt =Qu=Quatnt ()% =G =Gy tn* (keZ')
i=0 i=0

(Here, n>1 and Lo=GCo= Qo= Go=0)

y
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects

@ A particular object is at least once selected: (r — 1) objects chosen from n objects
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects
@ A particular object is at least once selected: (r — 1) objects chosen from n objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n,r —1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects

@ A particular object is at least once selected: (r — 1) objects chosen from n objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n,r —1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0

a(n, r)x" generates sequence a(n,0), a(n,1), ...

118

Generating Function: Let, f,(x) =
r=0
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects

@ A particular object is at least once selected: (r — 1) objects chosen from n objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n,r —1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0

Generating Function: Let, f,(x) = > a(n, r)x" generates sequence a(n,0), a(n,1), ...
r=0

Derivation: a(n,r) = a(n—1,r)+a(n,r —1) (n,r >1)
= Y aln,r)x"=> a(n—1,r)x"+ > a(n,r — 1)x"
r=1 r=1

r=1
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects

@ A particular object is at least once selected: (r — 1) objects chosen from n objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n,r —1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0

Generating Function: Let, f,(x) = > a(n, r)x" generates sequence a(n,0), a(n,1), ...
r=0

Derivation: a(n,r) = a(n—1,r)+a(n,r —1) (n,r >1)
a(n,r)x"= > a(n—1,r)x"+ Y a(n,r — 1)x"
r=1

=1 r=1

=
= fi(x) = a(n,0) = foa(x) — a(n—1,0) + x. 3" a(n, r — L)x""?

r=1
= AK()—1=fia()—1+xh(x) = fx) =220 = o0

v
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects
@ A particular object is at least once selected: (r — 1) objects chosen from n objects
Recurrence Relation:  a(n,r) =a(n—1,r)+a(n,r —1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0
Generating Function: Let, f,(x) = > a(n, r)x" generates sequence a(n,0), a(n,1), ...
r=0
Derivation: a(n,r) = a(n—1,r)+a(n,r —1) (n,r >1)
(o=} o=} (o=}
= Y aln,r)x"=> a(n—1,r)x"+ > a(n,r — 1)x"
r=1 r=1 r=1
= fo(x) —a(n,0) = fo_1(x) — a(n—1,0) + x. > a(n, r — 1)x!
r=1
= A()—1=fa()—Ll+xh(x) = f(x)="220 - 6

So, a(n, r) is the coefficient of x” in f,(x) = A = L _ — (1 —x)~"
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects
@ A particular object is at least once selected: (r — 1) objects chosen from n objects
Recurrence Relation:  a(n,r) =a(n—1,r)+a(n,r —1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0
Generating Function: Let, f,(x) = > a(n, r)x" generates sequence a(n,0), a(n,1), ...
r=0
Derivation: a(n,r) = a(n—1,r)+a(n,r —1) (n,r >1)
= Y aln,r)x"=> a(n—1,r)x"+ > a(n,r — 1)x"
r=1 r=1 r=1
= fo(x) —a(n,0) = fo_1(x) — a(n—1,0) + x. > a(n, r — 1)x!
r=1
= A()—1=fa()—Ll+xh(x) = f(x)="220 - 6
So, a(n, r) is the coefficient of x” in f,(x) = A = L _ — (1 —x)~"

> ann) = (D) = (7Y
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects

@ A particular object is once selected: (r — 1) objects chosen from (n — 1) objects
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects
@ A particular object is once selected: (r — 1) objects chosen from (n — 1) objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n—1,r—1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects

@ A particular object is once selected: (r — 1) objects chosen from (n — 1) objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n—1,r—1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0

a(n, r)x" generates sequence a(n,0), a(n,1), ...

118

Generating Function: Let, f,(x) =
r=0
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects

@ A particular object is once selected: (r — 1) objects chosen from (n — 1) objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n—1,r—1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0

Generating Function: Let, f,(x) = > a(n, r)x" generates sequence a(n,0), a(n,1),
r=0

Derivation: a(n,r) = a(n—1,r) —|— a(n—1,r—1) (n r>1)

= 2 a(n, r)x" —Za(n—l r)x" +Z i b e b5

r=1
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects
@ A particular object is once selected: (r — 1) objects chosen from (n — 1) objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n—1,r—1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0

Generating Function: Let, f,(x) = > a(n, r)x" generates sequence a(n,0), a(n,1), ...

0
Derivation: a(n,r) =a(n—1,r)+a(n—1,r—1) (n,r > 1)

M3

= ga(n, r)x" zga(n—1,r)x’+r;a(n—1,r—1)x'

= f(x) = a(n,0) = fora(x) — a(n—1,0) 4 x. 3 a(n — 1,7 — D)x'!
= () =1=fos(x)—1+xFoos(x) .

S () = (L4 X)) = (L4 %) (%)

v
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects
@ A particular object is once selected: (r — 1) objects chosen from (n — 1) objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n—1,r—1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0

Generating Function: Let, f,(x) = a(n, r)x" generates sequence a(n,0), a(n,1),

~ \\Mg

Derivation: a(n,r) = a(n — 1, r)+a(n—1,r—1) (n r>1)

= ga(n,r)x’—rzla(n—l r)x" —l—z a(n—1,r—1)x"

= f(x) = a(n,0) = fora(x) — a(n—1,0) 4 x. 3 a(n — 1,7 — D)x'!
> A0 -1=fral) —l4xhha()

= fa(x) = (1 +x).fim1(x) = (1 + x)"fo(x)

So, a(n, r) is the coefficient of x" in f,(x) = (1 + x)".fo(x) = (1 + x)"

v
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Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects
@ A particular object is never selected: r objects chosen from (n — 1) objects
@ A particular object is once selected: (r — 1) objects chosen from (n — 1) objects

Recurrence Relation:  a(n,r) =a(n—1,r)+a(n—1,r—1), (n>rand n,r € N)
and a(n,0) =1forn>0, a(0,r)=0forr>0

Generating Function: Let, f,(x) = a(n, r)x" generates sequence a(n,0), a(n,1),

~ \\Mg

Derivation: a(n,r) = a(n — 1, r)+a(n—1,r—1) (n r>1)

= ia(n,r)x’—rzla(n—l r)x" —l—z a(n—1,r—1)x"

a(m,0) = fo_1(x) — a(n— 1,0) + x. 3> a(n — 1, r — 1)x"?

= fo(x) — >

5 AR -1=fial)—l+xhhal)

S 00 = (14 x)Fa(0) = (14 %)"6()

So, a(n, r) is the coefficient of x" in f,(x) = (1 + x)".fo(x) = (1 + x)"
= a(n,r) = ()

v
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Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
@ A high-energy neutron releases two high-energy and one low-energy neutrons.
@ A low-energy neutron releases one high-energy and one low-energy neutron.
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Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
@ A high-energy neutron releases two high-energy and one low-energy neutrons.
@ A low-energy neutron releases one high-energy and one low-energy neutron.
After n > 0 interactions, let a, = number of high-energy neutrons, and b, = number of
low-energy neutrons. Assume, at beginning, ap = 1, by = 0.
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Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
@ A high-energy neutron releases two high-energy and one low-energy neutrons.
@ A low-energy neutron releases one high-energy and one low-energy neutron.
After n > 0 interactions, let a, = number of high-energy neutrons, and b, = number of
low-energy neutrons. Assume, at beginning, ap = 1, by = 0.

Recurrence Relation: ant1 =2an+ bp, bpy1 =an+ b,  (n>0)
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Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
@ A high-energy neutron releases two high-energy and one low-energy neutrons.
@ A low-energy neutron releases one high-energy and one low-energy neutron.
After n > 0 interactions, let a, = number of high-energy neutrons, and b, = number of
low-energy neutrons. Assume, at beginning, ap = 1, by = 0.

Recurrence Relation: ant1 =2an+ bp, bpy1 =an+ b,  (n>0)

o0 o0
Generating Function: f(x) = Y an.x", g(x) = >_ bn.x" generates {an}, {bn} (n>0)
n=0 n=0
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Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
@ A high-energy neutron releases two high-energy and one low-energy neutrons.
@ A low-energy neutron releases one high-energy and one low-energy neutron.
After n > 0 interactions, let a, = number of high-energy neutrons, and b, = number of
low-energy neutrons. Assume, at beginning, ap = 1, by = 0.

Recurrence Relation: ant1 =2an+ bp, bpy1 =an+ b,  (n>0)
o0 oo

Generating Function: f(x) = Y an.x", g(x) = >_ bn.x" generates {an}, {bn} (n>0)
n=0 n=0

o0 o0 o0
Derivation: > ap1.x™1 =2x Y an.x"+x > bp.x" = f(x) — ap = 2xf(x) + xg(x)
n=0 n=0 n=0

o0 oo o0
zzo bpy1.x" = x Z:O an.x" 4 x X:O by.x" = g(x) — bp = xf(x) + xg(x)

y,
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Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
@ A high-energy neutron releases two high-energy and one low-energy neutrons.
@ A low-energy neutron releases one high-energy and one low-energy neutron.
After n > 0 interactions, let a, = number of high-energy neutrons, and b, = number of
low-energy neutrons. Assume, at beginning, ap = 1, by = 0.

Recurrence Relation: ant1 =2an+ bp, bpy1 =an+ b,  (n>0)

o0 o0
Generating Function: f(x) = Y an.x", g(x) = >_ bn.x" generates {an}, {bn} (n>0)
n=0 n=0

o0 o0 o0
Derivation: > ap1.x™1 =2x Y an.x"+x > bp.x" = f(x) — ap = 2xf(x) + xg(x)
n=0 n=0 n=0

o0 oo o0
zzo bpy1.x" = x Z:O an.x" 4 x X:O by.x" = g(x) — bp = xf(x) + xg(x)

Solving these system of recurrence equations and using generating functions,
_ _1-x _ (545 1 5—v5 1
) = 7 = RO () + 0 (=)
2 2

_ x _ (=5=3V5 1 —5+3v/5 1
8(x) = z=5m = (&1 )<3+\/§,X>+( 10 )(37¢§7X>
2

2
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Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
@ A high-energy neutron releases two high-energy and one low-energy neutrons.
@ A low-energy neutron releases one high-energy and one low-energy neutron.
After n > 0 interactions, let a, = number of high-energy neutrons, and b, = number of
low-energy neutrons. Assume, at beginning, ap = 1, by = 0.

Recurrence Relation: ant1 =2an+ bp, bpy1 =an+ b,  (n>0)

o0 o0
Generating Function: f(x) = Y an.x", g(x) = >_ bn.x" generates {an}, {bn} (n>0)
n=0 n=0

o0 o0 o0
Derivation: > ap1.x™1 =2x Y an.x"+x > bp.x" = f(x) — ap = 2xf(x) + xg(x)
—0 =0 =0
i o0 o
> bpp1 X =x 3" apx" 4+ x Y by.x" = g(x) — bp = xf(x) + xg(x)
n=0 n=0 n=0
Solving these system of recurrence equations and using generating functions,

__1-x__ _ (545 1 5—v5 1
Fx) = 257 = OB )<3+2\/§7X> + (5% )(37¢§7X> and
2

_ _ (=5=3V5 1 —5+3v5 1
() = o5 = (RO (=) + (25 (=)

2 2

5+v6\(3—v5 5—v5\(3+/5
an = (SE)(C2) 1 + (B2)(352)" and
—5—3v5\/3—V5b —543v5\( 3 5

bn:( 10\/)( 2\/)n+1+( J{O\f)( +2\/_)n+1’ n>0
v
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Solving Special Recurrence Relation

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:
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Solving Special Recurrence Relation

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:
@ Number of ways to parenthesize an n length expressions
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Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:
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Catalan Numbers solving Non-linear Recurrences
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As f(x) = 11— V2)1<_4X (taking —ve sign to get a, > 0), so a, = %[ﬁ]f&"ﬂ”) = ﬁ (2n")
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Thank You!
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