Recurrence Relations

Aritra Hazra

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in
Autumn 2020

Introduction

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.

Introduction

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.
Natural Computable Functions as Recurrences: Many natural functions are expressed using recurrence relations.

- (linear) $f(n)=f(n-1)+1, f(1)=1 \quad \Rightarrow \quad f(n)=n$
- (polynomial) $f(n)=f(n-1)+n, f(1)=1 \quad \Rightarrow \quad f(n)=\frac{1}{2}\left(n^{2}+n\right)$
- (exponential) $f(n)=2 . f(n-1), f(0)=1 \quad \Rightarrow \quad f(n)=2^{n}$
- (factorial) $f(n)=n \cdot f(n-1), f(0)=1 \quad \Rightarrow \quad f(n)=n$!

Introduction

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.
Natural Computable Functions as Recurrences: Many natural functions are expressed using recurrence relations.

- (linear) $f(n)=f(n-1)+1, f(1)=1 \quad \Rightarrow \quad f(n)=n$
- (polynomial) $f(n)=f(n-1)+n, f(1)=1 \quad \Rightarrow \quad f(n)=\frac{1}{2}\left(n^{2}+n\right)$
- (exponential) $f(n)=2 . f(n-1), f(0)=1 \quad \Rightarrow \quad f(n)=2^{n}$
- (factorial) $f(n)=n \cdot f(n-1), f(0)=1 \quad \Rightarrow \quad f(n)=n$!

Recurrence is Mathematical Induction:
Recurrence: $\quad T(n)=2 T(n-1)+1$ with base condition, $T(0)=0$.
Base-condition check: $\quad T(0)=2^{0}-1$
Induction Hypothesis: $\quad T(n-1)=2^{n-1}-1$
Proof: $\quad T(n)=2 T(n-1)+1=2\left(2^{n-1}-1\right)+1=2^{n}-1$

Introduction

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.
Natural Computable Functions as Recurrences: Many natural functions are expressed using recurrence relations.

- (linear) $f(n)=f(n-1)+1, f(1)=1 \quad \Rightarrow \quad f(n)=n$
- (polynomial) $f(n)=f(n-1)+n, f(1)=1 \quad \Rightarrow \quad f(n)=\frac{1}{2}\left(n^{2}+n\right)$
- (exponential) $f(n)=2 . f(n-1), f(0)=1 \quad \Rightarrow \quad f(n)=2^{n}$
- (factorial) $\quad f(n)=n \cdot f(n-1), f(0)=1 \quad \Rightarrow \quad f(n)=n!$

Recurrence is Mathematical Induction:
Recurrence: $\quad T(n)=2 T(n-1)+1$ with base condition, $T(0)=0$.
Base-condition check: $\quad T(0)=2^{0}-1$
Induction Hypothesis: $\quad T(n-1)=2^{n-1}-1$
Proof: $\quad T(n)=2 T(n-1)+1=2\left(2^{n-1}-1\right)+1=2^{n}-1$
Types of Recurrence Relations:

- First Order, Second Order, ..., Higher Order
- Linear vs. Non-Linear
- Homogeneous vs. Non-Homogeneous
- Constant vs. Variable Coefficients

Introduction

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.
Natural Computable Functions as Recurrences: Many natural functions are expressed using recurrence relations.

- (linear) $f(n)=f(n-1)+1, f(1)=1 \quad \Rightarrow \quad f(n)=n$
- (polynomial) $f(n)=f(n-1)+n, f(1)=1 \quad \Rightarrow \quad f(n)=\frac{1}{2}\left(n^{2}+n\right)$
- (exponential) $f(n)=2 . f(n-1), f(0)=1 \quad \Rightarrow \quad f(n)=2^{n}$
- (factorial) $\quad f(n)=n \cdot f(n-1), f(0)=1 \quad \Rightarrow \quad f(n)=n!$

Recurrence is Mathematical Induction:
Recurrence: $\quad T(n)=2 T(n-1)+1$ with base condition, $T(0)=0$.
Base-condition check: $\quad T(0)=2^{0}-1$
Induction Hypothesis: $\quad T(n-1)=2^{n-1}-1$
Proof: $\quad T(n)=2 T(n-1)+1=2\left(2^{n-1}-1\right)+1=2^{n}-1$
Types of Recurrence Relations:

- First Order, Second Order, ..., Higher Order
- Linear vs. Non-Linear
- Homogeneous vs. Non-Homogeneous
- Constant vs. Variable Coefficients

Applications: Algorithm Analysis, Counting, Problem Solving, Reasoning etc.

Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.

Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.
Recursive Solution:
(Proposed by Jacob Steiner in 1826)

Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.
Recursive Solution:
(Proposed by Jacob Steiner in 1826)
(1) Observation-0: No line is parallel and co-linear with another.

Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.
Recursive Solution:
(Proposed by Jacob Steiner in 1826)
(1) Observation-0: No line is parallel and co-linear with another.
(2) Observation-1: $(n+1)^{\text {th }}$ line, when introduced into a plane with n lines, intersects with all n line exactly once.

Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane.
Recursive Solution:
(Proposed by Jacob Steiner in 1826)
(1) Observation-0: No line is parallel and co-linear with another.
(2) Observation-1: $(n+1)^{\text {th }}$ line, when introduced into a plane with n lines, intersects with all n line exactly once.
(3) Observation-2: When traversed from one endpoint to another of a newly introduced line, every time at crossing-point of intersection with another line, the new line has created one new region.

Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane. Recursive Solution:
(Proposed by Jacob Steiner in 1826)
(1) Observation-0: No line is parallel and co-linear with another.
(2) Observation-1: $(n+1)^{\text {th }}$ line, when introduced into a plane with n lines, intersects with all n line exactly once.
(3) Observation-2: When traversed from one endpoint to another of a newly introduced line, every time at crossing-point of intersection with another line, the new line has created one new region.
(4) Observation-3: After last intersection, the line cuts the infinite ending region into two (that is, introducing the final new region).

Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane. Recursive Solution:
(1) Observation-0: No line is parallel and co-linear with another.
(2) Observation-1: $(n+1)^{\text {th }}$ line, when introduced into a plane with n lines, intersects with all n line exactly once.
(3) Observation-2: When traversed from one endpoint to another of a newly introduced line, every time at crossing-point of intersection with another line, the new line has created one new region.
4) Observation-3: After last intersection, the line cuts the infinite ending region into two (that is, introducing the final new region).
Recurrence Relation: $L_{n}=$ maximum number of regions created by n lines in a plane.

$$
L_{n}=\left\{\begin{aligned}
L_{n-1}+n, & \text { if } n>0 \\
1, & \text { if } n=0
\end{aligned}\right.
$$

Recurrent Problems

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using n lines in a plane. Recursive Solution:
(1) Observation-0: No line is parallel and co-linear with another.
(2) Observation-1: $(n+1)^{\text {th }}$ line, when introduced into a plane with n lines, intersects with all n line exactly once.
(3) Observation-2: When traversed from one endpoint to another of a newly introduced line, every time at crossing-point of intersection with another line, the new line has created one new region.
4) Observation-3: After last intersection, the line cuts the infinite ending region into two (that is, introducing the final new region).
Recurrence Relation: $L_{n}=$ maximum number of regions created by n lines in a plane.

$$
L_{n}=\left\{\begin{aligned}
L_{n-1}+n, & \text { if } n>0 \\
1, & \text { if } n=0
\end{aligned}\right.
$$

Number of Regions: $L_{n}=L_{n-1}+n=L_{n-2}+(n-1)+n=L_{n-3}+(n-2)+(n-1)+n$

$$
=\cdots=L_{0}+1+2+3+\cdots+(n-2)+(n-1)+n=1+\sum_{i=1}^{n} i=\frac{n(n+1)}{2}+1
$$

Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.

Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.

Recursive Solution:
(Variant of Maximum Regions by Straight Lines Problem)

Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.

Recursive Solution:
(Variant of Maximum Regions by Straight Lines Problem)
(1) Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.

Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.

Recursive Solution:
(Variant of Maximum Regions by Straight Lines Problem)
(1) Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.
(2) Observation-1: A bent-line is like two straight lines except that regions merge when the two lines do not extend past their intersection point.

Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.

Recursive Solution:
(Variant of Maximum Regions by Straight Lines Problem)
(1) Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.
(2) Observation-1: A bent-line is like two straight lines except that regions merge when the two lines do not extend past their intersection point.
(3) Observation-2: The tip point must lie beyond the intersections with the other lines - that is all we lose; that is, we lose only two regions per line.

Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.

Recursive Solution:

(Variant of Maximum Regions by Straight Lines Problem)

(1) Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.
(2) Observation-1: A bent-line is like two straight lines except that regions merge when the two lines do not extend past their intersection point.
(3) Observation-2: The tip point must lie beyond the intersections with the other lines - that is all we lose; that is, we lose only two regions per line.

Recurrence Relation: $V_{n}=$ maximum number of regions created by n bent-lines.

$$
V_{n}=\left\{\begin{aligned}
L_{2 n}-2 n, & \text { if } n>0 \\
1, & \text { if } n=0
\end{aligned}\right.
$$

Recurrent Problems

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.
Recursive Solution:

(Variant of Maximum Regions by Straight Lines Problem)

(1) Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.
(2) Observation-1: A bent-line is like two straight lines except that regions merge when the two lines do not extend past their intersection point.
(3) Observation-2: The tip point must lie beyond the intersections with the other lines - that is all we lose; that is, we lose only two regions per line.

Recurrence Relation: $V_{n}=$ maximum number of regions created by n bent-lines.

$$
V_{n}=\left\{\begin{aligned}
L_{2 n}-2 n, & \text { if } n>0 \\
1, & \text { if } n=0
\end{aligned}\right.
$$

Number of Regions: $\quad V_{n}=L_{2 n}-2 n=\frac{2 n(2 n+1)}{2}+1-2 n=2 n^{2}-n+1$

Recurrent Problems

Tower of Hanoi: n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all n disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recurrent Problems

Tower of Hanoi: n Disk Transfer with 3 Pegs
Recurrent Problem: Number of steps required in transferring all n disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that -
- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).
Recursive Solution:
(Proposed by François Édouard Anatole Lucas in 1883)

Recurrent Problems

Tower of Hanoi: n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all n disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).
Recursive Solution:
(Proposed by François Édouard Anatole Lucas in 1883)
(1) If $n=1$, Move the disk from Peg-A to Peg-B.

Recurrent Problems

Tower of Hanoi: n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all n disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).
Recursive Solution:
(Proposed by François Édouard Anatole Lucas in 1883)
(1) If $n=1$, Move the disk from Peg-A to Peg-B.
(2) If $n>1$, Move top $(n-1)$ disks from Peg-A to Peg-C using Peg-B as auxiliary. Move Largest disk directly from Peg-A to Peg-B. Move ($n-1$) disks from Peg-C to Peg-B using Peg-A as auxiliary.

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all n disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).
Recursive Solution:
(Proposed by François Édouard Anatole Lucas in 1883)
(1) If $n=1$, Move the disk from Peg-A to Peg-B.
(2) If $n>1$, Move top $(n-1)$ disks from Peg-A to Peg-C using Peg-B as auxiliary. Move Largest disk directly from Peg-A to Peg-B. Move ($n-1$) disks from Peg-C to Peg-B using Peg-A as auxiliary.
Recurrence Relation: $T_{n}=$ number of movements for transferring n disks.

$$
T_{n}=\left\{\begin{array}{rl}
T_{n-1}+1+T_{n-1}, & \text { if } n>1 \\
1, & \text { if } n=1
\end{array} \Rightarrow T_{n}=2 T_{n-1}+1(n>1), T_{1}=1\right.
$$

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all n disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).
Recursive Solution:
(Proposed by François Édouard Anatole Lucas in 1883)
(1) If $n=1$, Move the disk from Peg-A to Peg-B.
(2) If $n>1$, Move top $(n-1)$ disks from Peg-A to Peg-C using Peg-B as auxiliary. Move Largest disk directly from Peg-A to Peg-B. Move ($n-1$) disks from Peg-C to Peg-B using Peg-A as auxiliary.
Recurrence Relation: $T_{n}=$ number of movements for transferring n disks.

$$
T_{n}=\left\{\begin{array}{rl}
T_{n-1}+1+T_{n-1}, & \text { if } n>1 \\
1, & \text { if } n=1
\end{array} \Rightarrow T_{n}=2 T_{n-1}+1(n>1), T_{1}=1\right.
$$

Number of Moves: $T_{n}=2 T_{n-1}+1=2^{2} T_{n-2}+2+1=2^{3} T_{n-3}+2^{2}+2+1=\cdots$

$$
=2^{n-1} T_{1}+2^{n-2}+2^{n-3}+\cdots+2^{2}+2^{1}+2^{0}=\sum_{i=0}^{n-1} 2^{i}=2^{n}-1
$$

Recurrent Problems

Tower of Hanoi:
n Disk Transfer with 4 Pegs
Recurrent Problem: Number of steps required in transferring n different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).
Recursive Solution:
(Proposed by J.S. Frame and B.M. Stewart in 1941)

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:
(Proposed by J.S. Frame and B.M. Stewart in 1941)
(1) If $n \leq 3$, Solve the problem directly using 3 pegs.

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

> (Proposed by J.S. Frame and B.M. Stewart in 1941)
(1) If $n \leq 3$, Solve the problem directly using 3 pegs.
(2) Fix a value of k in the range $1 \leq k \leq n$.

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:
(Proposed by J.S. Frame and B.M. Stewart in 1941)
(1) If $n \leq 3$, Solve the problem directly using 3 pegs.
(2) Fix a value of k in the range $1 \leq k \leq n$.
(3) Keep the k largest disks on Peg-A, and transfer the smallest ($n-k$) disks from Peg-A to Peg-D.

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

> (Proposed by J.S. Frame and B.M. Stewart in 1941)
(1) If $n \leq 3$, Solve the problem directly using 3 pegs.
(2) Fix a value of k in the range $1 \leq k \leq n$.
(3) Keep the k largest disks on Peg-A, and transfer the smallest ($n-k$) disks from Peg-A to Peg-D.
(4) Transfer the largest k disks from Peg-A to Peg-B without disturbing the smallest $(n-k)$ disks already sitting on Peg-D. (Since larger disk can never be above smaller disk, Peg-D is unusable in this part, that is, we solve 3-peg Tower-of-Hanoi problem on k disks.)

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring n different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that -

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

(Proposed by J.S. Frame and B.M. Stewart in 1941)

(1) If $n \leq 3$, Solve the problem directly using 3 pegs.
(2) Fix a value of k in the range $1 \leq k \leq n$.
(3) Keep the k largest disks on Peg-A, and transfer the smallest ($n-k$) disks from Peg-A to Peg-D.
(4) Transfer the largest k disks from Peg-A to Peg-B without disturbing the smallest $(n-k)$ disks already sitting on Peg-D. (Since larger disk can never be above smaller disk, Peg-D is unusable in this part, that is, we solve 3-peg Tower-of-Hanoi problem on k disks.)
(5) Transfer the smallest $(n-k)$ disks from Peg-D to Peg-B without disturbing the largest k disks on Peg-B.
(In this step, all the four pegs can be used.)

Recurrent Problems

Tower of Hanoi:
 n Disk Transfer with 4 Pegs

Step-2: Movement of Larger Part using 3-Pegs

Step-4: Recursive Solution for Smaller Part

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Step-0: Initial Configuration

Recurrence Relation: $H_{n}=$ number of movements for transferring n disks with 4 -pegs.
$T_{n}=$ number of movements for transferring n disks with 3-pegs.

$$
\therefore H_{n}=\left\{\begin{aligned}
H_{n-k}+T_{k}+H_{n-k} & =2 H_{n-k}+2^{k}-1, & & \text { if } n>3 \\
T_{n} & =2^{n}-1, & & \text { if } 0 \leq n \leq 3
\end{aligned}\right.
$$

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Step-0: Initial Configuration

Step-1: Recursive Solution for Smaller Part

Recurrence Relation: $H_{n}=$ number of movements for transferring n disks with 4-pegs.
$T_{n}=$ number of movements for transferring n disks with 3-pegs.

$$
\therefore H_{n}=\left\{\begin{aligned}
H_{n-k}+T_{k}+H_{n-k} & =2 H_{n-k}+2^{k}-1, & & \text { if } n>3 \\
T_{n} & =2^{n}-1, & & \text { if } 0 \leq n \leq 3
\end{aligned}\right.
$$

Number of Moves: Depends on best choice of k. For simplicity, let us assume $n=u k$.

$$
\begin{aligned}
U_{n} & \approx 2 U_{n-k}+2^{k} \approx 2^{2} U_{n-2 k}+(2+1) \cdot 2^{k} \approx 2^{3} U_{n-3 k}+\left(2^{2}+2+1\right) \cdot 2^{k} \\
& \approx \cdots \approx 2^{u-1} U_{k}+\left(2^{u-2}+2^{u-3}+\cdots+2^{2}+2^{1}+2^{0}\right) \cdot 2^{k} \\
& \approx\left(\sum_{i=0}^{u-1} 2^{i}\right) \cdot 2^{k}=2^{u+k}=2^{\frac{n}{k}+k} \quad \text { (by Paul Stockmeyer in 1994) }
\end{aligned}
$$

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Step-0: Initial Configuration

Step-1: Recursive Solution for Smaller Part

Recurrence Relation: $H_{n}=$ number of movements for transferring n disks with 4-pegs.
$T_{n}=$ number of movements for transferring n disks with 3-pegs.

$$
\therefore H_{n}=\left\{\begin{aligned}
H_{n-k}+T_{k}+H_{n-k} & =2 H_{n-k}+2^{k}-1, & & \text { if } n>3 \\
T_{n} & =2^{n}-1, & & \text { if } 0 \leq n \leq 3
\end{aligned}\right.
$$

Number of Moves: Depends on best choice of k. For simplicity, let us assume $n=u k$.

$$
\begin{aligned}
U_{n} & \approx 2 U_{n-k}+2^{k} \approx 2^{2} U_{n-2 k}+(2+1) \cdot 2^{k} \approx 2^{3} U_{n-3 k}+\left(2^{2}+2+1\right) \cdot 2^{k} \\
& \approx \cdots \approx 2^{u-1} U_{k}+\left(2^{u-2}+2^{u-3}+\cdots+2^{2}+2^{1}+2^{0}\right) \cdot 2^{k} \\
& \approx\left(\sum_{i=0}^{u-1} 2^{i}\right) \cdot 2^{k}=2^{u+k}=2^{\frac{n}{k}+k} \quad \text { (by Paul Stockmeyer in 1994) }
\end{aligned}
$$

Since, $\left(\frac{n}{k}+k\right)$ can be minimized for $k=\sqrt{n}$, therefore $U_{n} \approx 2^{2 \sqrt{n}}$.

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}=c . t_{n}$, where $n \geq 0$ and c is a constant
Boundary Condition: $t_{0}=B$, where B is a constant

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}=c . t_{n}$, where $n \geq 0$ and c is a constant
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=c \cdot t_{n-1}=c^{2} \cdot t_{n-2}=\cdots=c^{i} \cdot t_{n-i}=\cdots=c^{n} \cdot t_{0}=B \cdot c^{n}$, for $n \geq 0$

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}=c . t_{n}$, where $n \geq 0$ and c is a constant
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=c \cdot t_{n-1}=c^{2} \cdot t_{n-2}=\cdots=c^{i} \cdot t_{n-i}=\cdots=c^{n} \cdot t_{0}=B \cdot c^{n}$, for $n \geq 0$

Example

(1) $a_{n}=3 \cdot a_{n-1}$ where $n \geq 1$ and $a_{2}=18$. Clearly, $a_{2}=3^{2} \cdot a_{0}=18 \Rightarrow a_{0}=2$. So, $a_{n}=2.3^{n}$ for $n \geq 0$ is the unique solution.

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}=c . t_{n}$, where $n \geq 0$ and c is a constant
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=c \cdot t_{n-1}=c^{2} \cdot t_{n-2}=\cdots=c^{i} \cdot t_{n-i}=\cdots=c^{n} \cdot t_{0}=B \cdot c^{n}$, for $n \geq 0$

Example

(1) $a_{n}=3 \cdot a_{n-1}$ where $n \geq 1$ and $a_{2}=18$. Clearly, $a_{2}=3^{2} \cdot a_{0}=18 \Rightarrow a_{0}=2$. So, $a_{n}=2.3^{n}$ for $n \geq 0$ is the unique solution.
(2) Number of Different Summands of $n: s_{n+1}=2 . s_{n}$ where $n \geq 1$ with boundary condition $s_{1}=1$.

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}=c . t_{n}$, where $n \geq 0$ and c is a constant
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=c \cdot t_{n-1}=c^{2} \cdot t_{n-2}=\cdots=c^{i} \cdot t_{n-i}=\cdots=c^{n} \cdot t_{0}=B \cdot c^{n}$, for $n \geq 0$

Example

(1) $a_{n}=3 \cdot a_{n-1}$ where $n \geq 1$ and $a_{2}=18$. Clearly, $a_{2}=3^{2} \cdot a_{0}=18 \Rightarrow a_{0}=2$. So, $a_{n}=2.3^{n}$ for $n \geq 0$ is the unique solution.
(2) Number of Different Summands of $n: s_{n+1}=2 . s_{n}$ where $n \geq 1$ with boundary condition $s_{1}=1$. To directly apply the formula proposed, let $t_{n}=s_{n+1}$, which formulates the reccurence as, $t_{n}=2 . t_{n-1}$ where $n \geq 0$ with $t_{0}=1$. So, $t_{n}=1.2^{n}$. Now, $s_{n}=t_{n-1}=2^{n-1}$ for $n \geq 1$.

Different Summands of 3		Different Summands of 4			
$(1) 3$	$(2) 1+2$	$\left(1^{\prime}\right) 4$	$\left(2^{\prime}\right) 1+3$	$\left(3^{\prime}\right) 2+2$	$\left(4^{\prime}\right) 1+1+2$
$(3) 2+1$	$(4) 1+1+1$	$\left(1^{\prime \prime}\right) 3+1$	$\left(2^{\prime \prime}\right) 1+2+1$	$\left(3^{\prime \prime}\right) 2+1+1$	$\left(4^{\prime \prime}\right) 1+1+1+1$

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1}=f(n) . t_{n}$, where $n \geq 0$
Boundary Condition: $t_{0}=B$, where B is a constant

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1}=f(n) . t_{n}$, where $n \geq 0$
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=f(n-1) \cdot t_{n-1}=f(n-2) \cdot f(n-1) \cdot t_{n-2}=\cdots=B \cdot\left[\prod_{k=1}^{n} f(n-k)\right]$

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1}=f(n) . t_{n}$, where $n \geq 0$
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=f(n-1) \cdot t_{n-1}=f(n-2) \cdot f(n-1) \cdot t_{n-2}=\cdots=B \cdot\left[\prod_{k=1}^{n} f(n-k)\right]$
Example: (Factorials) $f_{n}=n \cdot f_{n-1}, n \geq 1$ and $f_{0}=1$. Solution: $f_{n}=n!(n \geq 0)$.

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1}=f(n) . t_{n}$, where $n \geq 0$
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=f(n-1) \cdot t_{n-1}=f(n-2) \cdot f(n-1) \cdot t_{n-2}=\cdots=B \cdot\left[\prod_{k=1}^{n} f(n-k)\right]$
Example: (Factorials) $f_{n}=n \cdot f_{n-1}, n \geq 1$ and $f_{0}=1$. Solution: $f_{n}=n!(n \geq 0)$.

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}^{k}=c . t_{n}^{k}$, where $t_{n}>0$ for $n \geq 0$ and c, k are constants
Boundary Condition: $t_{0}=B$, where B is a constant

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1}=f(n) . t_{n}$, where $n \geq 0$
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=f(n-1) \cdot t_{n-1}=f(n-2) \cdot f(n-1) \cdot t_{n-2}=\cdots=B \cdot\left[\prod_{k=1}^{n} f(n-k)\right]$
Example: (Factorials) $f_{n}=n . f_{n-1}, n \geq 1$ and $f_{0}=1$. Solution: $f_{n}=n!(n \geq 0)$.

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}^{k}=c . t_{n}^{k}$, where $t_{n}>0$ for $n \geq 0$ and c, k are constants
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: Let $r_{n}=t_{n}^{k}$. So, the recurrence becomes, $r_{n+1}=c . r_{n}$ for $n \geq 0$ and $r_{0}=B^{k}$. Hence, $t_{n}^{k}=r_{n}=B^{k} . c^{n}$ implying $t_{n}=B \cdot(\sqrt[k]{c})^{n}$ for $n \geq 0$.

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1}=f(n) . t_{n}$, where $n \geq 0$
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=f(n-1) \cdot t_{n-1}=f(n-2) \cdot f(n-1) \cdot t_{n-2}=\cdots=B \cdot\left[\prod_{k=1}^{n} f(n-k)\right]$
Example: (Factorials) $f_{n}=n \cdot f_{n-1}, n \geq 1$ and $f_{0}=1$. Solution: $f_{n}=n!(n \geq 0)$.

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}^{k}=c . t_{n}^{k}$, where $t_{n}>0$ for $n \geq 0$ and c, k are constants
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: Let $r_{n}=t_{n}^{k}$. So, the recurrence becomes, $r_{n+1}=c . r_{n}$ for $n \geq 0$ and $r_{0}=B^{k}$. Hence, $t_{n}^{k}=r_{n}=B^{k} . c^{n}$ implying $t_{n}=B \cdot(\sqrt[k]{c})^{n}$ for $n \geq 0$.
Example (a small Variation): $\log _{2} a_{n+1}=2 . \log _{2} a_{n}$ for $n \geq 0$ and $a_{0}=2$.
Putting $b_{n}=\log _{2} a_{n}$ gives $b_{n+1}=2 . b_{n}$ and $b_{0}=1$.
So, $b_{n}=2^{n}$ and hence $a_{n}=2^{2^{n}}$ for $n \geq 0$.

Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients
General Form: $t_{n+1}+d . t_{n}=f(n)$ or alternatively, $t_{n+1}=c . t_{n}+f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \geq 0$ and $c=-d$ is a constant
Boundary Condition: $t_{0}=B$, where B is a constant

Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients
General Form: $t_{n+1}+d . t_{n}=f(n)$ or alternatively, $t_{n+1}=c . t_{n}+f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \geq 0$ and $c=-d$ is a constant
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=c \cdot t_{n-1}+f(n-1)=c^{2} \cdot t_{n-2}+c^{1} \cdot f(n-2)+f(n-1)=\cdots$

$$
=c^{i} \cdot t_{n-i}+\sum_{k=0}^{i-1} c^{k} \cdot f(n-i+k)=\cdots=B \cdot c^{n}+\sum_{k=0}^{n-1} c^{k} \cdot f(k), \text { for } n \geq 0
$$

Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}+d . t_{n}=f(n)$ or alternatively, $t_{n+1}=c . t_{n}+f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \geq 0$ and $c=-d$ is a constant
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=c \cdot t_{n-1}+f(n-1)=c^{2} \cdot t_{n-2}+c^{1} \cdot f(n-2)+f(n-1)=\cdots$

$$
=c^{i} \cdot t_{n-i}+\sum_{k=0}^{i-1} c^{k} \cdot f(n-i+k)=\cdots=B \cdot c^{n}+\sum_{k=0}^{n-1} c^{k} \cdot f(k), \text { for } n \geq 0
$$

Example: (Comparisons in Sorting) - Bubble, Selection and Insertion $a_{n}=a_{n-1}+(n-1)$ where $n \geq 2$ and $a_{1}=0$.
Hence, the solution, $a_{n}=0+\sum_{k=1}^{n-1} k=\frac{n^{2}-n}{2} . \quad \Rightarrow O\left(n^{2}\right)$

Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}+d . t_{n}=f(n)$ or alternatively, $t_{n+1}=c . t_{n}+f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \geq 0$ and $c=-d$ is a constant
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=c \cdot t_{n-1}+f(n-1)=c^{2} \cdot t_{n-2}+c^{1} . f(n-2)+f(n-1)=\cdots$

$$
=c^{i} \cdot t_{n-i}+\sum_{k=0}^{i-1} c^{k} \cdot f(n-i+k)=\cdots=B \cdot c^{n}+\sum_{k=0}^{n-1} c^{k} \cdot f(k), \text { for } n \geq 0
$$

Example: (Comparisons in Sorting) - Bubble, Selection and Insertion $a_{n}=a_{n-1}+(n-1)$ where $n \geq 2$ and $a_{1}=0$.
Hence, the solution, $a_{n}=0+\sum_{k=1}^{n-1} k=\frac{n^{2}-n}{2} . \quad \Rightarrow O\left(n^{2}\right)$

- ($n^{\text {th }}$ term in Sequence) $0,2,6,12,20,30,42, \ldots$
$a_{n}=a_{n-1}+2 n$ where $n \geq 1$ and $a_{0}=0$. (How?)
Since $a_{1}-a_{0}=2, a_{2}-a_{1}=4, a_{3}-a_{2}=6, a_{4}-a_{3}=8, a_{5}-a_{4}=10, a_{6}-a_{5}=12$, therefore $a_{n}-a_{0}=2+4+\cdots+2 n=n^{2}+n$, implies $a_{n}=n^{2}+n$.

Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}+d . t_{n}=f(n)$ or alternatively, $t_{n+1}=c . t_{n}+f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \geq 0$ and $c=-d$ is a constant
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=c \cdot t_{n-1}+f(n-1)=c^{2} . t_{n-2}+c^{1} . f(n-2)+f(n-1)=\cdots$

$$
=c^{i} \cdot t_{n-i}+\sum_{k=0}^{i-1} c^{k} \cdot f(n-i+k)=\cdots=B \cdot c^{n}+\sum_{k=0}^{n-1} c^{k} \cdot f(k), \text { for } n \geq 0
$$

Example: (Comparisons in Sorting) - Bubble, Selection and Insertion $a_{n}=a_{n-1}+(n-1)$ where $n \geq 2$ and $a_{1}=0$.
Hence, the solution, $a_{n}=0+\sum_{k=1}^{n-1} k=\frac{n^{2}-n}{2} . \quad \Rightarrow O\left(n^{2}\right)$

- ($n^{\text {th }}$ term in Sequence) $0,2,6,12,20,30,42, \ldots$
$a_{n}=a_{n-1}+2 n$ where $n \geq 1$ and $a_{0}=0$. (How?)
Since $a_{1}-a_{0}=2, a_{2}-a_{1}=4, a_{3}-a_{2}=6, a_{4}-a_{3}=8, a_{5}-a_{4}=10, a_{6}-a_{5}=12$, therefore $a_{n}-a_{0}=2+4+\cdots+2 n=n^{2}+n$, implies $a_{n}=n^{2}+n$.

First-Order Linear Non-Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1}=f(n) \cdot t_{n}+g(n)$, where $g(n) \neq 0$ for $n \geq 0$ and $t_{0}=B$ (constant)

Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}+d . t_{n}=f(n)$ or alternatively, $t_{n+1}=c . t_{n}+f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \geq 0$ and $c=-d$ is a constant
Boundary Condition: $t_{0}=B$, where B is a constant
Solution: $t_{n}=c \cdot t_{n-1}+f(n-1)=c^{2} . t_{n-2}+c^{1} . f(n-2)+f(n-1)=\cdots$

$$
=c^{i} \cdot t_{n-i}+\sum_{k=0}^{i-1} c^{k} \cdot f(n-i+k)=\cdots=B \cdot c^{n}+\sum_{k=0}^{n-1} c^{k} \cdot f(k), \text { for } n \geq 0
$$

Example: (Comparisons in Sorting) - Bubble, Selection and Insertion

$$
a_{n}=a_{n-1}+(n-1) \text { where } n \geq 2 \text { and } a_{1}=0
$$

Hence, the solution, $a_{n}=0+\sum_{k=1}^{n-1} k=\frac{n^{2}-n}{2} . \quad \Rightarrow O\left(n^{2}\right)$

- ($n^{\text {th }}$ term in Sequence) $0,2,6,12,20,30,42, \ldots$
$a_{n}=a_{n-1}+2 n$ where $n \geq 1$ and $a_{0}=0$. (How?)
Since $a_{1}-a_{0}=2, a_{2}-a_{1}=4, a_{3}-a_{2}=6, a_{4}-a_{3}=8, a_{5}-a_{4}=10, a_{6}-a_{5}=12$, therefore $a_{n}-a_{0}=2+4+\cdots+2 n=n^{2}+n$, implies $a_{n}=n^{2}+n$.

First-Order Linear Non-Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1}=f(n) \cdot t_{n}+g(n)$, where $g(n) \neq 0$ for $n \geq 0$ and $t_{0}=B$ (constant)
Generic Solution: $t_{n}=B \cdot\left[\prod_{k=0}^{n-1} f(k)\right]+\sum_{k=1}^{n-1}\left[\prod_{j=1}^{k-1} f(n-j)\right] \cdot g(n-k)$, for $n \geq 0$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

$$
\begin{aligned}
\text { General Form: } & C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2) \text { and } t_{0}=D_{0}, t_{1}=D_{1} ; \\
& C_{0}(\neq 0), C_{1}, C_{2}(\neq 0) \text { and } D_{0}, D_{1} \text { all are constants. }
\end{aligned}
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}, C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot C \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot c \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}, C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot c \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Distinct Real Roots as, $R_{1}=\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}, R_{2}=\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$;

$$
C_{0}(\neq 0), C_{1}, C_{2}(\neq 0) \text { and } D_{0}, D_{1} \text { all are constants. }
$$

Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Distinct Real Roots as, $R_{1}=\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}, R_{2}=\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}$
Exact Solution: As $t_{n}=A_{1} \cdot R_{1}^{n}$ and $t_{n}=A_{2} \cdot R_{2}^{n}$ are linearly independent solutions, so

$$
t_{n}=A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}=A_{1} \cdot\left(\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}+A_{2} \cdot\left(\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}
$$

(Here, A_{1} and A_{2} are arbitrary constants)

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$;

$$
C_{0}(\neq 0), C_{1}, C_{2}(\neq 0) \text { and } D_{0}, D_{1} \text { all are constants. }
$$

Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot c \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Distinct Real Roots as, $R_{1}=\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}, R_{2}=\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}$
Exact Solution: As $t_{n}=A_{1} \cdot R_{1}^{n}$ and $t_{n}=A_{2} \cdot R_{2}^{n}$ are linearly independent solutions, so

$$
t_{n}=A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}=A_{1} \cdot\left(\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}+A_{2} \cdot\left(\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}
$$

(Here, A_{1} and A_{2} are arbitrary constants)
Constant Determination: $A_{1}+A_{2}=t_{0}=D_{0}$ and $A_{1}-A_{2}=\frac{2 C_{0} D_{1}+C_{1} D_{0}}{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}$

$$
\left.\begin{array}{l}
\text { because, } D_{1}=t_{1}=\left(A_{1}+A_{2}\right) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)+\left(A_{1}-A_{2}\right) \cdot\left(\frac{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right.
\end{array}\right) .
$$

Solving Second－Order Recurrence Relations

Second－Order Linear Homogeneous Recurrence with Constant Coefficients

General Form：$C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$ ；

$$
C_{0}(\neq 0), C_{1}, C_{2}(\neq 0) \text { and } D_{0}, D_{1} \text { all are constants. }
$$

Characteristic Equation：Seeking a solution，$t_{n}=c \cdot x^{n}(c, x \neq 0)$ ，after substitution，

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot c \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots： 2 Distinct Real Roots as，$R_{1}=\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}, R_{2}=\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}$
Exact Solution：As $t_{n}=A_{1} \cdot R_{1}^{n}$ and $t_{n}=A_{2} \cdot R_{2}^{n}$ are linearly independent solutions，so

$$
t_{n}=A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}=A_{1} \cdot\left(\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}+A_{2} \cdot\left(\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}
$$

（Here，A_{1} and A_{2} are arbitrary constants）
Constant Determination：$A_{1}+A_{2}=t_{0}=D_{0}$ and $A_{1}-A_{2}=\frac{2 C_{0} D_{1}+C_{1} D_{0}}{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}$

$$
\left.\begin{array}{l}
\text { because, } D_{1}=t_{1}=\left(A_{1}+A_{2}\right) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)+\left(A_{1}-A_{2}\right) \cdot\left(\frac{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right.
\end{array}\right) .
$$

Unique Solution：

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$;

$$
C_{0}(\neq 0), C_{1}, C_{2}(\neq 0) \text { and } D_{0}, D_{1} \text { all are constants. }
$$

Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot c \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Distinct Real Roots as, $R_{1}=\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}, R_{2}=\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}$
Exact Solution: As $t_{n}=A_{1} \cdot R_{1}^{n}$ and $t_{n}=A_{2} \cdot R_{2}^{n}$ are linearly independent solutions, so

$$
t_{n}=A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}=A_{1} \cdot\left(\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}+A_{2} \cdot\left(\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}
$$

(Here, A_{1} and A_{2} are arbitrary constants)
Constant Determination: $A_{1}+A_{2}=t_{0}=D_{0}$ and $A_{1}-A_{2}=\frac{2 C_{0} D_{1}+C_{1} D_{0}}{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}$

$$
\begin{aligned}
& \text { because, } D_{1}=t_{1}=\left(A_{1}+A_{2}\right) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)+\left(A_{1}-A_{2}\right) \cdot\left(\frac{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right) \\
& \quad \therefore A_{1}=\frac{1}{2}\left(D_{0}+\frac{2 C_{0} D_{1}+C_{1} D_{0}}{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}\right) \text { and } A_{2}=\frac{1}{2}\left(D_{0}-\frac{2 C_{0} D_{1}+C_{1} D_{0}}{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}\right) .
\end{aligned}
$$

Unique Solution:
$\therefore t_{n}=\frac{1}{2}\left[\left(D_{0}+\frac{2 C_{0} D_{1}+C_{1} D_{0}}{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}\right) \cdot\left(\frac{-C_{1}+\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}+\left(D_{0}-\frac{2 C_{0} D_{1}+C_{1} D_{0}}{\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}\right) \cdot\left(\frac{-C_{1}-\sqrt{C_{1}^{2}-4 C_{0} C_{2}}}{2 C_{0}}\right)^{n}\right]$

Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2}=F_{n+1}+F_{n}$, where $n \geq 0$ and $F_{0}=0, F_{1}=1$

Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2}=F_{n+1}+F_{n}$, where $n \geq 0$ and $F_{0}=0, F_{1}=1$
Substituting with $F_{n}=c \cdot x^{n}(c, x \neq 0)$, we get $c x^{n+2}=c x^{n+1}+c x^{n}$.
Characteristic Equation $x^{2}-x-1=0$ has two distinct roots, $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$.

Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2}=F_{n+1}+F_{n}$, where $n \geq 0$ and $F_{0}=0, F_{1}=1$ Substituting with $F_{n}=c \cdot x^{n}(c, x \neq 0)$, we get $c x^{n+2}=c x^{n+1}+c x^{n}$.
Characteristic Equation $x^{2}-x-1=0$ has two distinct roots, $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Hence, $F_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$, with the constants derived as, $c_{1}=\frac{1}{\sqrt{5}}, c_{2}=-\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_{n}=\frac{1}{\sqrt{5}}\left[\alpha^{n}-\beta^{n}\right] \quad(\alpha=1-\beta$ is called the Golden Ratio)

Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2}=F_{n+1}+F_{n}$, where $n \geq 0$ and $F_{0}=0, F_{1}=1$ Substituting with $F_{n}=c \cdot x^{n}(c, x \neq 0)$, we get $c x^{n+2}=c x^{n+1}+c x^{n}$.
Characteristic Equation $x^{2}-x-1=0$ has two distinct roots, $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Hence, $F_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$, with the constants derived as, $c_{1}=\frac{1}{\sqrt{5}}, c_{2}=-\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_{n}=\frac{1}{\sqrt{5}}\left[\alpha^{n}-\beta^{n}\right] \quad(\alpha=1-\beta$ is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of $\mathcal{S}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is $=a_{n}$ If $n=0 \Rightarrow \mathcal{S}=\phi, a_{0}=1 . \quad$ If $n=1 \Rightarrow \mathcal{S}=\left\{x_{1}\right\}, a_{1}=2$.

Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2}=F_{n+1}+F_{n}$, where $n \geq 0$ and $F_{0}=0, F_{1}=1$ Substituting with $F_{n}=c \cdot x^{n}(c, x \neq 0)$, we get $c x^{n+2}=c x^{n+1}+c x^{n}$.
Characteristic Equation $x^{2}-x-1=0$ has two distinct roots, $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Hence, $F_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$, with the constants derived as, $c_{1}=\frac{1}{\sqrt{5}}, c_{2}=-\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_{n}=\frac{1}{\sqrt{5}}\left[\alpha^{n}-\beta^{n}\right] \quad(\alpha=1-\beta$ is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of $\mathcal{S}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is $=a_{n}$ If $n=0 \Rightarrow \mathcal{S}=\phi, a_{0}=1 . \quad$ If $n=1 \Rightarrow \mathcal{S}=\left\{x_{1}\right\}, a_{1}=2$.
Let $n \geq 2$ and $\mathcal{A} \subseteq \mathcal{S}=\left\{x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right\}$, a_{n} can be contributed from:

- When $x_{n} \in \mathcal{A} \Rightarrow x_{n-1} \notin \mathcal{A}, \therefore \mathcal{A}$ may be counted in a_{n-2} ways.
- When $x_{n} \notin \mathcal{A}, \therefore \mathcal{A}$ may be counted in a_{n-1} ways.

Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2}=F_{n+1}+F_{n}$, where $n \geq 0$ and $F_{0}=0, F_{1}=1$ Substituting with $F_{n}=c \cdot x^{n}(c, x \neq 0)$, we get $c x^{n+2}=c x^{n+1}+c x^{n}$.
Characteristic Equation $x^{2}-x-1=0$ has two distinct roots, $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Hence, $F_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$, with the constants derived as, $c_{1}=\frac{1}{\sqrt{5}}, c_{2}=-\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_{n}=\frac{1}{\sqrt{5}}\left[\alpha^{n}-\beta^{n}\right] \quad(\alpha=1-\beta$ is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of $\mathcal{S}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is $=a_{n}$ If $n=0 \Rightarrow \mathcal{S}=\phi, a_{0}=1 . \quad$ If $n=1 \Rightarrow \mathcal{S}=\left\{x_{1}\right\}, a_{1}=2$.
Let $n \geq 2$ and $\mathcal{A} \subseteq \mathcal{S}=\left\{x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right\}$, a_{n} can be contributed from:

- When $x_{n} \in \mathcal{A} \Rightarrow x_{n-1} \notin \mathcal{A}, \therefore \mathcal{A}$ may be counted in a_{n-2} ways.
- When $x_{n} \notin \mathcal{A}, \therefore \mathcal{A}$ may be counted in a_{n-1} ways.

Recurrence Relation: $a_{n}=a_{n-1}+a_{n-2}(n \geq 2)$ and $a_{0}=1, a_{1}=2$.

Solving Second-Order Recurrence Relations

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2}=F_{n+1}+F_{n}$, where $n \geq 0$ and $F_{0}=0, F_{1}=1$
Substituting with $F_{n}=c \cdot x^{n}(c, x \neq 0)$, we get $c x^{n+2}=c x^{n+1}+c x^{n}$.
Characteristic Equation $x^{2}-x-1=0$ has two distinct roots, $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Hence, $F_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$, with the constants derived as, $c_{1}=\frac{1}{\sqrt{5}}, c_{2}=-\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_{n}=\frac{1}{\sqrt{5}}\left[\alpha^{n}-\beta^{n}\right] \quad(\alpha=1-\beta$ is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of $\mathcal{S}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is $=a_{n}$ If $n=0 \Rightarrow \mathcal{S}=\phi, a_{0}=1 . \quad$ If $n=1 \Rightarrow \mathcal{S}=\left\{x_{1}\right\}, a_{1}=2$.
Let $n \geq 2$ and $\mathcal{A} \subseteq \mathcal{S}=\left\{x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right\}$, a_{n} can be contributed from:

- When $x_{n} \in \mathcal{A} \Rightarrow x_{n-1} \notin \mathcal{A}, \therefore \mathcal{A}$ may be counted in a_{n-2} ways.
- When $x_{n} \notin \mathcal{A}, \therefore \mathcal{A}$ may be counted in a_{n-1} ways.

Recurrence Relation: $a_{n}=a_{n-1}+a_{n-2}(n \geq 2)$ and $a_{0}=1, a_{1}=2$.
Solution: $a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right], n \geq 0 \quad$ (Note that, $a_{n}=F_{n+2}$)

Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive Os)

Let, $b_{n}=$ number of such binary strings of length n;
$b_{n}^{(0)}=$ count of such strings ending with 0 and $b_{n}^{(1)}=$ count of such strings ending with 1

Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive Os)

Let, $b_{n}=$ number of such binary strings of length n;
$b_{n}^{(0)}=$ count of such strings ending with 0 and $b_{n}^{(1)}=$ count of such strings ending with 1 Recurrence Relation: $b_{n}=2 . b_{n-1}^{(1)}+b_{n-1}^{(0)}=b_{n-1}^{(1)}+b_{n-1}=b_{n-2}+b_{n-1}(n \geq 3)$ and

$$
b_{1}=2, b_{2}=3, \text { implying } b_{0}=b_{2}-b_{1}=1
$$

Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive Os)

Let, $b_{n}=$ number of such binary strings of length n;
$b_{n}^{(0)}=$ count of such strings ending with 0 and $b_{n}^{(1)}=$ count of such strings ending with 1 Recurrence Relation: $b_{n}=2 . b_{n-1}^{(1)}+b_{n-1}^{(0)}=b_{n-1}^{(1)}+b_{n-1}=b_{n-2}+b_{n-1}(n \geq 3)$ and

$$
b_{1}=2, b_{2}=3, \text { implying } b_{0}=b_{2}-b_{1}=1
$$

Solution: $b_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right], n \geq 0 \quad$ (Note that, $b_{n}=F_{n+2}$)

Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive Os)

Let, $b_{n}=$ number of such binary strings of length n;
$b_{n}^{(0)}=$ count of such strings ending with 0 and $b_{n}^{(1)}=$ count of such strings ending with 1 Recurrence Relation: $b_{n}=2 . b_{n-1}^{(1)}+b_{n-1}^{(0)}=b_{n-1}^{(1)}+b_{n-1}=b_{n-2}+b_{n-1}(n \geq 3)$ and

$$
b_{1}=2, b_{2}=3, \text { implying } b_{0}=b_{2}-b_{1}=1
$$

Solution: $b_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right], n \geq 0 \quad$ (Note that, $b_{n}=F_{n+2}$)

Example ($2 \times n$ Chessboard Tiling using Dominoes)

Let, $t_{n}=$ number of ways to tile $2 \times n\left(n \in \mathbb{Z}^{+}\right)$chessboard.

Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive Os)

Let, $b_{n}=$ number of such binary strings of length n;
$b_{n}^{(0)}=$ count of such strings ending with 0 and $b_{n}^{(1)}=$ count of such strings ending with 1 Recurrence Relation: $b_{n}=2 . b_{n-1}^{(1)}+b_{n-1}^{(0)}=b_{n-1}^{(1)}+b_{n-1}=b_{n-2}+b_{n-1}(n \geq 3)$ and

$$
b_{1}=2, b_{2}=3, \text { implying } b_{0}=b_{2}-b_{1}=1
$$

Solution: $b_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right], n \geq 0 \quad$ (Note that, $b_{n}=F_{n+2}$)

Example ($2 \times n$ Chessboard Tiling using Dominoes)

Let, $t_{n}=$ number of ways to tile $2 \times n\left(n \in \mathbb{Z}^{+}\right)$chessboard.
Recurrence Relation: $t_{n}=t_{n-1}+t_{n-2}(n \geq 2)$ and $t_{1}=1, t_{2}=2$

Chessboard

Dominoes

Types of Tiling Covers

Solving Second-Order Recurrence Relations

Example (Count of Binary Strings having NO consecutive Os)

Let, $b_{n}=$ number of such binary strings of length n;
$b_{n}^{(0)}=$ count of such strings ending with 0 and $b_{n}^{(1)}=$ count of such strings ending with 1 Recurrence Relation: $b_{n}=2 . b_{n-1}^{(1)}+b_{n-1}^{(0)}=b_{n-1}^{(1)}+b_{n-1}=b_{n-2}+b_{n-1}(n \geq 3)$ and

$$
b_{1}=2, b_{2}=3, \text { implying } b_{0}=b_{2}-b_{1}=1
$$

Solution: $b_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right], n \geq 0 \quad$ (Note that, $b_{n}=F_{n+2}$)

Example ($2 \times n$ Chessboard Tiling using Dominoes)

Let, $t_{n}=$ number of ways to tile $2 \times n\left(n \in \mathbb{Z}^{+}\right)$chessboard.
Recurrence Relation: $t_{n}=t_{n-1}+t_{n-2}(n \geq 2)$ and $t_{1}=1, t_{2}=2$

Chessboard

Types of Tiling Covers

Solution: $t_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right], n \geq 0$

Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: $0,1,2, \ldots, 9$ and 4 binary operation symbols: $+,-, *, /$ $e_{n}=$ number of legal arithmetic expressions with n symbols.

Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: $0,1,2, \ldots, 9$ and 4 binary operation symbols: $+,-, *, /$ $e_{n}=$ number of legal arithmetic expressions with n symbols.
Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_{n} : $10 e_{n-1}$ (last two symbols as digits) and $39 e_{n-2}$ (last two symbol as operator and digit)

Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: $0,1,2, \ldots, 9$ and 4 binary operation symbols: $+,-, *, /$ $e_{n}=$ number of legal arithmetic expressions with n symbols.
Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_{n} : $10 e_{n-1}$ (last two symbols as digits) and $39 e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_{n}=10 e_{n-1}+39 e_{n-2}(n \geq 0)$ and $e_{1}=10, e_{2}=100 \Rightarrow e_{0}=0$

Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: $0,1,2, \ldots, 9$ and 4 binary operation symbols: $+,-, *, /$ $e_{n}=$ number of legal arithmetic expressions with n symbols.
Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_{n} : $10 e_{n-1}$ (last two symbols as digits) and $39 e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_{n}=10 e_{n-1}+39 e_{n-2}(n \geq 0)$ and $e_{1}=10, e_{2}=100 \Rightarrow e_{0}=0$ Characteristics Roots: $\quad R_{1}=5+3 \sqrt{6}$ and $R_{2}=5-3 \sqrt{6}$
Solution: $e_{n}=\frac{5}{3 \sqrt{6}}\left[(5+3 \sqrt{6})^{n}-(5-3 \sqrt{6})^{n}\right], n \geq 0$

Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: $0,1,2, \ldots, 9$ and 4 binary operation symbols: $+,-, *, /$ $e_{n}=$ number of legal arithmetic expressions with n symbols.
Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_{n} : $10 e_{n-1}$ (last two symbols as digits) and $39 e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_{n}=10 e_{n-1}+39 e_{n-2}(n \geq 0)$ and $e_{1}=10, e_{2}=100 \Rightarrow e_{0}=0$ Characteristics Roots: $\quad R_{1}=5+3 \sqrt{6}$ and $R_{2}=5-3 \sqrt{6}$
Solution: $e_{n}=\frac{5}{3 \sqrt{6}}\left[(5+3 \sqrt{6})^{n}-(5-3 \sqrt{6})^{n}\right], n \geq 0$

Example (Count of Transmission Words with Constraints)

$w_{n}=$ number of n-length words using a, b, c (three) letters that can be transmitted where no word having two consecutive a's

Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: $0,1,2, \ldots, 9$ and 4 binary operation symbols: $+,-, *, /$ $e_{n}=$ number of legal arithmetic expressions with n symbols.
Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_{n} : $10 e_{n-1}$ (last two symbols as digits) and $39 e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_{n}=10 e_{n-1}+39 e_{n-2}(n \geq 0)$ and $e_{1}=10, e_{2}=100 \Rightarrow e_{0}=0$ Characteristics Roots: $\quad R_{1}=5+3 \sqrt{6}$ and $R_{2}=5-3 \sqrt{6}$
Solution: $e_{n}=\frac{5}{3 \sqrt{6}}\left[(5+3 \sqrt{6})^{n}-(5-3 \sqrt{6})^{n}\right], n \geq 0$

Example (Count of Transmission Words with Constraints)

$w_{n}=$ number of n-length words using a, b, c (three) letters that can be transmitted where no word having two consecutive a's Two ways to construct recurrence for w_{n} :

- First letter is b or c : Number of words $=w_{n-1}$ (each)
- First letter is a, Second letter is b or $c:$ Number of words $=w_{n-2}$ (each)

Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: $0,1,2, \ldots, 9$ and 4 binary operation symbols: $+,-, *, /$ $e_{n}=$ number of legal arithmetic expressions with n symbols.
Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_{n} : $10 e_{n-1}$ (last two symbols as digits) and $39 e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_{n}=10 e_{n-1}+39 e_{n-2}(n \geq 0)$ and $e_{1}=10, e_{2}=100 \Rightarrow e_{0}=0$ Characteristics Roots: $\quad R_{1}=5+3 \sqrt{6}$ and $R_{2}=5-3 \sqrt{6}$
Solution: $e_{n}=\frac{5}{3 \sqrt{6}}\left[(5+3 \sqrt{6})^{n}-(5-3 \sqrt{6})^{n}\right], n \geq 0$

Example (Count of Transmission Words with Constraints)

$w_{n}=$ number of n-length words using a, b, c (three) letters that can be transmitted where no word having two consecutive a's Two ways to construct recurrence for w_{n} :

- First letter is b or c : Number of words $=w_{n-1}$ (each)
- First letter is a, Second letter is b or c : Number of words $=w_{n-2}$ (each) Recurrence Relation: $\quad w_{n}=2 w_{n-1}+2 w_{n-2}(n \geq 2)$ and $w_{0}=1, w_{1}=3$

Solving Second-Order Recurrence Relations

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: $0,1,2, \ldots, 9$ and 4 binary operation symbols: $+,-, *, /$ $e_{n}=$ number of legal arithmetic expressions with n symbols.
Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_{n} : $10 e_{n-1}$ (last two symbols as digits) and $39 e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_{n}=10 e_{n-1}+39 e_{n-2}(n \geq 0)$ and $e_{1}=10, e_{2}=100 \Rightarrow e_{0}=0$ Characteristics Roots: $\quad R_{1}=5+3 \sqrt{6}$ and $R_{2}=5-3 \sqrt{6}$
Solution: $e_{n}=\frac{5}{3 \sqrt{6}}\left[(5+3 \sqrt{6})^{n}-(5-3 \sqrt{6})^{n}\right], n \geq 0$

Example (Count of Transmission Words with Constraints)

$w_{n}=$ number of n-length words using a, b, c (three) letters that can be transmitted where no word having two consecutive a's Two ways to construct recurrence for w_{n} :

- First letter is b or c : Number of words $=w_{n-1}$ (each)
- First letter is a, Second letter is b or c : Number of words $=w_{n-2}$ (each)

Recurrence Relation: $\quad w_{n}=2 w_{n-1}+2 w_{n-2}(n \geq 2)$ and $w_{0}=1, w_{1}=3$
Characteristics Roots: $R_{1}=1+\sqrt{3}$ and $R_{2}=1-\sqrt{3}$
Solution: $\quad w_{n}=\left(\frac{2+\sqrt{3}}{2 \sqrt{3}}\right)(1+\sqrt{3})^{n}+\left(\frac{-2+\sqrt{3}}{2 \sqrt{3}}\right)(1-\sqrt{3})^{n}, n \geq 0$

Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

$p_{n}=$ number of palindromic summands of n.

Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

$p_{n}=$ number of palindromic summands of n.
Two ways to construct recurrence for p_{n} :

- Appending +1 at both sides of all the $(n-2)^{\text {th }}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{\text {th }}$ palindromic summands by +1 .

For 3:	For 5:	For 4:	For 6:	
3	$\left(1^{\prime}\right) 5$	$(1) 4$	$\left(1^{\prime}\right) 6$	$\left(1^{\prime \prime}\right) 1+4+1$
	$\left(2^{\prime}\right) 2+1+2$	$(2) 1+2+1$	$\left(2^{\prime}\right) 2+2+2$	$\left(2^{\prime \prime}\right) 1+1+2+1+1$
	$\left(1^{\prime \prime}\right) 1+3+1$	$(3) 2+2$	$\left(3^{\prime}\right) 3+3$	$\left(3^{\prime \prime}\right) 1+2+2+1$
	$\left(2^{\prime \prime}\right) 1+1+1+1+1$	$(4) 1+1+1+1$	$\left(4^{\prime}\right) 2+1+1+2$	$\left(4^{\prime \prime}\right) 1+1+1+1+1+1$

Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

$p_{n}=$ number of palindromic summands of n.
Two ways to construct recurrence for p_{n} :

- Appending +1 at both sides of all the $(n-2)^{\text {th }}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{\text {th }}$ palindromic summands by +1 .

For 3:	For 5:	For 4:	For 6:	
3	$\left(1^{\prime}\right) 5$	$(1) 4$	$\left(1^{\prime}\right) 6$	$\left(1^{\prime \prime}\right) 1+4+1$
	$\left(2^{\prime}\right) 2+1+2$	$(2) 1+2+1$	$\left(2^{\prime}\right) 2+2+2$	$\left(2^{\prime \prime}\right) 1+1+2+1+1$
	$\left(1^{\prime \prime}\right) 1+3+1$	$(3) 2+2$	$\left(3^{\prime}\right) 3+3$	$\left(3^{\prime \prime}\right) 1+2+2+1$
	$\left(2^{\prime \prime}\right) 1+1+1+1+1$	$(4) 1+1+1+1$	$\left(4^{\prime}\right) 2+1+1+2$	$\left(4^{\prime \prime}\right) 1+1+1+1+1+1$

Recurrence Relation: $p_{n}=2 p_{n-2}(n \geq 3)$ and $p_{1}=1, p_{2}=2$

Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

$p_{n}=$ number of palindromic summands of n.
Two ways to construct recurrence for p_{n} :

- Appending +1 at both sides of all the $(n-2)^{\text {th }}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{\text {th }}$ palindromic summands by +1 .

For 3:	For 5:	For 4:	For 6:	
3	$\left(1^{\prime}\right) 5$	$(1) 4$	$\left(1^{\prime}\right) 6$	$\left(1^{\prime \prime}\right) 1+4+1$
	$\left(2^{\prime}\right) 2+1+2$	$(2) 1+2+1$	$\left(2^{\prime}\right) 2+2+2$	$\left(2^{\prime \prime}\right) 1+1+2+1+1$
	$\left(1^{\prime \prime}\right) 1+3+1$	$(3) 2+2$	$\left(3^{\prime}\right) 3+3$	$\left(3^{\prime \prime}\right) 1+2+2+1$
	$\left(2^{\prime \prime}\right) 1+1+1+1+1$	$(4) 1+1+1+1$	$\left(4^{\prime}\right) 2+1+1+2$	$\left(4^{\prime \prime}\right) 1+1+1+1+1+1$

Recurrence Relation: $p_{n}=2 p_{n-2}(n \geq 3)$ and $p_{1}=1, p_{2}=2$
Characteristics Roots: $\quad R_{1}=\sqrt{2}$ and $R_{2}=-\sqrt{2}$
Solution: $p_{n}=\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right)(\sqrt{2})^{n}+\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)(-\sqrt{2})^{n}, n \geq 1$

Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

$p_{n}=$ number of palindromic summands of n.
Two ways to construct recurrence for p_{n} :

- Appending +1 at both sides of all the $(n-2)^{\text {th }}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{\text {th }}$ palindromic summands by +1 .

For 3:	For 5:	For 4:	For 6:	
3	$\left(1^{\prime}\right) 5$	$(1) 4$	$\left(1^{\prime}\right) 6$	$\left(1^{\prime \prime}\right) 1+4+1$
	$\left(2^{\prime}\right) 2+1+2$	$(2) 1+2+1$	$\left(2^{\prime}\right) 2+2+2$	$\left(2^{\prime \prime}\right) 1+1+2+1+1$
	$\left(1^{\prime \prime}\right) 1+3+1$	$(3) 2+2$	$\left(3^{\prime}\right) 3+3$	$\left(3^{\prime \prime}\right) 1+2+2+1$
	$\left(2^{\prime \prime}\right) 1+1+1+1+1$	$(4) 1+1+1+1$	$\left(4^{\prime}\right) 2+1+1+2$	$\left(4^{\prime \prime}\right) 1+1+1+1+1+1$

Recurrence Relation: $p_{n}=2 p_{n-2}(n \geq 3)$ and $p_{1}=1, p_{2}=2$
Characteristics Roots: $\quad R_{1}=\sqrt{2}$ and $R_{2}=-\sqrt{2}$
Solution: $p_{n}=\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right)(\sqrt{2})^{n}+\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)(-\sqrt{2})^{n}, n \geq 1$
Observation: $p_{n}=2^{\frac{n}{2}}$ (when n is even) and $p_{n}=2^{\left\lfloor\frac{n}{2}\right\rfloor}$ (when n is odd) (How?)

Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

$p_{n}=$ number of palindromic summands of n.
Two ways to construct recurrence for p_{n} :

- Appending +1 at both sides of all the $(n-2)^{\text {th }}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{\text {th }}$ palindromic summands by +1 .

For 3:	For 5:	For 4:	For 6:	
3	$\left(1^{\prime}\right) 5$	$(1) 4$	$\left(1^{\prime}\right) 6$	$\left(1^{\prime \prime}\right) 1+4+1$
	$\left(2^{\prime}\right) 2+1+2$	$(2) 1+2+1$	$\left(2^{\prime}\right) 2+2+2$	$\left(2^{\prime \prime}\right) 1+1+2+1+1$
	$\left(1^{\prime \prime}\right) 1+3+1$	$(3) 2+2$	$\left(3^{\prime}\right) 3+3$	$\left(3^{\prime \prime}\right) 1+2+2+1$
	$\left(2^{\prime \prime}\right) 1+1+1+1+1$	$(4) 1+1+1+1$	$\left(4^{\prime}\right) 2+1+1+2$	$\left(4^{\prime \prime}\right) 1+1+1+1+1+1$

Recurrence Relation: $p_{n}=2 p_{n-2}(n \geq 3)$ and $p_{1}=1, p_{2}=2$
Characteristics Roots: $\quad R_{1}=\sqrt{2}$ and $R_{2}=-\sqrt{2}$
Solution: $p_{n}=\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right)(\sqrt{2})^{n}+\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)(-\sqrt{2})^{n}, n \geq 1$
Observation: $p_{n}=2^{\frac{n}{2}}$ (when n is even) and $p_{n}=2^{\left\lfloor\frac{n}{2}\right\rfloor}$ (when n is odd) (How?) Reason: For $n=2 k\left(k \in \mathbb{Z}^{+}\right), p_{n}=\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right)(\sqrt{2})^{2 k}+\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)(-\sqrt{2})^{2 k}=2^{k}=2^{\frac{n}{2}}$

Solving Second-Order Recurrence Relations

Example (Number of Palindromic Summands)

$p_{n}=$ number of palindromic summands of n.
Two ways to construct recurrence for p_{n} :

- Appending +1 at both sides of all the $(n-2)^{\text {th }}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{\text {th }}$ palindromic summands by +1 .

For 3:	For 5:	For 4:	For 6:	
(1) 3 (2) $1+1+1$	(1) 5	(1) 4	(1) 6	(1) $1+4+1$
	(2') $2+1+2$	(2) $1+2+1$	(2') $2+2+2$	$\left(2^{\prime \prime}\right) 1+1+2+1+1$
	(1 $1^{\prime \prime}$) $1+3+1$	(3) $2+2$	(3) $3+3$	(3') $1+2+2+1$
	$\left(2^{\prime \prime}\right) 1+1+1+1+1$	(4) $1+1+1+1$	(4') $2+1+1+2$	(4') $1+1+1+1+1+1$

Recurrence Relation: $p_{n}=2 p_{n-2}(n \geq 3)$ and $p_{1}=1, p_{2}=2$
Characteristics Roots: $\quad R_{1}=\sqrt{2}$ and $R_{2}=-\sqrt{2}$
Solution: $p_{n}=\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right)(\sqrt{2})^{n}+\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)(-\sqrt{2})^{n}, n \geq 1$
Observation: $p_{n}=2^{\frac{n}{2}}$ (when n is even) and $p_{n}=2^{\left\lfloor\frac{n}{2}\right\rfloor}$ (when n is odd) (How?) Reason: For $n=2 k\left(k \in \mathbb{Z}^{+}\right), p_{n}=\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right)(\sqrt{2})^{2 k}+\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)(-\sqrt{2})^{2 k}=2^{k}=2^{\frac{n}{2}}$
For $n=2 k-1\left(k \in \mathbb{Z}^{+}\right), p_{n}=\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right)(\sqrt{2})^{2 k-1}+\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)(-\sqrt{2})^{2 k-1}=2^{k-1}=2^{\left\lfloor\frac{n}{2}\right\rfloor}$

Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of $\operatorname{GCD}(a, b)$ is done as follows: (Let $r_{0}=a$ and $r_{1}=b$)
$r_{0}=q_{1} r_{1}+r_{2}\left(0<r_{2}<r_{1}, q_{1} \geq 1\right), \quad r_{1}=q_{2} r_{2}+r_{3}\left(0<r_{3}<r_{2}, q_{2} \geq 1\right), \quad r_{2}=q_{3} r_{3}+r_{4}\left(0<r_{4}<r_{3}, q_{3} \geq 1\right)$

$$
r_{n-2}=q_{n-1} r_{n-1}+r_{n}\left(0<r_{n}<r_{n-1}, q_{n-1} \geq 1\right), \quad r_{n-1}=q_{n} r_{n}\left(q_{n} \geq 2 \text { as } r_{n}<r_{n-1}\right)
$$

Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of $\operatorname{GCD}(a, b)$ is done as follows: (Let $r_{0}=a$ and $r_{1}=b$)
$r_{0}=q_{1} r_{1}+r_{2}\left(0<r_{2}<r_{1}, q_{1} \geq 1\right), \quad r_{1}=q_{2} r_{2}+r_{3}\left(0<r_{3}<r_{2}, q_{2} \geq 1\right), \quad r_{2}=q_{3} r_{3}+r_{4}\left(0<r_{4}<r_{3}, q_{3} \geq 1\right)$

$$
r_{n-2}=q_{n-1} r_{n-1}+r_{n}\left(0<r_{n}<r_{n-1}, q_{n-1} \geq 1\right), \quad r_{n-1}=q_{n} r_{n}\left(q_{n} \geq 2 \text { as } r_{n}<r_{n-1}\right)
$$

Estimation of remainders are done as follows: $\quad\left(F_{n}=n^{\text {th }}\right.$ Fibonacci Number)

$$
\begin{aligned}
&\left(r_{n}>0\right) \Rightarrow r_{n} \geq 1=F_{2} \\
&\left(q_{n} \geq 2\right) \wedge\left(r_{n} \geq F_{2}\right) \Rightarrow \quad r_{n-1}=q_{n} r_{n} \geq 2.1=2=F_{3} \\
&\left(q_{n-1} \geq 1\right) \wedge\left(r_{n-1} \geq F_{3}\right) \wedge\left(r_{n} \geq F_{2}\right) \Rightarrow \quad r_{n-2}=q_{n-1} r_{n-1}+r_{n} \geq 1 . r_{n-1}+r_{n}=F_{3}+F_{2}=F_{4} \\
& \ldots \quad \ldots \\
& \cdots \quad \ldots \\
&\left(q_{3} \geq 1\right) \wedge\left(r_{3} \geq F_{n-1}\right) \wedge\left(r_{4} \geq F_{n-2}\right) \Rightarrow \\
&\left(r_{2}=q_{3} r_{3}+r_{4} \geq 1 . r_{3}+r_{4}=F_{n-1}+F_{n-2}=F_{n}\right. \\
&\left(q_{2} \geq 1\right) \wedge\left(r_{2} \geq F_{n}\right) \wedge\left(r_{3} \geq F_{n-1}\right) \Rightarrow \\
& b=r_{1}=q_{2} r_{2}+r_{3} \geq 1 . r_{2}+r_{3}=F_{n}+F_{n-1}=F_{n+1}
\end{aligned}
$$

Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of $\operatorname{GCD}(a, b)$ is done as follows: (Let $r_{0}=a$ and $r_{1}=b$)
$r_{0}=q_{1} r_{1}+r_{2}\left(0<r_{2}<r_{1}, q_{1} \geq 1\right), \quad r_{1}=q_{2} r_{2}+r_{3}\left(0<r_{3}<r_{2}, q_{2} \geq 1\right), \quad r_{2}=q_{3} r_{3}+r_{4}\left(0<r_{4}<r_{3}, q_{3} \geq 1\right)$

$$
r_{n-2}=q_{n-1} r_{n-1}+r_{n}\left(0<r_{n}<r_{n-1}, q_{n-1} \geq 1\right), \quad r_{n-1}=q_{n} r_{n}\left(q_{n} \geq 2 \text { as } r_{n}<r_{n-1}\right)
$$

Estimation of remainders are done as follows: $\quad\left(F_{n}=n^{\text {th }}\right.$ Fibonacci Number)

$$
\left.\begin{array}{rll}
\left(r_{n}>0\right) & \Rightarrow & r_{n} \geq 1=F_{2} \\
\left(q_{n} \geq 2\right) \wedge\left(r_{n} \geq F_{2}\right) & \Rightarrow & r_{n-1}=q_{n} r_{n} \geq 2.1=2=F_{3} \\
\left(q_{n-1} \geq 1\right) \wedge\left(r_{n-1} \geq F_{3}\right) \wedge\left(r_{n} \geq F_{2}\right) & \Rightarrow & r_{n-2}=q_{n-1} r_{n-1}+r_{n} \geq 1 . r_{n-1}+r_{n}=F_{3}+F_{2}=F_{4} \\
\ldots \quad \ldots & & \ldots
\end{array}\right] .
$$

Important Property of Fibonacci Numbers: $F_{n}>\alpha^{n-2}$ (for $n \geq 3$), where $\alpha=\frac{1+\sqrt{5}}{2}$

Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of $\operatorname{GCD}(a, b)$ is done as follows: (Let $r_{0}=a$ and $r_{1}=b$)
$r_{0}=q_{1} r_{1}+r_{2}\left(0<r_{2}<r_{1}, q_{1} \geq 1\right), \quad r_{1}=q_{2} r_{2}+r_{3}\left(0<r_{3}<r_{2}, q_{2} \geq 1\right), \quad r_{2}=q_{3} r_{3}+r_{4}\left(0<r_{4}<r_{3}, q_{3} \geq 1\right)$

$$
r_{n-2}=q_{n-1} r_{n-1}+r_{n}\left(0<r_{n}<r_{n-1}, q_{n-1} \geq 1\right), \quad r_{n-1}=q_{n} r_{n}\left(q_{n} \geq 2 \text { as } r_{n}<r_{n-1}\right)
$$

Estimation of remainders are done as follows: $\quad\left(F_{n}=n^{\text {th }}\right.$ Fibonacci Number)

$$
\left.\begin{array}{rll}
\left(r_{n}>0\right) & \Rightarrow & r_{n} \geq 1=F_{2} \\
\left(q_{n} \geq 2\right) \wedge\left(r_{n} \geq F_{2}\right) & \Rightarrow & r_{n-1}=q_{n} r_{n} \geq 2.1=2=F_{3} \\
\left(q_{n-1} \geq 1\right) \wedge\left(r_{n-1} \geq F_{3}\right) \wedge\left(r_{n} \geq F_{2}\right) & \Rightarrow & r_{n-2}=q_{n-1} r_{n-1}+r_{n} \geq 1 . r_{n-1}+r_{n}=F_{3}+F_{2}=F_{4} \\
\ldots \quad \ldots & & \ldots
\end{array}\right] .
$$

Important Property of Fibonacci Numbers: $F_{n}>\alpha^{n-2}$ (for $n \geq 3$), where $\alpha=\frac{1+\sqrt{5}}{2}$ Let, $G C D(a, b)$ uses n Divisions $(a \geq b \geq 2)$. So, $b \geq F_{n+1}>\alpha^{n-1}=\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$.

Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of $\operatorname{GCD}(a, b)$ is done as follows: (Let $r_{0}=a$ and $r_{1}=b$)
$r_{0}=q_{1} r_{1}+r_{2}\left(0<r_{2}<r_{1}, q_{1} \geq 1\right), \quad r_{1}=q_{2} r_{2}+r_{3}\left(0<r_{3}<r_{2}, q_{2} \geq 1\right), \quad r_{2}=q_{3} r_{3}+r_{4}\left(0<r_{4}<r_{3}, q_{3} \geq 1\right)$

$$
r_{n-2}=q_{n-1} r_{n-1}+r_{n}\left(0<r_{n}<r_{n-1}, q_{n-1} \geq 1\right), \quad r_{n-1}=q_{n} r_{n}\left(q_{n} \geq 2 \text { as } r_{n}<r_{n-1}\right)
$$

Estimation of remainders are done as follows: $\quad\left(F_{n}=n^{t h}\right.$ Fibonacci Number)

$$
\begin{aligned}
& \left(r_{n}>0\right) \quad \Rightarrow \quad r_{n} \geq 1=F_{2} \\
& \left(q_{n} \geq 2\right) \wedge\left(r_{n} \geq F_{2}\right) \quad \Rightarrow \quad r_{n-1}=q_{n} r_{n} \geq 2.1=2=F_{3} \\
& \left(q_{n-1} \geq 1\right) \wedge\left(r_{n-1} \geq F_{3}\right) \wedge\left(r_{n} \geq F_{2}\right) \quad \Rightarrow \quad r_{n-2}=q_{n-1} r_{n-1}+r_{n} \geq 1 \cdot r_{n-1}+r_{n}=F_{3}+F_{2}=F_{4} \\
& \left(q_{3} \geq 1\right) \wedge\left(r_{3} \geq F_{n-1}\right) \wedge\left(r_{4} \geq F_{n-2}\right) \Rightarrow r_{2}=q_{3} r_{3}+r_{4} \geq 1 . r_{3}+r_{4}=F_{n-1}+F_{n-2}=F_{n} \\
& \left(q_{2} \geq 1\right) \wedge\left(r_{2} \geq F_{n}\right) \wedge\left(r_{3} \geq F_{n-1}\right) \quad \Rightarrow \quad b=r_{1}=q_{2} r_{2}+r_{3} \geq 1 . r_{2}+r_{3}=F_{n}+F_{n-1}=F_{n+1}
\end{aligned}
$$

Important Property of Fibonacci Numbers: $F_{n}>\alpha^{n-2}$ (for $n \geq 3$), where $\alpha=\frac{1+\sqrt{5}}{2}$ Let, $G C D(a, b)$ uses n Divisions $(a \geq b \geq 2)$. So, $b \geq F_{n+1}>\alpha^{n-1}=\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$. $\therefore b>\alpha^{n-1} \Rightarrow \log _{10} b>(n-1) \log _{10} \alpha>\frac{n-1}{5}\left(\right.$ as $\left.\log _{10} \alpha=\log _{10}\left(\frac{1+\sqrt{5}}{2}\right) \approx 0.209>\frac{1}{5}\right)$.

Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of $\operatorname{GCD}(a, b)$ is done as follows: (Let $r_{0}=a$ and $r_{1}=b$)
$r_{0}=q_{1} r_{1}+r_{2}\left(0<r_{2}<r_{1}, q_{1} \geq 1\right), \quad r_{1}=q_{2} r_{2}+r_{3}\left(0<r_{3}<r_{2}, q_{2} \geq 1\right), \quad r_{2}=q_{3} r_{3}+r_{4}\left(0<r_{4}<r_{3}, q_{3} \geq 1\right)$

$$
r_{n-2}=q_{n-1} r_{n-1}+r_{n}\left(0<r_{n}<r_{n-1}, q_{n-1} \geq 1\right), \quad r_{n-1}=q_{n} r_{n}\left(q_{n} \geq 2 \text { as } r_{n}<r_{n-1}\right)
$$

Estimation of remainders are done as follows: $\quad\left(F_{n}=n^{\text {th }}\right.$ Fibonacci Number)

$$
\begin{array}{rll}
\left(r_{n}>0\right) & \Rightarrow & r_{n} \geq 1=F_{2} \\
\left(q_{n} \geq 2\right) \wedge\left(r_{n} \geq F_{2}\right) & \Rightarrow & r_{n-1}=q_{n} r_{n} \geq 2.1=2=F_{3} \\
\left(q_{n-1} \geq 1\right) \wedge\left(r_{n-1} \geq F_{3}\right) \wedge\left(r_{n} \geq F_{2}\right) & \Rightarrow & r_{n-2}=q_{n-1} r_{n-1}+r_{n} \geq 1 . r_{n-1}+r_{n}=F_{3}+F_{2}=F_{4} \\
\ldots \quad \ldots & & \ldots
\end{array} \quad \cdots .
$$

Important Property of Fibonacci Numbers: $F_{n}>\alpha^{n-2}$ (for $n \geq 3$), where $\alpha=\frac{1+\sqrt{5}}{2}$ Let, $G C D(a, b)$ uses n Divisions $(a \geq b \geq 2)$. So, $b \geq F_{n+1}>\alpha^{n-1}=\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$. $\therefore b>\alpha^{n-1} \Rightarrow \log _{10} b>(n-1) \log _{10} \alpha>\frac{n-1}{5}\left(\right.$ as $\left.\log _{10} \alpha=\log _{10}\left(\frac{1+\sqrt{5}}{2}\right) \approx 0.209>\frac{1}{5}\right)$. If b is k-digit decimal number, $10^{k-1} \leq b<10^{k} \Rightarrow k>\log _{10} b>\frac{n-1}{5} \Rightarrow n<5 k+1$.

Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of $\operatorname{GCD}(a, b)$ is done as follows: (Let $r_{0}=a$ and $r_{1}=b$)
$r_{0}=q_{1} r_{1}+r_{2}\left(0<r_{2}<r_{1}, q_{1} \geq 1\right), \quad r_{1}=q_{2} r_{2}+r_{3}\left(0<r_{3}<r_{2}, q_{2} \geq 1\right), \quad r_{2}=q_{3} r_{3}+r_{4}\left(0<r_{4}<r_{3}, q_{3} \geq 1\right)$

$$
r_{n-2}=q_{n-1} r_{n-1}+r_{n}\left(0<r_{n}<r_{n-1}, q_{n-1} \geq 1\right), \quad r_{n-1}=q_{n} r_{n}\left(q_{n} \geq 2 \text { as } r_{n}<r_{n-1}\right)
$$

Estimation of remainders are done as follows: $\quad\left(F_{n}=n^{\text {th }}\right.$ Fibonacci Number)

$$
\left.\begin{array}{rll}
\left(r_{n}>0\right) & \Rightarrow r_{n} \geq 1=F_{2} \\
\left(q_{n} \geq 2\right) \wedge\left(r_{n} \geq F_{2}\right) & \Rightarrow & r_{n-1}=q_{n} r_{n} \geq 2.1=2=F_{3} \\
\left(q_{n-1} \geq 1\right) \wedge\left(r_{n-1} \geq F_{3}\right) \wedge\left(r_{n} \geq F_{2}\right) & \Rightarrow & r_{n-2}=q_{n-1} r_{n-1}+r_{n} \geq 1 . r_{n-1}+r_{n}=F_{3}+F_{2}=F_{4} \\
\ldots & \ldots & \cdots
\end{array}\right)
$$

Important Property of Fibonacci Numbers: $F_{n}>\alpha^{n-2}$ (for $n \geq 3$), where $\alpha=\frac{1+\sqrt{5}}{2}$ Let, $G C D(a, b)$ uses n Divisions $(a \geq b \geq 2)$. So, $b \geq F_{n+1}>\alpha^{n-1}=\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$. $\therefore b>\alpha^{n-1} \Rightarrow \log _{10} b>(n-1) \log _{10} \alpha>\frac{n-1}{5}\left(\right.$ as $\left.\log _{10} \alpha=\log _{10}\left(\frac{1+\sqrt{5}}{2}\right) \approx 0.209>\frac{1}{5}\right)$. If b is k-digit decimal number, $10^{k-1} \leq b<10^{k} \Rightarrow k>\log _{10} b>\frac{n-1}{5} \Rightarrow n<5 k+1$.
Lamé's Theorem: Number of divisions performed in Euclidean GCD computation $\operatorname{GCD}(a, b)$ ($a \geq b \geq 2, a, b \in \mathbb{Z}+$) is at most 5 times the number of decimal digits in b.

Solving Second-Order Recurrence Relations

Example (Number of Divisions in Euclidean GCD Computation)

Computation of $\operatorname{GCD}(a, b)$ is done as follows: (Let $r_{0}=a$ and $r_{1}=b$) $r_{0}=q_{1} r_{1}+r_{2}\left(0<r_{2}<r_{1}, q_{1} \geq 1\right), \quad r_{1}=q_{2} r_{2}+r_{3}\left(0<r_{3}<r_{2}, q_{2} \geq 1\right), \quad r_{2}=q_{3} r_{3}+r_{4}\left(0<r_{4}<r_{3}, q_{3} \geq 1\right)$

$$
r_{n-2}=q_{n-1} r_{n-1}+r_{n}\left(0<r_{n}<r_{n-1}, q_{n-1} \geq 1\right), \quad r_{n-1}=q_{n} r_{n}\left(q_{n} \geq 2 \text { as } r_{n}<r_{n-1}\right)
$$

Estimation of remainders are done as follows: $\quad\left(F_{n}=n^{\text {th }}\right.$ Fibonacci Number)

$$
\begin{aligned}
& \left(r_{n}>0\right) \quad \Rightarrow \quad r_{n} \geq 1=F_{2} \\
& \left(q_{n} \geq 2\right) \wedge\left(r_{n} \geq F_{2}\right) \quad \Rightarrow \quad r_{n-1}=q_{n} r_{n} \geq 2.1=2=F_{3} \\
& \left(q_{n-1} \geq 1\right) \wedge\left(r_{n-1} \geq F_{3}\right) \wedge\left(r_{n} \geq F_{2}\right) \quad \Rightarrow \quad r_{n-2}=q_{n-1} r_{n-1}+r_{n} \geq 1 \cdot r_{n-1}+r_{n}=F_{3}+F_{2}=F_{4} \\
& \left(q_{3} \geq 1\right) \wedge\left(r_{3} \geq F_{n-1}\right) \wedge\left(r_{4} \geq F_{n-2}\right) \Rightarrow r_{2}=q_{3} r_{3}+r_{4} \geq 1 . r_{3}+r_{4}=F_{n-1}+F_{n-2}=F_{n} \\
& \left(q_{2} \geq 1\right) \wedge\left(r_{2} \geq F_{n}\right) \wedge\left(r_{3} \geq F_{n-1}\right) \quad \Rightarrow \quad b=r_{1}=q_{2} r_{2}+r_{3} \geq 1 . r_{2}+r_{3}=F_{n}+F_{n-1}=F_{n+1}
\end{aligned}
$$

Important Property of Fibonacci Numbers: $F_{n}>\alpha^{n-2}$ (for $n \geq 3$), where $\alpha=\frac{1+\sqrt{5}}{2}$ Let, $G C D(a, b)$ uses n Divisions $(a \geq b \geq 2)$. So, $b \geq F_{n+1}>\alpha^{n-1}=\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$. $\therefore b>\alpha^{n-1} \Rightarrow \log _{10} b>(n-1) \log _{10} \alpha>\frac{n-1}{5}\left(\right.$ as $\left.\log _{10} \alpha=\log _{10}\left(\frac{1+\sqrt{5}}{2}\right) \approx 0.209>\frac{1}{5}\right)$. If b is k-digit decimal number, $10^{k-1} \leq b<10^{k} \Rightarrow k>\log _{10} b>\frac{n-1}{5} \Rightarrow n<5 k+1$.

Lamé's Theorem: Number of divisions performed in Euclidean GCD computation $\operatorname{GCD}(a, b)$ ($a \geq b \geq 2, a, b \in \mathbb{Z}+$) is at most 5 times the number of decimal digits in b.
Corollary: Number of divisions, $n<1+5 \log _{10} b<9 \log _{10} b \quad \Rightarrow n=O\left(\log _{10} b\right)$ (as, $b \geq 2 \Rightarrow 4 \log _{10} b \geq \log _{10} 2^{4}>1$)

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}, C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}, C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$;

$$
C_{0}(\neq 0), C_{1}, C_{2}(\neq 0) \text { and } D_{0}, D_{1} \text { all are constants. }
$$

Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: Complex Conjugate Pair as Roots, $R_{1}=x+i y, R_{2}=x-i y$
OR, $R_{1}=r .(\cos \theta+i \sin \theta), R_{2}=r .(\cos \theta-i \sin \theta)$
where, $r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}\left(\frac{y}{x}\right)$

$$
(i=\sqrt{-1})
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}, C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: Complex Conjugate Pair as Roots, $R_{1}=x+i y, R_{2}=x-i y$
OR, $R_{1}=r .(\cos \theta+i \sin \theta), R_{2}=r .(\cos \theta-i \sin \theta)$
where, $r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}\left(\frac{y}{x}\right) \quad(i=\sqrt{-1})$
Exact Solution: $t_{n}=A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}=A_{1} \cdot(x+i y)^{n}+A_{2} \cdot(x-i y)^{n}$

$$
\begin{aligned}
& =\left(\sqrt{x^{2}+y^{2}}\right)^{n}\left[A_{1} \cdot(\cos (n \theta)+i \sin (n \theta))+A_{2} \cdot(\cos (n \theta)-i \sin (n \theta))\right] \\
& =\left(\sqrt{x^{2}+y^{2}}\right)^{n}\left[B_{1} \cdot \cos (n \theta)+B_{2} \cdot \sin (n \theta)\right], \text { where } \\
& B_{1}=\left(A_{2}+A_{2}\right), B_{2}=i\left(A_{1}-A_{2}\right) \text { Here, } A_{1}, A_{2}, B_{1}, B_{2} \text { are arbitrary constants) }
\end{aligned}
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$;

$$
C_{0}(\neq 0), C_{1}, C_{2}(\neq 0) \text { and } D_{0}, D_{1} \text { all are constants. }
$$

Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: Complex Conjugate Pair as Roots, $R_{1}=x+i y, R_{2}=x-i y$

$$
\text { OR, } R_{1}=r .(\cos \theta+i \sin \theta), R_{2}=r .(\cos \theta-i \sin \theta)
$$

$$
\text { where, } r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}\left(\frac{y}{x}\right) \quad(i=\sqrt{-1})
$$

Exact Solution: $t_{n}=A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}=A_{1} \cdot(x+i y)^{n}+A_{2} \cdot(x-i y)^{n}$

$$
\begin{aligned}
& =\left(\sqrt{x^{2}+y^{2}}\right)^{n}\left[A_{1} \cdot(\cos (n \theta)+i \sin (n \theta))+A_{2} \cdot(\cos (n \theta)-i \sin (n \theta))\right] \\
& =\left(\sqrt{x^{2}+y^{2}}\right)^{n}\left[B_{1} \cdot \cos (n \theta)+B_{2} \cdot \sin (n \theta)\right], \text { where } \\
& B_{1}=\left(A_{2}+A_{2}\right), B_{2}=i\left(A_{1}-A_{2}\right) \text { (Here, } A_{1}, A_{2}, B_{1}, B_{2} \text { are arbitrary constants) }
\end{aligned}
$$

Constant Determination: $t_{0}=D_{0}=B_{1}$ and $B_{2}=\frac{D_{1}-D_{0} \cdot x}{y}$

$$
\text { because, } t_{1}=D_{1}=\left(\sqrt{x^{2}+y^{2}}\right) \cdot\left(B_{1} \cdot \cos \theta+B_{2} \sin \theta\right)=\left(B_{1} \cdot x+B_{2} \cdot y\right)
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$;

$$
C_{0}(\neq 0), C_{1}, C_{2}(\neq 0) \text { and } D_{0}, D_{1} \text { all are constants. }
$$

Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: Complex Conjugate Pair as Roots, $R_{1}=x+i y, R_{2}=x-i y$

$$
\mathrm{OR}, R_{1}=r \cdot(\cos \theta+i \sin \theta), R_{2}=r \cdot(\cos \theta-i \sin \theta)
$$

$$
\text { where, } r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}\left(\frac{y}{x}\right) \quad(i=\sqrt{-1})
$$

Exact Solution: $t_{n}=A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}=A_{1} \cdot(x+i y)^{n}+A_{2} \cdot(x-i y)^{n}$

$$
\begin{aligned}
& =\left(\sqrt{x^{2}+y^{2}}\right)^{n}\left[A_{1} \cdot(\cos (n \theta)+i \sin (n \theta))+A_{2} \cdot(\cos (n \theta)-i \sin (n \theta))\right] \\
& =\left(\sqrt{x^{2}+y^{2}}\right)^{n}\left[B_{1} \cdot \cos (n \theta)+B_{2} \cdot \sin (n \theta)\right], \text { where } \\
& B_{1}=\left(A_{2}+A_{2}\right), B_{2}=i\left(A_{1}-A_{2}\right) \text { (Here, } A_{1}, A_{2}, B_{1}, B_{2} \text { are arbitrary constants) }
\end{aligned}
$$

Constant Determination: $t_{0}=D_{0}=B_{1}$ and $B_{2}=\frac{D_{1}-D_{0} \cdot x}{y}$

$$
\text { because, } t_{1}=D_{1}=\left(\sqrt{x^{2}+y^{2}}\right) \cdot\left(B_{1} \cdot \cos \theta+B_{2} \sin \theta\right)=\left(B_{1} \cdot x+B_{2} \cdot y\right)
$$

Unique Solution:

$$
t_{n}=\left(\sqrt{x^{2}+y^{2}}\right)^{n}\left[D_{0} \cdot \cos (n \theta)+\left(\frac{D_{1}-D_{0} \cdot x}{y}\right) \cdot \sin (n \theta)\right]
$$

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

For $b \in \mathbb{R}^{+}, D_{n}=\left|\begin{array}{ccccccccccc}b & b & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ b & b & b & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & b & b & b & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b & b & b & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & b & b & b & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & b & b & b & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b & b & b \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & b & b\end{array}\right|$, for $n \geq 1$.

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

For $b \in \mathbb{R}^{+}, D_{n}=\left|\begin{array}{ccccccccccc}b & b & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ b & b & b & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & b & b & b & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b & b & b & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & b & b & b & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & b & b & b & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b & b & b \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & b & b\end{array}\right|$, for $n \geq 1$.
$D_{1}=|b|=b, D_{2}=\left|\begin{array}{ll}b & b \\ b & b\end{array}\right|=0, D_{3}=\left|\begin{array}{lll}b & b & 0 \\ b & b & b \\ 0 & b & b\end{array}\right|=-b^{3}$ and

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

For $b \in \mathbb{R}^{+}, D_{n}=\left|\begin{array}{ccccccccccc}b & b & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ b & b & b & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & b & b & b & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b & b & b & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & b & b & b & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & b & b & b & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b & b & b \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & b & b\end{array}\right|$, for $n \geq 1$.
$D_{1}=|b|=b, D_{2}=\left|\begin{array}{ll}b & b \\ b & b\end{array}\right|=0, D_{3}=\left|\begin{array}{lll}b & b & 0 \\ b & b & b \\ 0 & b & b\end{array}\right|=-b^{3}$ and
Recurrence Relation: $\quad D_{n}=b . D_{n-1}-b . b . D_{n-2}(n \geq 3)$

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

For $b \in \mathbb{R}^{+}, D_{n}=\left|\begin{array}{lllllllllll}b & b & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ b & b & b & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & b & b & b & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b & b & b & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & b & b & b & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & b & b & b & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b & b & b \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & b & b\end{array}\right|$, for $n \geq 1$.
$D_{1}=|b|=b, D_{2}=\left|\begin{array}{ll}b & b \\ b & b\end{array}\right|=0, D_{3}=\left|\begin{array}{lll}b & b & 0 \\ b & b & b \\ 0 & b & b\end{array}\right|=-b^{3}$ and
Recurrence Relation: $\quad D_{n}=b . D_{n-1}-b . b . D_{n-2}(n \geq 3)$
Complex Conjugate Pair Roots: $\quad R_{1}=b\left[\frac{1}{2}+i \cdot \frac{\sqrt{3}}{2}\right], R_{2}=b\left[\frac{1}{2}-i \cdot \frac{\sqrt{3}}{2}\right]$
Solution: $\quad D_{n}=b^{n} \cdot\left[A_{1} \cdot\left(\frac{1}{2}+i \cdot \frac{\sqrt{3}}{2}\right)^{n}+A_{2} \cdot\left(\frac{1}{2}-i \cdot \frac{\sqrt{3}}{2}\right)^{n}\right]=b^{n}\left[B_{1} \cos \left(\frac{n \pi}{3}\right)+B_{2} \sin \left(\frac{n \pi}{3}\right)\right]$
Constants: $\quad b=D_{1}=b \cdot\left[B_{1} \cdot\left(\frac{1}{2}\right)+B_{2} \cdot\left(\frac{\sqrt{3}}{2}\right)\right] ; \quad 0=D_{2}=b^{2} \cdot\left[B_{1} \cdot\left(-\frac{1}{2}\right)+B_{2} \cdot\left(\frac{\sqrt{3}}{2}\right)\right]$

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

For $b \in \mathbb{R}^{+}, D_{n}=\left|\begin{array}{lllllllllll}b & b & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ b & b & b & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & b & b & b & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b & b & b & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & b & b & b & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & b & b & b & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b & b & b \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & b & b\end{array}\right|$, for $n \geq 1$.
$D_{1}=|b|=b, D_{2}=\left|\begin{array}{ll}b & b \\ b & b\end{array}\right|=0, D_{3}=\left|\begin{array}{lll}b & b & 0 \\ b & b & b \\ 0 & b & b\end{array}\right|=-b^{3}$ and
Recurrence Relation: $\quad D_{n}=b . D_{n-1}-b . b . D_{n-2}(n \geq 3)$
Complex Conjugate Pair Roots: $\quad R_{1}=b\left[\frac{1}{2}+i . \frac{\sqrt{3}}{2}\right], R_{2}=b\left[\frac{1}{2}-i \cdot \frac{\sqrt{3}}{2}\right]$
Solution: $\quad D_{n}=b^{n} \cdot\left[A_{1} \cdot\left(\frac{1}{2}+i \cdot \frac{\sqrt{3}}{2}\right)^{n}+A_{2} \cdot\left(\frac{1}{2}-i \cdot \frac{\sqrt{3}}{2}\right)^{n}\right]=b^{n}\left[B_{1} \cos \left(\frac{n \pi}{3}\right)+B_{2} \sin \left(\frac{n \pi}{3}\right)\right]$
Constants: $\quad b=D_{1}=b \cdot\left[B_{1} \cdot\left(\frac{1}{2}\right)+B_{2} \cdot\left(\frac{\sqrt{3}}{2}\right)\right] ; \quad 0=D_{2}=b^{2} \cdot\left[B_{1} \cdot\left(-\frac{1}{2}\right)+B_{2} \cdot\left(\frac{\sqrt{3}}{2}\right)\right]$
Therefore, $\Rightarrow B_{1}=1, B_{2}=\frac{1}{\sqrt{3}}, \quad$ implying $D_{n}=b^{n}\left[\cos \left(\frac{n \pi}{3}\right)+\left(\frac{1}{\sqrt{3}}\right) \sin \left(\frac{n \pi}{3}\right)\right], n \geq 1$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients
General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}(\neq 0), C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}(\neq 0), C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot c \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}(\neq 0), C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} . c \cdot x^{n-1}+C_{2} \cdot c \cdot x^{n-2}=0 \quad \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0$
Equation Roots: 2 Equal Roots, $R=R_{1}=R_{2}=-\frac{C_{1}}{2 C_{0}} \quad$ (here, $C_{1}^{2}=4 C_{0} C_{2}$)

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}(\neq 0), C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot \text { c. } \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Equal Roots, $R=R_{1}=R_{2}=-\frac{C_{1}}{2 C_{0}} \quad$ (here, $C_{1}^{2}=4 C_{0} C_{2}$)
Exact Solution: Forming two linearly independent solutions using,

$$
t_{n}=A_{1} \cdot R^{n}=A_{1} \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \text { and } t_{n}=A_{2} \cdot g(n) \cdot R^{n}=A_{2} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}(\neq 0), C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Equal Roots, $R=R_{1}=R_{2}=-\frac{C_{1}}{2 C_{0}} \quad$ (here, $C_{1}^{2}=4 C_{0} C_{2}$)
Exact Solution: Forming two linearly independent solutions using,

$$
\begin{aligned}
& t_{n}=A_{1} \cdot R^{n}=A_{1} \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \text { and } t_{n}=A_{2} \cdot g(n) \cdot R^{n}=A_{2} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \\
& \Rightarrow C_{0} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}+C_{1} \cdot g(n-1) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-1}+C_{2} \cdot g(n-2) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-2}=0 \\
& \Rightarrow g(n)-2 \cdot g(n-1)+g(n-2)=0\left(\text { as, } C_{1}^{2}=4 C_{0} C_{2} \text { and } C_{0}, C_{1}, C_{2} \neq 0\right)
\end{aligned}
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}(\neq 0), C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Equal Roots, $R=R_{1}=R_{2}=-\frac{C_{1}}{2 C_{0}} \quad$ (here, $C_{1}^{2}=4 C_{0} C_{2}$)
Exact Solution: Forming two linearly independent solutions using,

$$
\begin{aligned}
& t_{n}=A_{1} \cdot R^{n}=A_{1} \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \text { and } t_{n}=A_{2} \cdot g(n) \cdot R^{n}=A_{2} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \\
& \Rightarrow C_{0} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}+C_{1} \cdot g(n-1) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-1}+C_{2} \cdot g(n-2) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-2}=0 \\
& \Rightarrow g(n)-2 \cdot g(n-1)+g(n-2)=0\left(\text { as, } C_{1}^{2}=4 C_{0} C_{2} \text { and } C_{0}, C_{1}, C_{2} \neq 0\right)
\end{aligned}
$$

$$
\text { is satisfied by, } g(n)=a n+b \text { (constants } a(\neq 0), b \text {, with simplest } g(n)=n)
$$

$$
\therefore t_{n}=\left(A_{1}+A_{2} \cdot n\right) \cdot\left(-\frac{c_{1}}{2 C_{0}}\right)^{n}
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}(\neq 0), C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Equal Roots, $R=R_{1}=R_{2}=-\frac{C_{1}}{2 C_{0}} \quad$ (here, $C_{1}^{2}=4 C_{0} C_{2}$)
Exact Solution: Forming two linearly independent solutions using,

$$
\begin{aligned}
& t_{n}=A_{1} \cdot R^{n}=A_{1} \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \text { and } t_{n}=A_{2} \cdot g(n) \cdot R^{n}=A_{2} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \\
& \Rightarrow C_{0} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}+C_{1} \cdot g(n-1) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-1}+C_{2} \cdot g(n-2) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-2}=0 \\
& \Rightarrow g(n)-2 \cdot g(n-1)+g(n-2)=0\left(\text { as, } C_{1}^{2}=4 C_{0} C_{2} \text { and } C_{0}, C_{1}, C_{2} \neq 0\right)
\end{aligned}
$$

$$
\text { is satisfied by, } g(n)=a n+b \text { (constants } a(\neq 0), b \text {, with simplest } g(n)=n)
$$

$$
\therefore t_{n}=\left(A_{1}+A_{2} \cdot n\right) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}
$$

Constant Determination: $t_{0}=D_{0}=A_{1}$ and

$$
t_{1}=D_{1}=\left(A_{1}+A_{2}\right) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right) \Rightarrow A_{2}=-\frac{2 C_{0} D_{1}+C_{1} D_{0}}{C_{1}}
$$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}(\neq 0), C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Equal Roots, $R=R_{1}=R_{2}=-\frac{C_{1}}{2 C_{0}} \quad$ (here, $C_{1}^{2}=4 C_{0} C_{2}$)
Exact Solution: Forming two linearly independent solutions using,

$$
\begin{aligned}
& t_{n}=A_{1} \cdot R^{n}=A_{1} \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \text { and } t_{n}=A_{2} \cdot g(n) \cdot R^{n}=A_{2} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \\
& \Rightarrow C_{0} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}+C_{1} \cdot g(n-1) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-1}+C_{2} \cdot g(n-2) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-2}=0 \\
& \Rightarrow g(n)-2 \cdot g(n-1)+g(n-2)=0\left(\text { as, } C_{1}^{2}=4 C_{0} C_{2} \text { and } C_{0}, C_{1}, C_{2} \neq 0\right)
\end{aligned}
$$

$$
\text { is satisfied by, } g(n)=a n+b \text { (constants } a(\neq 0), b \text {, with simplest } g(n)=n)
$$

$$
\therefore t_{n}=\left(A_{1}+A_{2} \cdot n\right) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}
$$

Constant Determination: $t_{0}=D_{0}=A_{1}$ and

$$
t_{1}=D_{1}=\left(A_{1}+A_{2}\right) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right) \Rightarrow A_{2}=-\frac{2 C_{0} D_{1}+C_{1} D_{0}}{C_{1}}
$$

Unique Solution: $\quad t_{n}=\left[D_{0}-\left(\frac{2 C_{0} D_{1}+C_{1} D_{0}}{C_{1}}\right) \cdot n\right] \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}$

Solving Second-Order Recurrence Relations

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=0(n \geq 2)$ and $t_{0}=D_{0}, t_{1}=D_{1}$; $C_{0}(\neq 0), C_{1}(\neq 0), C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n}=c \cdot x^{n}(c, x \neq 0)$, after substitution,

$$
C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+C_{2} \cdot C \cdot x^{n-2}=0 \Rightarrow C_{0} \cdot x^{2}+C_{1} \cdot x+C_{2}=0
$$

Equation Roots: 2 Equal Roots, $R=R_{1}=R_{2}=-\frac{C_{1}}{2 C_{0}} \quad$ (here, $C_{1}^{2}=4 C_{0} C_{2}$)
Exact Solution: Forming two linearly independent solutions using,

$$
\begin{aligned}
& t_{n}=A_{1} \cdot R^{n}=A_{1} \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \text { and } t_{n}=A_{2} \cdot g(n) \cdot R^{n}=A_{2} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n} \\
& \Rightarrow C_{0} \cdot g(n) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}+C_{1} \cdot g(n-1) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-1}+C_{2} \cdot g(n-2) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n-2}=0 \\
& \Rightarrow g(n)-2 \cdot g(n-1)+g(n-2)=0\left(\text { as, } C_{1}^{2}=4 C_{0} C_{2} \text { and } C_{0}, C_{1}, C_{2} \neq 0\right)
\end{aligned}
$$

$$
\text { is satisfied by, } g(n)=a n+b \text { (constants } a(\neq 0), b \text {, with simplest } g(n)=n)
$$

$$
\therefore t_{n}=\left(A_{1}+A_{2} \cdot n\right) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}
$$

Constant Determination: $t_{0}=D_{0}=A_{1}$ and

$$
t_{1}=D_{1}=\left(A_{1}+A_{2}\right) \cdot\left(-\frac{C_{1}}{2 C_{0}}\right) \Rightarrow A_{2}=-\frac{2 C_{0} D_{1}+C_{1} D_{0}}{C_{1}}
$$

Unique Solution: $\quad t_{n}=\left[D_{0}-\left(\frac{2 C_{0} D_{1}+C_{1} D_{0}}{C_{1}}\right) \cdot n\right] \cdot\left(-\frac{C_{1}}{2 C_{0}}\right)^{n}$
Generic Solution: $t_{n}=\left(A_{1}+A_{2} \cdot n+A_{2} \cdot n^{2}+\cdots+A_{k-1} \cdot n^{k-1}\right) \cdot R^{n}$, for all k equal roots

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

$D_{n}=\left|\begin{array}{lllllllllll}2 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 2\end{array}\right|$, for $n \geq 1$.

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

$D_{n}=\left|\begin{array}{lllllllllll}2 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 2\end{array}\right|$, for $n \geq 1$.
$D_{1}=|2|=2, D_{2}=\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=3, D_{3}=\left|\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right|=4$ and

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

$D_{n}=\left|\begin{array}{lllllllllll}2 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 2\end{array}\right|$, for $n \geq 1$.
$D_{1}=|2|=2, D_{2}=\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=3, D_{3}=\left|\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right|=4$ and

Recurrence Relation: $\quad D_{n}=2 D_{n-1}-D_{n-2}(n \geq 3)$

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

$D_{n}=\left|\begin{array}{lllllllllll}2 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 2\end{array}\right|$, for $n \geq 1$.
$D_{1}=|2|=2, D_{2}=\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=3, D_{3}=\left|\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right|=4$ and

Recurrence Relation: $\quad D_{n}=2 D_{n-1}-D_{n-2}(n \geq 3)$
Equal Real Roots: $\quad R=1$
Solution: $\quad D_{n}=\left(A_{1}+A_{2} \cdot n\right) \cdot 1^{n}=\left(A_{1}+A_{2} \cdot n\right)$
Constants: $\quad 2=D_{1}=A_{1}+A_{2} ; \quad 3=D_{2}=A_{1}+2 A_{2} \quad \Rightarrow A_{1}=A_{2}=1$

Solving Second-Order Recurrence Relations

Example (Finding Value of $n \times n$ Determinant)

$D_{n}=\left|\begin{array}{lllllllllll}2 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\ . & . & . & . & . & \cdots & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 2\end{array}\right|$, for $n \geq 1$.
$D_{1}=|2|=2, D_{2}=\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=3, D_{3}=\left|\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right|=4$ and

Recurrence Relation: $\quad D_{n}=2 D_{n-1}-D_{n-2}(n \geq 3)$
Equal Real Roots: $\quad R=1$
Solution: $\quad D_{n}=\left(A_{1}+A_{2} \cdot n\right) \cdot 1^{n}=\left(A_{1}+A_{2} \cdot n\right)$
Constants: $\quad 2=D_{1}=A_{1}+A_{2} ; \quad 3=D_{2}=A_{1}+2 A_{2} \quad \Rightarrow A_{1}=A_{2}=1$
Therefore, $\quad D_{n}=1+n, \quad n \geq 1$

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n}=c \cdot x^{n}(c, x \neq 0)$

After substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+\cdots+C_{k} \cdot c \cdot x^{n-k}=0$
Since $c, x \neq 0$, so $C_{0} \cdot x^{k}+C_{1} \cdot x^{k-1}+\cdots+C_{k-1} \cdot x+C_{k}=0$

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n}=c . x^{n}(c, x \neq 0)$

After substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+\cdots+C_{k} \cdot c \cdot x^{n-k}=0$ Since $c, x \neq 0$, so $C_{0} \cdot x^{k}+C_{1} \cdot x^{k-1}+\cdots+C_{k-1} \cdot x+C_{k}=0$
Characteristic Roots: k roots as, $R_{1}, R_{2}, \ldots, R_{k}$, such that

$$
C_{0} \cdot R_{i}^{k}+C_{1} \cdot R_{i}^{k-1}+\cdots+C_{k-1} \cdot R_{i}+C_{k}=0, \text { where } 1 \leq i \leq k
$$

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n}=c \cdot x^{n}(c, x \neq 0)$

After substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+\cdots+C_{k} \cdot c \cdot x^{n-k}=0$
Since $c, x \neq 0$, so $C_{0} \cdot x^{k}+C_{1} \cdot x^{k-1}+\cdots+C_{k-1} \cdot x+C_{k}=0$
Characteristic Roots: k roots as, $R_{1}, R_{2}, \ldots, R_{k}$, such that

$$
C_{0} \cdot R_{i}^{k}+C_{1} \cdot R_{i}^{k-1}+\cdots+C_{k-1} \cdot R_{i}+C_{k}=0, \text { where } 1 \leq i \leq k
$$

Classification of Roots: $\left(u+2 v+w=k\right.$ and $\left.1 \leq \alpha_{i}, \beta_{i}, \beta_{i}^{\prime}, \gamma_{i} \leq k\right)$

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n}=c \cdot x^{n}(c, x \neq 0)$

After substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+\cdots+C_{k} \cdot c \cdot x^{n-k}=0$
Since $c, x \neq 0$, so $C_{0} \cdot x^{k}+C_{1} \cdot x^{k-1}+\cdots+C_{k-1} \cdot x+C_{k}=0$
Characteristic Roots: k roots as, $R_{1}, R_{2}, \ldots, R_{k}$, such that

$$
C_{0} \cdot R_{i}^{k}+C_{1} \cdot R_{i}^{k-1}+\cdots+C_{k-1} \cdot R_{i}+C_{k}=0, \text { where } 1 \leq i \leq k
$$

Classification of Roots: $\left(u+2 v+w=k\right.$ and $\left.1 \leq \alpha_{i}, \beta_{i}, \beta_{i}^{\prime}, \gamma_{i} \leq k\right)$
(1) Real Distinct Roots: u such roots, $R_{\alpha_{1}}, R_{\alpha_{2}}, \ldots, R_{\alpha_{u}}$

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n}=c \cdot x^{n}(c, x \neq 0)$

After substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+\cdots+C_{k} \cdot c \cdot x^{n-k}=0$
Since $c, x \neq 0$, so $C_{0} \cdot x^{k}+C_{1} \cdot x^{k-1}+\cdots+C_{k-1} \cdot x+C_{k}=0$
Characteristic Roots: k roots as, $R_{1}, R_{2}, \ldots, R_{k}$, such that

$$
C_{0} \cdot R_{i}^{k}+C_{1} \cdot R_{i}^{k-1}+\cdots+C_{k-1} \cdot R_{i}+C_{k}=0, \text { where } 1 \leq i \leq k
$$

Classification of Roots: $\left(u+2 v+w=k\right.$ and $\left.1 \leq \alpha_{i}, \beta_{i}, \beta_{i}^{\prime}, \gamma_{i} \leq k\right)$
(1) Real Distinct Roots: u such roots, $R_{\alpha_{1}}, R_{\alpha_{2}}, \ldots, R_{\alpha_{u}}$
(2) Complex Conjugate Pair Roots: v such root pairs, $\left\langle R_{\beta_{1}}, R_{\beta_{1}^{\prime}}\right\rangle,\left\langle R_{\beta_{2}}, R_{\beta_{2}^{\prime}}\right\rangle, \ldots,\left\langle R_{\beta_{v}}, R_{\beta_{v}^{\prime}}\right\rangle$ having the form,

$$
\left\langle R_{\beta_{l}}, R_{\beta_{l}^{\prime}}\right\rangle=x_{l} \pm i y_{l}=r_{l}\left(\cos \theta_{l} \pm i \sin \theta_{l}\right) \text {, where } r_{l}=\sqrt{x_{l}^{2}+y_{l}^{2}}, \theta_{l}=\tan ^{-1}\left(\frac{y_{l}}{x_{l}}\right)
$$

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n}=c \cdot x^{n}(c, x \neq 0)$

After substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+\cdots+C_{k} \cdot c \cdot x^{n-k}=0$
Since $c, x \neq 0$, so $C_{0} \cdot x^{k}+C_{1} \cdot x^{k-1}+\cdots+C_{k-1} \cdot x+C_{k}=0$
Characteristic Roots: k roots as, $R_{1}, R_{2}, \ldots, R_{k}$, such that

$$
C_{0} \cdot R_{i}^{k}+C_{1} \cdot R_{i}^{k-1}+\cdots+C_{k-1} \cdot R_{i}+C_{k}=0, \text { where } 1 \leq i \leq k
$$

Classification of Roots: $\left(u+2 v+w=k\right.$ and $\left.1 \leq \alpha_{i}, \beta_{i}, \beta_{i}^{\prime}, \gamma_{i} \leq k\right)$
(1) Real Distinct Roots: u such roots, $R_{\alpha_{1}}, R_{\alpha_{2}}, \ldots, R_{\alpha_{u}}$
(2) Complex Conjugate Pair Roots: v such root pairs, $\left\langle R_{\beta_{1}}, R_{\beta_{1}^{\prime}}\right\rangle,\left\langle R_{\beta_{2}}, R_{\beta_{2}^{\prime}}\right\rangle, \ldots,\left\langle R_{\beta_{v}}, R_{\beta_{v}^{\prime}}\right\rangle$ having the form, $\left\langle R_{\beta_{l}}, R_{\beta_{l}^{\prime}}\right\rangle=x_{l} \pm i y_{l}=r_{l}\left(\cos \theta_{l} \pm i \sin \theta_{l}\right)$, where $r_{l}=\sqrt{x_{l}^{2}+y_{l}^{2}}, \theta_{l}=\tan ^{-1}\left(\frac{y_{l}}{x_{l}}\right)$
(3) Real Equal Roots: w such roots, $R_{\gamma}=R_{\gamma_{1}}=R_{\gamma_{2}}=\cdots=R_{\gamma_{w}}$

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n}=c \cdot x^{n}(c, x \neq 0)$

After substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+\cdots+C_{k} \cdot c \cdot x^{n-k}=0$
Since $c, x \neq 0$, so $C_{0} \cdot x^{k}+C_{1} \cdot x^{k-1}+\cdots+C_{k-1} \cdot x+C_{k}=0$
Characteristic Roots: k roots as, $R_{1}, R_{2}, \ldots, R_{k}$, such that

$$
C_{0} \cdot R_{i}^{k}+C_{1} \cdot R_{i}^{k-1}+\cdots+C_{k-1} \cdot R_{i}+C_{k}=0, \text { where } 1 \leq i \leq k
$$

Classification of Roots: $\left(u+2 v+w=k\right.$ and $\left.1 \leq \alpha_{i}, \beta_{i}, \beta_{i}^{\prime}, \gamma_{i} \leq k\right)$
(1) Real Distinct Roots: u such roots, $R_{\alpha_{1}}, R_{\alpha_{2}}, \ldots, R_{\alpha_{u}}$
(2) Complex Conjugate Pair Roots: v such root pairs, $\left\langle R_{\beta_{1}}, R_{\beta_{1}^{\prime}}\right\rangle,\left\langle R_{\beta_{2}}, R_{\beta_{2}^{\prime}}\right\rangle, \ldots,\left\langle R_{\beta_{v}}, R_{\beta_{v}^{\prime}}\right\rangle$ having the form,

$$
\left\langle R_{\beta_{1}}, R_{\beta_{l}^{\prime}}\right\rangle=x_{l} \pm i y_{l}=r_{l}\left(\cos \theta_{l} \pm i \sin \theta_{l}\right) \text {, where } r_{l}=\sqrt{x_{1}^{2}+y_{1}^{2}}, \theta_{l}=\tan ^{-1}\left(\frac{y_{1}}{x_{1}}\right)
$$

(3) Real Equal Roots: w such roots, $R_{\gamma}=R_{\gamma_{1}}=R_{\gamma_{2}}=\cdots=R_{\gamma_{w}}$

Generic Solution: $t_{n}=\sum_{l=1}^{u} A_{\alpha_{l}} \cdot R_{\alpha_{l}}^{n}+\sum_{l=1}^{v}\left(A_{\beta_{l}} \cdot R_{\beta_{l}}^{n}+A_{\beta_{l}^{\prime}} \cdot R_{\beta_{l}^{\prime}}^{n}\right)+R_{\gamma}^{n} \cdot \sum_{l=1}^{w} A_{\gamma_{l}} \cdot n^{l-1}$

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n}=c \cdot x^{n}(c, x \neq 0)$

After substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+\cdots+C_{k} \cdot c \cdot x^{n-k}=0$
Since $c, x \neq 0$, so $C_{0} \cdot x^{k}+C_{1} \cdot x^{k-1}+\cdots+C_{k-1} \cdot x+C_{k}=0$
Characteristic Roots: k roots as, $R_{1}, R_{2}, \ldots, R_{k}$, such that

$$
C_{0} \cdot R_{i}^{k}+C_{1} \cdot R_{i}^{k-1}+\cdots+C_{k-1} \cdot R_{i}+C_{k}=0, \text { where } 1 \leq i \leq k
$$

Classification of Roots: $\left(u+2 v+w=k\right.$ and $\left.1 \leq \alpha_{i}, \beta_{i}, \beta_{i}^{\prime}, \gamma_{i} \leq k\right)$
(1) Real Distinct Roots: u such roots, $R_{\alpha_{1}}, R_{\alpha_{2}}, \ldots, R_{\alpha_{u}}$
(2) Complex Conjugate Pair Roots: v such root pairs, $\left\langle R_{\beta_{1}}, R_{\beta_{1}^{\prime}}\right\rangle,\left\langle R_{\beta_{2}}, R_{\beta_{2}^{\prime}}\right\rangle, \ldots,\left\langle R_{\beta_{v}}, R_{\beta_{v}^{\prime}}\right\rangle$ having the form,

$$
\left\langle R_{\beta_{1}}, R_{\beta_{l}^{\prime}}\right\rangle=x_{l} \pm i y_{l}=r_{l}\left(\cos \theta_{l} \pm i \sin \theta_{l}\right) \text {, where } r_{l}=\sqrt{x_{1}^{2}+y_{1}^{2}}, \theta_{l}=\tan ^{-1}\left(\frac{y_{1}}{x_{1}}\right)
$$

(3) Real Equal Roots: w such roots, $R_{\gamma}=R_{\gamma_{1}}=R_{\gamma_{2}}=\cdots=R_{\gamma_{w}}$

Generic Solution: $t_{n}=\sum_{l=1}^{u} A_{\alpha_{l}} \cdot R_{\alpha_{l}}^{n}+\sum_{l=1}^{v}\left(A_{\beta_{l}} \cdot R_{\beta_{l}}^{n}+A_{\beta_{l}^{\prime}} \cdot R_{\beta_{l}^{\prime}}^{n}\right)+R_{\gamma}^{n} \cdot \sum_{l=1}^{w} A_{\gamma_{l}} \cdot n^{l-1}$

$$
=\sum_{l=1}^{u} A_{\alpha_{l}} \cdot R_{\alpha_{l}}^{n}+\sum_{l=1}^{v} r_{l}^{n} \cdot\left(B_{\beta_{l}} \cdot \cos n \theta_{l}+B_{\beta_{l}^{\prime}} \cdot \sin n \theta_{l}\right)+R_{\gamma}^{n} \cdot \sum_{l=1}^{w} A_{\gamma_{l}} \cdot n^{\prime-1}
$$

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n)=0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants, and $t_{n}(n \geq 0)$ be a discrete function. $(f(n) \neq 0$ for non-homogeneous)
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n}=c \cdot x^{n}(c, x \neq 0)$

After substitution, $C_{0} \cdot c \cdot x^{n}+C_{1} \cdot c \cdot x^{n-1}+\cdots+C_{k} \cdot c \cdot x^{n-k}=0$
Since $c, x \neq 0$, so $C_{0} \cdot x^{k}+C_{1} \cdot x^{k-1}+\cdots+C_{k-1} \cdot x+C_{k}=0$
Characteristic Roots: k roots as, $R_{1}, R_{2}, \ldots, R_{k}$, such that

$$
C_{0} \cdot R_{i}^{k}+C_{1} \cdot R_{i}^{k-1}+\cdots+C_{k-1} \cdot R_{i}+C_{k}=0, \text { where } 1 \leq i \leq k
$$

Classification of Roots: $\left(u+2 v+w=k\right.$ and $\left.1 \leq \alpha_{i}, \beta_{i}, \beta_{i}^{\prime}, \gamma_{i} \leq k\right)$
(1) Real Distinct Roots: u such roots, $R_{\alpha_{1}}, R_{\alpha_{2}}, \ldots, R_{\alpha_{u}}$
(2) Complex Conjugate Pair Roots: v such root pairs, $\left\langle R_{\beta_{1}}, R_{\beta_{1}^{\prime}}\right\rangle,\left\langle R_{\beta_{2}}, R_{\beta_{2}^{\prime}}\right\rangle, \ldots,\left\langle R_{\beta_{v}}, R_{\beta_{v}^{\prime}}\right\rangle$ having the form,

$$
\left\langle R_{\beta_{1}}, R_{\beta_{l}^{\prime}}\right\rangle=x_{l} \pm i y_{l}=r_{l}\left(\cos \theta_{l} \pm i \sin \theta_{l}\right) \text {, where } r_{l}=\sqrt{x_{1}^{2}+y_{1}^{2}}, \theta_{l}=\tan ^{-1}\left(\frac{y_{1}}{x_{1}}\right)
$$

(3) Real Equal Roots: w such roots, $R_{\gamma}=R_{\gamma_{1}}=R_{\gamma_{2}}=\cdots=R_{\gamma_{w}}$

Generic Solution: $t_{n}=\sum_{l=1}^{u} A_{\alpha_{l}} \cdot R_{\alpha_{l}}^{n}+\sum_{l=1}^{v}\left(A_{\beta_{l}} \cdot R_{\beta_{l}}^{n}+A_{\beta_{l}^{\prime}} \cdot R_{\beta_{l}^{\prime}}^{n}\right)+R_{\gamma}^{n} \cdot \sum_{l=1}^{w} A_{\gamma_{l}} \cdot n^{l-1}$

$$
=\sum_{l=1}^{u} A_{\alpha_{l}} \cdot R_{\alpha_{l}}^{n}+\sum_{l=1}^{v} r_{l}^{n} \cdot\left(B_{\beta_{l}} \cdot \cos n \theta_{l}+B_{\beta_{l}^{\prime}} \cdot \sin n \theta_{l}\right)+R_{\gamma}^{n} \cdot \sum_{l=1}^{w} A_{\gamma_{l}} \cdot n^{l-1}
$$

Solving Third-Order Recurrence Relations

Example (Tiling Problem)

Let, $t_{n}=$ number of ways to tile $2 \times n\left(n \in \mathbb{Z}^{+}\right)$chessboard Tile Types: one L-shaped and one 1×1

Solving Third-Order Recurrence Relations

Example (Tiling Problem)

Let, $t_{n}=$ number of ways to tile $2 \times n\left(n \in \mathbb{Z}^{+}\right)$chessboard Tile Types: one L-shaped and one 1×1

Solving Third-Order Recurrence Relations

Example (Tiling Problem)

Let, $t_{n}=$ number of ways to tile $2 \times n\left(n \in \mathbb{Z}^{+}\right)$chessboard Tile Types: one L-shaped and one 1×1

Recurrence Relation: $t_{n}=t_{n-1}+4 t_{n-2}+2 t_{n-3}(n \geq 4)$ and $t_{1}=1, t_{2}=5, t_{3}=11$

Solving Third-Order Recurrence Relations

Example (Tiling Problem)

Let, $t_{n}=$ number of ways to tile $2 \times n\left(n \in \mathbb{Z}^{+}\right)$chessboard Tile Types: one L-shaped and one 1×1

Types of Tiling Covers (Case-3)
Recurrence Relation: $t_{n}=t_{n-1}+4 t_{n-2}+2 t_{n-3}(n \geq 4)$ and $t_{1}=1, t_{2}=5, t_{3}=11$
Characteristics Roots: $R_{1}=-1, R_{2}=1+\sqrt{3}, R_{3}=1-\sqrt{3}$
Solution: $t_{n}=1 \cdot(-1)^{n}+\left(\frac{1}{\sqrt{3}}\right) \cdot(1+\sqrt{3})^{n}+\left(-\frac{1}{\sqrt{3}}\right) \cdot(1-\sqrt{3})^{n}$

$$
=(-1)^{n}+\left(\frac{1}{\sqrt{3}}\right) \cdot\left[(1+\sqrt{3})^{n}-(1-\sqrt{3})^{n}\right], \quad n \geq 1
$$

Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C \cdot t_{n-1}=K \cdot B^{n}(n \geq 1)$ and $t_{0}=D$
(Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants)

Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C \cdot t_{n-1}=K \cdot B^{n}(n \geq 1)$ and $t_{0}=D$
(Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants)
Homogeneous Solution Part: $t_{n}^{(h)}=A \cdot(-C)^{n}$
(A is an arbitrary constant)

Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C . t_{n-1}=K . B^{n}(n \geq 1)$ and $t_{0}=D$
(Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants)
Homogeneous Solution Part: $t_{n}^{(h)}=A \cdot(-C)^{n}$
(A is an arbitrary constant)
Particular Solution Part: $t_{n}^{(p)}=\left\{\begin{aligned} A_{1} \cdot B^{n}, & \text { if } B^{n} \neq(-C)^{n} \\ A_{2} \cdot n \cdot B^{n}, & \text { if } B^{n}=(-C)^{n}\end{aligned}\right.$
(A_{1}, A_{2} are constants)

Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C . t_{n-1}=K . B^{n}(n \geq 1)$ and $t_{0}=D$
(Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants)
Homogeneous Solution Part: $t_{n}^{(h)}=A \cdot(-C)^{n}$
(A is an arbitrary constant)
Particular Solution Part: $t_{n}^{(p)}=\left\{\begin{array}{cl}A_{1} \cdot B^{n}, & \text { if } B^{n} \neq(-C)^{n} \\ A_{2} \cdot n \cdot B^{n}, & \text { if } B^{n}=(-C)^{n}\end{array}\right.$
(A_{1}, A_{2} are constants)
Exact Solution: $t_{n}=t_{n}^{(h)}+t_{n}^{(p)}=\left\{\begin{aligned} A \cdot(-C)^{n}+A_{1} \cdot B^{n}, & \text { if } B^{n} \neq(-C)^{n} \\ \left(A+A_{2} \cdot n\right) \cdot B^{n}, & \text { if } B^{n}=(-C)^{n}\end{aligned}\right.$

Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C . t_{n-1}=K . B^{n}(n \geq 1)$ and $t_{0}=D$
(Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants)
Homogeneous Solution Part: $t_{n}^{(h)}=A \cdot(-C)^{n}$
(A is an arbitrary constant)
Particular Solution Part: $t_{n}^{(p)}=\left\{\begin{aligned} A_{1} \cdot B^{n}, & \text { if } B^{n} \neq(-C)^{n} \\ A_{2} \cdot n \cdot B^{n}, & \text { if } B^{n}=(-C)^{n}\end{aligned}\right.$
(A_{1}, A_{2} are constants)
Exact Solution: $t_{n}=t_{n}^{(h)}+t_{n}^{(p)}=\left\{\begin{aligned} A \cdot(-C)^{n}+A_{1} \cdot B^{n}, & \text { if } B^{n} \neq(-C)^{n} \\ \left(A+A_{2} \cdot n\right) \cdot B^{n}, & \text { if } B^{n}=(-C)^{n}\end{aligned}\right.$
Constant Determination: $A_{1} \cdot B^{n}+C \cdot A_{1} \cdot B^{n-1}=K \cdot B^{n} \Rightarrow A_{1}=\frac{K \cdot B}{B+C}$

$$
A_{2} \cdot n \cdot B^{n}+C \cdot A_{2} \cdot(n-1) \cdot B^{n-1}=K \cdot B^{n} \Rightarrow A_{2}=K
$$

Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C \cdot t_{n-1}=K . B^{n}(n \geq 1)$ and $t_{0}=D$
(Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants)
Homogeneous Solution Part: $t_{n}^{(h)}=A \cdot(-C)^{n}$
(A is an arbitrary constant)
Particular Solution Part: $t_{n}^{(p)}=\left\{\begin{aligned} A_{1} \cdot B^{n}, & \text { if } B^{n} \neq(-C)^{n} \\ A_{2} \cdot n \cdot B^{n}, & \text { if } B^{n}=(-C)^{n}\end{aligned}\right.$
(A_{1}, A_{2} are constants)
Exact Solution: $t_{n}=t_{n}^{(h)}+t_{n}^{(p)}=\left\{\begin{aligned} A \cdot(-C)^{n}+A_{1} \cdot B^{n}, & \text { if } B^{n} \neq(-C)^{n} \\ \left(A+A_{2} \cdot n\right) \cdot B^{n}, & \text { if } B^{n}=(-C)^{n}\end{aligned}\right.$
Constant Determination: $A_{1} \cdot B^{n}+C \cdot A_{1} \cdot B^{n-1}=K \cdot B^{n} \Rightarrow A_{1}=\frac{K \cdot B}{B+C}$
$A_{2} \cdot n \cdot B^{n}+C \cdot A_{2} \cdot(n-1) \cdot B^{n-1}=K \cdot B^{n} \Rightarrow A_{2}=K$
Finally, $t_{0}=D=\left\{\begin{aligned} A+A_{1} & \Rightarrow A=\frac{D B+D C-K B}{B+C} \\ A & \Rightarrow A=D^{1}\end{aligned}\right.$

Solving Non-Homogeneous Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C \cdot t_{n-1}=K . B^{n}(n \geq 1)$ and $t_{0}=D$
(Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants)
Homogeneous Solution Part: $t_{n}^{(h)}=A \cdot(-C)^{n}$
(A is an arbitrary constant)
Particular Solution Part: $t_{n}^{(p)}=\left\{\begin{aligned} A_{1} \cdot B^{n}, & \text { if } B^{n} \neq(-C)^{n} \\ A_{2} \cdot n \cdot B^{n}, & \text { if } B^{n}=(-C)^{n}\end{aligned}\right.$
(A_{1}, A_{2} are constants)
Exact Solution: $t_{n}=t_{n}^{(h)}+t_{n}^{(p)}=\left\{\begin{aligned} A \cdot(-C)^{n}+A_{1} \cdot B^{n}, & \text { if } B^{n} \neq(-C)^{n} \\ \left(A+A_{2} \cdot n\right) \cdot B^{n}, & \text { if } B^{n}=(-C)^{n}\end{aligned}\right.$
Constant Determination: $A_{1} \cdot B^{n}+C \cdot A_{1} \cdot B^{n-1}=K \cdot B^{n} \Rightarrow A_{1}=\frac{K \cdot B}{B+C}$
$A_{2} \cdot n \cdot B^{n}+C \cdot A_{2} \cdot(n-1) \cdot B^{n-1}=K \cdot B^{n} \Rightarrow A_{2}=K$
Finally, $t_{0}=D=\left\{\begin{aligned} A+A_{1} & \Rightarrow A=\frac{D B+D C-K B}{B+C} \\ A & \Rightarrow A=D\end{aligned}\right.$
Unique Solution: $t_{n}=\left\{\begin{array}{ll}\left(\frac{D B+D C-K B}{B+C}\right) \cdot(-C)^{n}+\left(\frac{K B}{B+C}\right) B^{n} \\ (D+K \cdot n) \cdot B^{n}=(D+K \cdot n) \cdot(-C)^{n}\end{array} \quad n \geq 1\right.$

Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T_{n} : Moving n disks with 3 pegs requires - (i) twice the movement of ($n-1$) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: $\quad T_{n}=2 T_{n-1}+1(n \geq 1)$ and $T_{0}=0$

Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T_{n} : Moving n disks with 3 pegs requires - (i) twice the movement of ($n-1$) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: $\quad T_{n}=2 T_{n-1}+1(n \geq 1)$ and $T_{0}=0$
Homogeneous Solution: $\quad T_{n}^{(h)}=A .2^{n}$

Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T_{n} : Moving n disks with 3 pegs requires - (i) twice the movement of ($n-1$) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: $\quad T_{n}=2 T_{n-1}+1(n \geq 1)$ and $T_{0}=0$
Homogeneous Solution: $T_{n}^{(h)}=A \cdot 2^{n}$
Particular Solution: $\quad T_{n}^{(p)}=A_{1} \cdot 1^{n}=A_{1}, \quad$ hence $A_{1}=2 A_{1}+1 \Rightarrow A_{1}=-1$

Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T_{n} : Moving n disks with 3 pegs requires - (i) twice the movement of ($n-1$) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: $\quad T_{n}=2 T_{n-1}+1(n \geq 1)$ and $T_{0}=0$
Homogeneous Solution: $T_{n}^{(h)}=A \cdot 2^{n}$
Particular Solution: $\quad T_{n}^{(p)}=A_{1} \cdot 1^{n}=A_{1}, \quad$ hence $A_{1}=2 A_{1}+1 \Rightarrow A_{1}=-1$
Final Solution: $\quad T_{n}=A \cdot 2^{n}-1, \quad$ with $T_{0}=0=A \cdot 2^{0}-1 \Rightarrow A=1$, implying $\quad T_{n}=2^{n}-1, \quad n \geq 0$.

Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T_{n} : Moving n disks with 3 pegs requires - (i) twice the movement of ($n-1$) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: $\quad T_{n}=2 T_{n-1}+1(n \geq 1)$ and $T_{0}=0$ Homogeneous Solution: $\quad T_{n}^{(h)}=A .2^{n}$
Particular Solution: $\quad T_{n}^{(p)}=A_{1} \cdot 1^{n}=A_{1}, \quad$ hence $A_{1}=2 A_{1}+1 \Rightarrow A_{1}=-1$
Final Solution: $\quad T_{n}=A \cdot 2^{n}-1, \quad$ with $T_{0}=0=A \cdot 2^{0}-1 \Rightarrow A=1$, implying $\quad T_{n}=2^{n}-1, \quad n \geq 0$.

Example (Comparisons to find Min-Max from 2^{n} Element Set)

Strategy for M_{n} : Divide 2^{n}-element set into two. Find Min-Max from both sets + two comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set. Recurrence Relation: $\quad M_{n}=2 M_{n-1}+2(n \geq 2)$ and $M_{1}=1$

Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T_{n} : Moving n disks with 3 pegs requires - (i) twice the movement of ($n-1$) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: $\quad T_{n}=2 T_{n-1}+1(n \geq 1)$ and $T_{0}=0$ Homogeneous Solution: $\quad T_{n}^{(h)}=A .2^{n}$
Particular Solution: $\quad T_{n}^{(p)}=A_{1} \cdot 1^{n}=A_{1}, \quad$ hence $A_{1}=2 A_{1}+1 \Rightarrow A_{1}=-1$
Final Solution: $\quad T_{n}=A \cdot 2^{n}-1, \quad$ with $T_{0}=0=A \cdot 2^{0}-1 \Rightarrow A=1$, implying $\quad T_{n}=2^{n}-1, \quad n \geq 0$.

Example (Comparisons to find Min-Max from 2^{n} Element Set)

Strategy for M_{n} : Divide 2^{n}-element set into two. Find Min-Max from both sets + two comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set. Recurrence Relation: $\quad M_{n}=2 M_{n-1}+2(n \geq 2)$ and $M_{1}=1$ Homogeneous Solution: $\quad M_{n}^{(h)}=A \cdot 2^{n}$

Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T_{n} : Moving n disks with 3 pegs requires - (i) twice the movement of ($n-1$) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: $\quad T_{n}=2 T_{n-1}+1(n \geq 1)$ and $T_{0}=0$ Homogeneous Solution: $\quad T_{n}^{(h)}=A .2^{n}$
Particular Solution: $\quad T_{n}^{(p)}=A_{1} \cdot 1^{n}=A_{1}, \quad$ hence $A_{1}=2 A_{1}+1 \Rightarrow A_{1}=-1$
Final Solution: $\quad T_{n}=A \cdot 2^{n}-1, \quad$ with $T_{0}=0=A \cdot 2^{0}-1 \Rightarrow A=1$, implying $\quad T_{n}=2^{n}-1, \quad n \geq 0$.

Example (Comparisons to find Min-Max from 2^{n} Element Set)

Strategy for M_{n} : Divide 2^{n}-element set into two. Find Min-Max from both sets + two comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set. Recurrence Relation: $\quad M_{n}=2 M_{n-1}+2(n \geq 2)$ and $M_{1}=1$ Homogeneous Solution: $\quad M_{n}^{(h)}=A \cdot 2^{n}$
Particular Solution: $\quad M_{n}^{(p)}=A_{1} \cdot 1^{n}=A_{1}$, hence $A_{1}=2 A_{1}+2 \Rightarrow A_{1}=-2$

Solving Non-Homogeneous Recurrence Relations

Example (Towers of Hanoi Problem)

Strategy for T_{n} : Moving n disks with 3 pegs requires - (i) twice the movement of ($n-1$) disks, and (ii) once the movement of the largest disk.
Recurrence Relation: $\quad T_{n}=2 T_{n-1}+1(n \geq 1)$ and $T_{0}=0$ Homogeneous Solution: $T_{n}^{(h)}=A .2^{n}$
Particular Solution: $\quad T_{n}^{(p)}=A_{1} \cdot 1^{n}=A_{1}, \quad$ hence $A_{1}=2 A_{1}+1 \Rightarrow A_{1}=-1$
Final Solution: $\quad T_{n}=A \cdot 2^{n}-1, \quad$ with $T_{0}=0=A \cdot 2^{0}-1 \Rightarrow A=1$, implying $\quad T_{n}=2^{n}-1, \quad n \geq 0$.

Example (Comparisons to find Min-Max from 2^{n} Element Set)

Strategy for M_{n} : Divide 2^{n}-element set into two. Find Min-Max from both sets + two comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set. Recurrence Relation: $\quad M_{n}=2 M_{n-1}+2(n \geq 2)$ and $M_{1}=1$
Homogeneous Solution: $\quad M_{n}^{(h)}=A .2^{n}$
Particular Solution: $\quad M_{n}^{(p)}=A_{1} \cdot 1^{n}=A_{1}$, hence $A_{1}=2 A_{1}+2 \Rightarrow A_{1}=-2$
Final Solution: $\quad M_{n}=A .2^{n}-2, \quad$ with $M_{1}=1=A .2^{1}-2 \Rightarrow A=\frac{3}{2}$, implying $\quad M_{n}=\left(\frac{3}{2}\right) \cdot 2^{n}-2, \quad n \geq 1$.

Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

$S_{n}=$ number of n-length strings constructed using $\Sigma=\{0,1,2, \ldots, 9\}$ having even 1 s . Two ways to contribute to S_{n} :

- $n^{\text {th }}$ symbol is not $1: S_{n-1}$ ways for each 9 such cases.
- $n^{\text {th }}$ symbol is 1 : Odd number of 1 s in $(n-1)$-length part $=\left(10^{n-1}-S_{n-1}\right)$

Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

$S_{n}=$ number of n-length strings constructed using $\Sigma=\{0,1,2, \ldots, 9\}$ having even 1 s . Two ways to contribute to S_{n} :

- $n^{\text {th }}$ symbol is not $1: S_{n-1}$ ways for each 9 such cases.
- $n^{\text {th }}$ symbol is 1: Odd number of 1 s in $(n-1)$-length part $=\left(10^{n-1}-S_{n-1}\right)$ Recurrence Relation: $\quad S_{n}=9 S_{n-1}+\left(10^{n-1}-S_{n-1}\right)=8 S_{n-1}+10^{n-1}(n \geq 2)$ and $S_{1}=9$ (all digits except 1)

Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

$S_{n}=$ number of n-length strings constructed using $\Sigma=\{0,1,2, \ldots, 9\}$ having even 1 s . Two ways to contribute to S_{n} :

- $n^{\text {th }}$ symbol is not $1: S_{n-1}$ ways for each 9 such cases.
- $n^{\text {th }}$ symbol is 1: Odd number of 1 s in $(n-1)$-length part $=\left(10^{n-1}-S_{n-1}\right)$ Recurrence Relation: $\quad S_{n}=9 S_{n-1}+\left(10^{n-1}-S_{n-1}\right)=8 S_{n-1}+10^{n-1}(n \geq 2)$ and $S_{1}=9$ (all digits except 1)
Homogeneous Solution: $\quad S_{n}^{(h)}=A .8^{n}$

Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

$S_{n}=$ number of n-length strings constructed using $\Sigma=\{0,1,2, \ldots, 9\}$ having even 1 s . Two ways to contribute to S_{n} :

- $n^{\text {th }}$ symbol is not $1: S_{n-1}$ ways for each 9 such cases.
- $n^{\text {th }}$ symbol is 1: Odd number of 1 s in $(n-1)$-length part $=\left(10^{n-1}-S_{n-1}\right)$ Recurrence Relation: $\quad S_{n}=9 S_{n-1}+\left(10^{n-1}-S_{n-1}\right)=8 S_{n-1}+10^{n-1}(n \geq 2)$ and $S_{1}=9$ (all digits except 1)
Homogeneous Solution: $\quad S_{n}^{(h)}=A .8^{n}$
Particular Solution: $\quad S_{n}^{(p)}=A_{1} \cdot 10^{n-1}$, hence $10 A_{1}=8 A_{1}+10 \Rightarrow A_{1}=5$

Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

$S_{n}=$ number of n-length strings constructed using $\Sigma=\{0,1,2, \ldots, 9\}$ having even 1 s . Two ways to contribute to S_{n} :

- $n^{\text {th }}$ symbol is not $1: S_{n-1}$ ways for each 9 such cases.
- $n^{\text {th }}$ symbol is 1: Odd number of 1 s in $(n-1)$-length part $=\left(10^{n-1}-S_{n-1}\right)$ Recurrence Relation: $\quad S_{n}=9 S_{n-1}+\left(10^{n-1}-S_{n-1}\right)=8 S_{n-1}+10^{n-1}(n \geq 2)$ and $S_{1}=9$ (all digits except 1)
Homogeneous Solution: $\quad S_{n}^{(h)}=A .8^{n}$
Particular Solution: $\quad S_{n}^{(p)}=A_{1} \cdot 10^{n-1}$, hence $10 A_{1}=8 A_{1}+10 \Rightarrow A_{1}=5$ Final Solution: $\quad S_{n}=A \cdot 8^{n}+5 \cdot 10^{n-1}$, with $S_{1}=9=8 A+5 \Rightarrow A=\frac{1}{2}$, implying $\quad S_{n}=\left(\frac{1}{2}\right) \cdot 8^{n}+5 \cdot 10^{n-1}, \quad n \geq 1$.

Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

$S_{n}=$ number of n-length strings constructed using $\Sigma=\{0,1,2, \ldots, 9\}$ having even 1 s . Two ways to contribute to S_{n} :

- $n^{\text {th }}$ symbol is not 1: S_{n-1} ways for each 9 such cases.
- $n^{\text {th }}$ symbol is 1 : Odd number of 1 s in $(n-1)$-length part $=\left(10^{n-1}-S_{n-1}\right)$ Recurrence Relation: $\quad S_{n}=9 S_{n-1}+\left(10^{n-1}-S_{n-1}\right)=8 S_{n-1}+10^{n-1}(n \geq 2)$ and $S_{1}=9$ (all digits except 1)
Homogeneous Solution: $\quad S_{n}^{(h)}=A .8^{n}$
Particular Solution: $\quad S_{n}^{(p)}=A_{1} \cdot 10^{n-1}$, hence $10 A_{1}=8 A_{1}+10 \Rightarrow A_{1}=5$ Final Solution: $\quad S_{n}=A \cdot 8^{n}+5.10^{n-1}, \quad$ with $S_{1}=9=8 A+5 \Rightarrow A=\frac{1}{2}$, implying $\quad S_{n}=\left(\frac{1}{2}\right) \cdot 8^{n}+5.10^{n-1}, \quad n \geq 1$.

Example (Edges in Hasse Diagram)

$\mathcal{P}(\mathcal{S})=$ Power Set of n-element set S forming Poset $(\mathcal{P}(\mathcal{S}), \subseteq)$. $E_{n}=$ number of edges in Hasse Diagram in poset $(\mathcal{P}(\mathcal{S}), \subseteq)$

Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

$S_{n}=$ number of n-length strings constructed using $\Sigma=\{0,1,2, \ldots, 9\}$ having even 1 s . Two ways to contribute to S_{n} :

- $n^{\text {th }}$ symbol is not 1: S_{n-1} ways for each 9 such cases.
- $n^{\text {th }}$ symbol is 1 : Odd number of 1 s in $(n-1)$-length part $=\left(10^{n-1}-S_{n-1}\right)$ Recurrence Relation: $\quad S_{n}=9 S_{n-1}+\left(10^{n-1}-S_{n-1}\right)=8 S_{n-1}+10^{n-1}(n \geq 2)$ and $S_{1}=9$ (all digits except 1)
Homogeneous Solution: $\quad S_{n}^{(h)}=A .8^{n}$
Particular Solution: $\quad S_{n}^{(p)}=A_{1} \cdot 10^{n-1}$, hence $10 A_{1}=8 A_{1}+10 \Rightarrow A_{1}=5$ Final Solution: $\quad S_{n}=A \cdot 8^{n}+5.10^{n-1}, \quad$ with $S_{1}=9=8 A+5 \Rightarrow A=\frac{1}{2}$, implying $\quad S_{n}=\left(\frac{1}{2}\right) \cdot 8^{n}+5.10^{n-1}, \quad n \geq 1$.

Example (Edges in Hasse Diagram)

$\mathcal{P}(\mathcal{S})=$ Power Set of n-element set S forming Poset $(\mathcal{P}(\mathcal{S}), \subseteq)$. $E_{n}=$ number of edges in Hasse Diagram in poset $(\mathcal{P}(\mathcal{S}), \subseteq)$ Recurrence Relation: $\quad E_{n+1}=2 E_{n}+2^{n}(n \geq 1)$ and $E_{1}=1$

Solving Non-Homogeneous Recurrence Relations

Example (Strings with Digits containing Even Number of 1s)

$S_{n}=$ number of n-length strings constructed using $\Sigma=\{0,1,2, \ldots, 9\}$ having even 1 s . Two ways to contribute to S_{n} :

- $n^{\text {th }}$ symbol is not 1: S_{n-1} ways for each 9 such cases.
- $n^{\text {th }}$ symbol is 1 : Odd number of 1 s in $(n-1)$-length part $=\left(10^{n-1}-S_{n-1}\right)$ Recurrence Relation: $\quad S_{n}=9 S_{n-1}+\left(10^{n-1}-S_{n-1}\right)=8 S_{n-1}+10^{n-1}(n \geq 2)$ and $S_{1}=9$ (all digits except 1)
Homogeneous Solution: $\quad S_{n}^{(h)}=A .8^{n}$
Particular Solution: $\quad S_{n}^{(p)}=A_{1} \cdot 10^{n-1}$, hence $10 A_{1}=8 A_{1}+10 \Rightarrow A_{1}=5$ Final Solution: $\quad S_{n}=A \cdot 8^{n}+5.10^{n-1}, \quad$ with $S_{1}=9=8 A+5 \Rightarrow A=\frac{1}{2}$, implying $\quad S_{n}=\left(\frac{1}{2}\right) \cdot 8^{n}+5.10^{n-1}, \quad n \geq 1$.

Example (Edges in Hasse Diagram)

$\mathcal{P}(\mathcal{S})=$ Power Set of n-element set S forming Poset $(\mathcal{P}(\mathcal{S}), \subseteq)$.
$E_{n}=$ number of edges in Hasse Diagram in poset $(\mathcal{P}(\mathcal{S}), \subseteq)$
Recurrence Relation: $\quad E_{n+1}=2 E_{n}+2^{n}(n \geq 1)$ and $E_{1}=1$
Solution: $E_{n}=E_{n}^{(h)}+E_{n}^{(p)}=A \cdot 2^{n}+A_{1} \cdot n \cdot 2^{n}$ with $A=0, A_{1}=\frac{1}{2}$ implies $E_{n}=n .2^{n-1}, \quad n \geq 1$

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3 -sided regular polygon after n transforms
(Koch's Snowflake, 1904)

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:
$a_{0}=\frac{\sqrt{3}}{4}$
(3-sided),
(Koch's Snowflake, 1904)

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:
$a_{0}=\frac{\sqrt{3}}{4}$
$a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3}$
($4 \times 3=12$-sided) ,
(Koch's Snowflake, 1904)

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:

$$
\begin{array}{ll}
a_{0}=\frac{\sqrt{3}}{4} & \text { (3-sided) }, \\
a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3} & (4 \times 3=12 \text {-sided) }, \\
a_{2}=\frac{\sqrt{3}}{3}+4^{1} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{2}}\right]^{2}=\frac{10 \sqrt{3}}{27} & \left(4^{2} \times 3=48\right. \text {-sided) }
\end{array}
$$

(Koch's Snowflake, 1904)

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:
$a_{0}=\frac{\sqrt{3}}{4}$
$a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3}$
($4 \times 3=12$-sided),
$a_{2}=\frac{\sqrt{3}}{3}+4^{1} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{2}}\right]^{2}=\frac{10 \sqrt{3}}{27}$
($4^{2} \times 3=48$-sided)
$a_{3}=\frac{10 \sqrt{3}}{27}+4^{2} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{3}}\right]^{2}$
($4^{3} \times 3=192$-sided)
(Koch's Snowflake, 1904)

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:

$$
\begin{array}{lr}
a_{0}=\frac{\sqrt{3}}{4} & (3 \text {-sided }), \\
a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3} & (4 \times 3=12 \text {-sided }), \\
a_{2}=\frac{\sqrt{3}}{3}+4^{1} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{2}}\right]^{2}=\frac{10 \sqrt{3}}{27} & \left(4^{2} \times 3=48 \text {-sided }\right) \\
a_{3}=\frac{10 \sqrt{3}}{27}+4^{2} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{3}}\right]^{2} & \left(4^{3} \times 3=192 \text {-sided }\right)
\end{array}
$$

Recurrence Relation:
$a_{n+1}=a_{n}+4^{n} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{n+1}}\right]^{2}=a_{n}+\left(\frac{1}{4 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{n} \quad(n \geq 0)$
(Koch's Snowflake, 1904)

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:
$a_{0}=\frac{\sqrt{3}}{4}$
$a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3}$
($4 \times 3=12$-sided),
$a_{2}=\frac{\sqrt{3}}{3}+4^{1} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{2}}\right]^{2}=\frac{10 \sqrt{3}}{27}$
($4^{2} \times 3=48$-sided)
$a_{3}=\frac{10 \sqrt{3}}{27}+4^{2} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{3}}\right]^{2}$
($4^{3} \times 3=192$-sided)
Recurrence Relation:
$a_{n+1}=a_{n}+4^{n} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{n+1}}\right]^{2}=a_{n}+\left(\frac{1}{4 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{n} \quad(n \geq 0)$
Solution: $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=A \cdot 1^{n}+B \cdot\left(\frac{4}{9}\right)^{n}=A+B \cdot\left(\frac{4}{9}\right)^{n}$
(Koch's Snowflake, 1904)

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:
$a_{0}=\frac{\sqrt{3}}{4}$
$a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3}$
($4 \times 3=12$-sided),
$a_{2}=\frac{\sqrt{3}}{3}+4^{1} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{2}}\right]^{2}=\frac{10 \sqrt{3}}{27}$ ($4^{2} \times 3=48$-sided)
$a_{3}=\frac{10 \sqrt{3}}{27}+4^{2} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{3}}\right]^{2}$
($4^{3} \times 3=192$-sided)
Recurrence Relation:
$a_{n+1}=a_{n}+4^{n} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{n+1}}\right]^{2}=a_{n}+\left(\frac{1}{4 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{n} \quad(n \geq 0)$
Solution: $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=A \cdot 1^{n}+B \cdot\left(\frac{4}{9}\right)^{n}=A+B \cdot\left(\frac{4}{9}\right)^{n}$
So, $B=\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right) \quad$ and

$$
a_{n}=A+\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n}=A-\left(\frac{1}{5 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}
$$

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:
$a_{0}=\frac{\sqrt{3}}{4}$
$a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3}$
(3-sided),
$a_{2}=\frac{\sqrt{3}}{3}+4^{1} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{2}}\right]^{2}=\frac{10 \sqrt{3}}{27}$
($4 \times 3=12$-sided),
$a_{3}=\frac{10 \sqrt{3}}{27}+4^{2} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{3}}\right]^{2}$
($4^{2} \times 3=48$-sided)

Recurrence Relation:
$a_{n+1}=a_{n}+4^{n} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{n+1}}\right]^{2}=a_{n}+\left(\frac{1}{4 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{n} \quad(n \geq 0)$
Solution: $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=A \cdot 1^{n}+B \cdot\left(\frac{4}{9}\right)^{n}=A+B \cdot\left(\frac{4}{9}\right)^{n}$
So, $B=\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right) \quad$ and $\quad a_{n}=A+\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n}=A-\left(\frac{1}{5 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}$
Now, $a_{0}=\frac{\sqrt{3}}{4}=A-\left(\frac{1}{5 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{-1} \quad \Rightarrow A=\frac{6}{5 \sqrt{3}}$
(Koch's Snowflake, 1904)

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:
$a_{0}=\frac{\sqrt{3}}{4}$
$a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3}$
(3-sided),
$a_{2}=\frac{\sqrt{3}}{3}+4^{1} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{2}}\right]^{2}=\frac{10 \sqrt{3}}{27}$
$(4 \times 3=12$-sided $)$,
$a_{3}=\frac{10 \sqrt{3}}{27}+4^{2} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{3}}\right]^{2}$
($4^{2} \times 3=48$-sided)

Recurrence Relation:
$a_{n+1}=a_{n}+4^{n} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{n+1}}\right]^{2}=a_{n}+\left(\frac{1}{4 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{n} \quad(n \geq 0)$
Solution: $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=A \cdot 1^{n}+B \cdot\left(\frac{4}{9}\right)^{n}=A+B \cdot\left(\frac{4}{9}\right)^{n}$
So, $B=\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right) \quad$ and $\quad a_{n}=A+\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n}=A-\left(\frac{1}{5 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}$
Now, $a_{0}=\frac{\sqrt{3}}{4}=A-\left(\frac{1}{5 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{-1} \quad \Rightarrow A=\frac{6}{5 \sqrt{3}}$
Finally, $a_{n}=\frac{6}{5 \sqrt{3}}-\left(\frac{1}{5 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}=\left(\frac{1}{5 \sqrt{3}}\right)\left[6-\left(\frac{4}{9}\right)^{n-1}\right], \quad n \geq 0$

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3-sided regular polygon after n transforms
Formulating the Recurrence Relation:
$a_{0}=\frac{\sqrt{3}}{4}$
$a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3}$
(3-sided),
$a_{2}=\frac{\sqrt{3}}{3}+4^{1} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{2}}\right]^{2}=\frac{10 \sqrt{3}}{27}$
($4 \times 3=12$-sided),
$a_{3}=\frac{10 \sqrt{3}}{27}+4^{2} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{3}}\right]^{2}$
($4^{2} \times 3=48$-sided)

Recurrence Relation:
$a_{n+1}=a_{n}+4^{n} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{n+1}}\right]^{2}=a_{n}+\left(\frac{1}{4 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{n} \quad(n \geq 0)$
Solution: $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=A \cdot 1^{n}+B \cdot\left(\frac{4}{9}\right)^{n}=A+B \cdot\left(\frac{4}{9}\right)^{n}$
So, $B=\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right) \quad$ and $\quad a_{n}=A+\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n}=A-\left(\frac{1}{5 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}$
Now, $a_{0}=\frac{\sqrt{3}}{4}=A-\left(\frac{1}{5 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{-1} \quad \Rightarrow A=\frac{6}{5 \sqrt{3}}$
Finally, $a_{n}=\frac{6}{5 \sqrt{3}}-\left(\frac{1}{5 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}=\left(\frac{1}{5 \sqrt{3}}\right)\left[6-\left(\frac{4}{9}\right)^{n-1}\right], \quad n \geq 0$

Generalized Recurrence Relations for Area under Regular Polygon Fractals

For 4-sided (unit-length) Regular Polygon:

$$
a_{n+1}=a_{n}+5^{n} \cdot 4 \cdot 1 \cdot\left[\frac{1}{3^{n+1}}\right]^{2}=a_{n}+\left(\frac{4}{9}\right) \cdot\left(\frac{5}{9}\right)^{n}
$$

Solving Non-Homogeneous Recurrence Relations

Example (Area under a Snowflake - Concept of Fractals)

$a_{n}=$ area of 3 -sided regular polygon after n transforms
Formulating the Recurrence Relation:
$a_{0}=\frac{\sqrt{3}}{4}$
$a_{1}=\frac{\sqrt{3}}{4}+3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3}\right]^{2}=\frac{\sqrt{3}}{3}$
($4 \times 3=12$-sided),
$a_{2}=\frac{\sqrt{3}}{3}+4^{1} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{2}}\right]^{2}=\frac{10 \sqrt{3}}{27}$
($4^{2} \times 3=48$-sided)
$a_{3}=\frac{10 \sqrt{3}}{27}+4^{2} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{3}}\right]^{2}$
($4^{3} \times 3=192$-sided)
Recurrence Relation:
$a_{n+1}=a_{n}+4^{n} \cdot 3 \cdot\left(\frac{\sqrt{3}}{4}\right) \cdot\left[\frac{1}{3^{n+1}}\right]^{2}=a_{n}+\left(\frac{1}{4 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{n} \quad(n \geq 0)$
Solution: $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=A \cdot 1^{n}+B \cdot\left(\frac{4}{9}\right)^{n}=A+B \cdot\left(\frac{4}{9}\right)^{n}$
So, $B=\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right) \quad$ and $\quad a_{n}=A+\left(-\frac{9}{5}\right)\left(\frac{1}{4 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n}=A-\left(\frac{1}{5 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}$
Now, $a_{0}=\frac{\sqrt{3}}{4}=A-\left(\frac{1}{5 \sqrt{3}}\right) \cdot\left(\frac{4}{9}\right)^{-1} \quad \Rightarrow A=\frac{6}{5 \sqrt{3}}$
Finally, $a_{n}=\frac{6}{5 \sqrt{3}}-\left(\frac{1}{5 \sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}=\left(\frac{1}{5 \sqrt{3}}\right)\left[6-\left(\frac{4}{9}\right)^{n-1}\right], \quad n \geq 0$

Generalized Recurrence Relations for Area under Regular Polygon Fractals

For 4-sided (unit-length) Regular Polygon:
For k-sided (m-length) Regular Polygon:

$$
\begin{aligned}
& a_{n+1}=a_{n}+5^{n} \cdot 4 \cdot 1 \cdot\left[\frac{1}{3^{n+1}}\right]^{2}=a_{n}+\left(\frac{4}{9}\right) \cdot\left(\frac{5}{9}\right)^{n} \\
& a_{n+1}=a_{n}+(k+1)^{n} \cdot k \cdot\left[\frac{m^{2} \cdot k}{4 \cdot \tan \left(\frac{180^{\circ}}{k}\right)}\right] \cdot\left[\frac{1}{3^{n+1}}\right]^{2}
\end{aligned}
$$

Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients
General Form: $t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=K \cdot B^{n}(n \geq 1)$ and $t_{0}=D_{0}, t_{1}=D_{1}$ (Here, $B(\neq 0), C_{1}, C_{2}(\neq 0), D_{0}, D_{1}, K$ are all arbitrary constants)

Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=K . B^{n}(n \geq 1)$ and $t_{0}=D_{0}, t_{1}=D_{1}$ (Here, $B(\neq 0), C_{1}, C_{2}(\neq 0), D_{0}, D_{1}, K$ are all arbitrary constants)
Homogeneous Solution Part: $\quad\left(A_{1}, A_{2}\right.$ are constants $)$

$$
t_{n}^{(h)}= \begin{cases}A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}, & \text { for distinct roots } \\ \left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}, & \text { for equal roots }\end{cases}
$$

Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=K \cdot B^{n}(n \geq 1)$ and $t_{0}=D_{0}, t_{1}=D_{1}$ (Here, $B(\neq 0), C_{1}, C_{2}(\neq 0), D_{0}, D_{1}, K$ are all arbitrary constants)
Homogeneous Solution Part: $\quad\left(A_{1}, A_{2}\right.$ are constants $)$

$$
t_{n}^{(h)}= \begin{cases}A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}, & \text { for distinct roots } \\ \left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}, & \text { for equal roots }\end{cases}
$$

Particular Solution Part: $\quad\left(A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}\right.$ are constants)

$$
t_{n}^{(p)}=\left\{\begin{aligned}
A^{\prime} \cdot B^{n}, & \text { for distinct roots when } R_{1} \neq B \neq R_{2} \\
A^{\prime \prime} \cdot n \cdot B^{n}, & \text { for distinct roots when } R=R_{1} \text { or } R=R_{2} \\
A^{\prime} \cdot B^{n}, & \text { for equal roots when } B \neq R \\
A^{\prime \prime \prime} \cdot n^{2} \cdot B^{n}, & \text { for equal roots when } B=R
\end{aligned}\right.
$$

Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=K \cdot B^{n}(n \geq 1)$ and $t_{0}=D_{0}, t_{1}=D_{1}$ (Here, $B(\neq 0), C_{1}, C_{2}(\neq 0), D_{0}, D_{1}, K$ are all arbitrary constants)
Homogeneous Solution Part: $\quad\left(A_{1}, A_{2}\right.$ are constants)

$$
t_{n}^{(h)}= \begin{cases}A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}, & \text { for distinct roots } \\ \left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}, & \text { for equal roots }\end{cases}
$$

Particular Solution Part: $\quad\left(A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}\right.$ are constants)

$$
t_{n}^{(p)}=\left\{\begin{aligned}
A^{\prime} \cdot B^{n}, & \text { for distinct roots when } R_{1} \neq B \neq R_{2} \\
A^{\prime \prime} \cdot n \cdot B^{n}, & \text { for distinct roots when } R=R_{1} \text { or } R=R_{2} \\
A^{\prime} \cdot B^{n}, & \text { for equal roots when } B \neq R \\
A^{\prime \prime \prime} \cdot n^{2} \cdot B^{n}, & \text { for equal roots when } B=R
\end{aligned}\right.
$$

Exact Solution: $t_{n}=t_{n}^{(h)}+t_{n}^{(p)}=$

$$
\left\{\begin{array}{c}
\left(A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}\right)+A^{\prime} \cdot B^{n}, \\
\left(A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}\right)+A^{\prime \prime} \cdot n \cdot B^{n}, \\
\left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}+A^{\prime} \cdot B^{n}, \\
\left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}+A^{\prime \prime \prime} \cdot n^{2} \cdot B^{n},
\end{array}\right.
$$

$$
\text { for distinct roots when } R_{1} \neq B \neq R_{2}
$$

$$
\text { for distinct roots when } R=R_{1} \text { or } R=R_{2}
$$

$$
\text { for equal roots when } B \neq R
$$

$$
\left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}+A^{\prime \prime \prime} \cdot n^{2} \cdot B^{n}, \quad \text { for equal roots when } B=R
$$

Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=K \cdot B^{n}(n \geq 1)$ and $t_{0}=D_{0}, t_{1}=D_{1}$ (Here, $B(\neq 0), C_{1}, C_{2}(\neq 0), D_{0}, D_{1}, K$ are all arbitrary constants)
Homogeneous Solution Part: $\quad\left(A_{1}, A_{2}\right.$ are constants $)$

$$
t_{n}^{(h)}= \begin{cases}A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}, & \text { for distinct roots } \\ \left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}, & \text { for equal roots }\end{cases}
$$

Particular Solution Part: $\quad\left(A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}\right.$ are constants)

$$
t_{n}^{(p)}=\left\{\begin{aligned}
A^{\prime} \cdot B^{n}, & \text { for distinct roots when } R_{1} \neq B \neq R_{2} \\
A^{\prime \prime} \cdot n \cdot B^{n}, & \text { for distinct roots when } R=R_{1} \text { or } R=R_{2} \\
A^{\prime} \cdot B^{n}, & \text { for equal roots when } B \neq R \\
A^{\prime \prime \prime} \cdot n^{2} \cdot B^{n}, & \text { for equal roots when } B=R
\end{aligned}\right.
$$

Exact Solution: $t_{n}=t_{n}^{(h)}+t_{n}^{(p)}=$

$$
\left\{\begin{array}{c}
\left(A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}\right)+A^{\prime} \cdot B^{n}, \\
\left(A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}\right)+A^{\prime \prime} \cdot n \cdot B^{n}, \\
\left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}+A^{\prime} \cdot B^{n}, \\
\left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}+A^{\prime \prime \prime} \cdot n^{2} \cdot B^{n},
\end{array}\right.
$$

for distinct roots when $R_{1} \neq B \neq R_{2}$ for distinct roots when $R=R_{1}$ or $R=R_{2}$
for equal roots when $B \neq R$
for equal roots when $B=R$

Constant Determination: Unique Solution:

Left For You as an Exercise!
Left For You as an Exercise!

Solving Non-Homogeneous Recurrence Relations

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}=K \cdot B^{n}(n \geq 1)$ and $t_{0}=D_{0}, t_{1}=D_{1}$ (Here, $B(\neq 0), C_{1}, C_{2}(\neq 0), D_{0}, D_{1}, K$ are all arbitrary constants)
Homogeneous Solution Part: $\quad\left(A_{1}, A_{2}\right.$ are constants $)$

$$
t_{n}^{(h)}= \begin{cases}A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}, & \text { for distinct roots } \\ \left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}, & \text { for equal roots }\end{cases}
$$

Particular Solution Part: $\quad\left(A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}\right.$ are constants)

$$
t_{n}^{(p)}=\left\{\begin{aligned}
A^{\prime} \cdot B^{n}, & \text { for distinct roots when } R_{1} \neq B \neq R_{2} \\
A^{\prime \prime} \cdot n \cdot B^{n}, & \text { for distinct roots when } R=R_{1} \text { or } R=R_{2} \\
A^{\prime} \cdot B^{n}, & \text { for equal roots when } B \neq R \\
A^{\prime \prime \prime} \cdot n^{2} \cdot B^{n}, & \text { for equal roots when } B=R
\end{aligned}\right.
$$

Exact Solution: $t_{n}=t_{n}^{(h)}+t_{n}^{(p)}=$

$$
\left\{\begin{array}{c}
\left(A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}\right)+A^{\prime} \cdot B^{n}, \\
\left(A_{1} \cdot R_{1}^{n}+A_{2} \cdot R_{2}^{n}\right)+A^{\prime \prime} \cdot n \cdot B^{n}, \\
\left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}+A^{\prime} \cdot B^{n}, \\
\left(A_{1}+A_{2} \cdot n\right) \cdot R^{n}+A^{\prime \prime \prime} \cdot n^{2} \cdot B^{n},
\end{array}\right.
$$

for distinct roots when $R_{1} \neq B \neq R_{2}$ for distinct roots when $R=R_{1}$ or $R=R_{2}$
for equal roots when $B \neq R$ for equal roots when $B=R$

Constant Determination: Unique Solution:

Homework:

Left For You as an Exercise!
Left For You as an Exercise!
What happens for Complex Conjugate Pair Roots ?

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $\left.t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0), t_{0}=3000, t_{1}=3300\right)$

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $\left.t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0), t_{0}=3000, t_{1}=3300\right)$
Characteristic Roots (Homogeneous Consideration): $R_{1}=3, R_{2}=1$

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0)$, $\left.t_{0}=3000, t_{1}=3300\right)$
Characteristic Roots (Homogeneous Consideration): $R_{1}=3, R_{2}=1$
Homogeneous Solution: $\quad t_{n}^{(h)}=A_{1} \cdot 3^{n}+A_{2} \cdot 1^{n}=A_{1} \cdot 3^{n}+A_{2}$

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0)$, $\left.t_{0}=3000, t_{1}=3300\right)$
Characteristic Roots (Homogeneous Consideration): $R_{1}=3, R_{2}=1$
Homogeneous Solution: $t_{n}^{(h)}=A_{1} \cdot 3^{n}+A_{2} \cdot 1^{n}=A_{1} \cdot 3^{n}+A_{2}$
Particular Solution: $\quad t_{n}^{(p)}=$ A.n. $1^{n}=$ A.n
Hence, $(n+2) A-4(n+1) A+3 n A=-200 \quad \Rightarrow A=100$

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $\left.t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0), t_{0}=3000, t_{1}=3300\right)$

Characteristic Roots (Homogeneous Consideration): $R_{1}=3, R_{2}=1$
Homogeneous Solution: $t_{n}^{(h)}=A_{1} \cdot 3^{n}+A_{2} \cdot 1^{n}=A_{1} \cdot 3^{n}+A_{2}$
Particular Solution: $\quad t_{n}^{(p)}=A . n .1^{n}=A . n$
Hence, $(n+2) A-4(n+1) A+3 n A=-200 \Rightarrow A=100$
Final Solution: $t_{n}=A_{1} \cdot 3^{n}+A_{2}+100 n=100.3^{n}+2900+100 n, n \geq 0$
(as $t_{0}=3000=A_{1}+A_{2}, t_{1}=3300=3 . A_{1}+A_{2}+100$ produces $A_{1}=100, A_{2}=2900$)

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0)$, $\left.t_{0}=3000, t_{1}=3300\right)$

Characteristic Roots (Homogeneous Consideration): $R_{1}=3, R_{2}=1$
Homogeneous Solution: $t_{n}^{(h)}=A_{1} \cdot 3^{n}+A_{2} \cdot 1^{n}=A_{1} \cdot 3^{n}+A_{2}$
Particular Solution: $\quad t_{n}^{(p)}=A . n .1^{n}=A . n$
Hence, $(n+2) A-4(n+1) A+3 n A=-200 \Rightarrow A=100$
Final Solution: $\quad t_{n}=A_{1} \cdot 3^{n}+A_{2}+100 n=100 \cdot 3^{n}+2900+100 n, n \geq 0$ (as $t_{0}=3000=A_{1}+A_{2}, t_{1}=3300=3 . A_{1}+A_{2}+100$ produces $A_{1}=100, A_{2}=2900$)

Example (Total Additions to Compute Fibonacci Number)

$a_{n}=$ total number of additions to compute $n^{\text {th }}$ Fibonacci number

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $\left.t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0), t_{0}=3000, t_{1}=3300\right)$

Characteristic Roots (Homogeneous Consideration): $R_{1}=3, R_{2}=1$
Homogeneous Solution: $t_{n}^{(h)}=A_{1} \cdot 3^{n}+A_{2} \cdot 1^{n}=A_{1} \cdot 3^{n}+A_{2}$
Particular Solution: $\quad t_{n}^{(p)}=A . n .1^{n}=A . n$
Hence, $(n+2) A-4(n+1) A+3 n A=-200 \Rightarrow A=100$
Final Solution: $\quad t_{n}=A_{1} \cdot 3^{n}+A_{2}+100 n=100 \cdot 3^{n}+2900+100 n, n \geq 0$ (as $t_{0}=3000=A_{1}+A_{2}, t_{1}=3300=3 . A_{1}+A_{2}+100$ produces $A_{1}=100, A_{2}=2900$)

Example (Total Additions to Compute Fibonacci Number)

$a_{n}=$ total number of additions to compute $n^{\text {th }}$ Fibonacci number
Recurrence Relation: $a_{n}=a_{n-1}+a_{n-2}+1(n \geq 2)$ and $a_{0}=a_{1}=0$ (initial cases)

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0)$, $\left.t_{0}=3000, t_{1}=3300\right)$

Characteristic Roots (Homogeneous Consideration): $R_{1}=3, R_{2}=1$
Homogeneous Solution: $t_{n}^{(h)}=A_{1} \cdot 3^{n}+A_{2} \cdot 1^{n}=A_{1} \cdot 3^{n}+A_{2}$
Particular Solution: $\quad t_{n}^{(p)}=A . n .1^{n}=A . n$
Hence, $(n+2) A-4(n+1) A+3 n A=-200 \Rightarrow A=100$
Final Solution: $\quad t_{n}=A_{1} \cdot 3^{n}+A_{2}+100 n=100 \cdot 3^{n}+2900+100 n, n \geq 0$ (as $t_{0}=3000=A_{1}+A_{2}, t_{1}=3300=3 . A_{1}+A_{2}+100$ produces $A_{1}=100, A_{2}=2900$)

Example (Total Additions to Compute Fibonacci Number)

$a_{n}=$ total number of additions to compute $n^{\text {th }}$ Fibonacci number
Recurrence Relation: $a_{n}=a_{n-1}+a_{n-2}+1(n \geq 2)$ and $a_{0}=a_{1}=0$ (initial cases) Homogeneous Solution: $\quad a_{n}^{(h)}=A_{1} \cdot\left(\frac{1+\sqrt{5}}{2}\right)^{n}+A_{2} \cdot\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0)$, $\left.t_{0}=3000, t_{1}=3300\right)$

Characteristic Roots (Homogeneous Consideration): $R_{1}=3, R_{2}=1$
Homogeneous Solution: $t_{n}^{(h)}=A_{1} \cdot 3^{n}+A_{2} \cdot 1^{n}=A_{1} \cdot 3^{n}+A_{2}$
Particular Solution: $\quad t_{n}^{(p)}=A . n \cdot 1^{n}=A . n$
Hence, $(n+2) A-4(n+1) A+3 n A=-200 \Rightarrow A=100$
Final Solution: $t_{n}=A_{1} \cdot 3^{n}+A_{2}+100 n=100.3^{n}+2900+100 n, n \geq 0$ (as $t_{0}=3000=A_{1}+A_{2}, t_{1}=3300=3 . A_{1}+A_{2}+100$ produces $A_{1}=100, A_{2}=2900$)

Example (Total Additions to Compute Fibonacci Number)

$a_{n}=$ total number of additions to compute $n^{\text {th }}$ Fibonacci number
Recurrence Relation: $a_{n}=a_{n-1}+a_{n-2}+1(n \geq 2)$ and $a_{0}=a_{1}=0$ (initial cases)
Homogeneous Solution: $\quad a_{n}^{(h)}=A_{1} \cdot\left(\frac{1+\sqrt{5}}{2}\right)^{n}+A_{2} \cdot\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
Particular Solution: $\quad a_{n}^{(p)}=A \cdot 1^{n}=A, \quad$ hence $A=A+A+1 \Rightarrow A=-1$

Solving Non-Homogeneous Recurrence Relations

Example (Solve: $t_{n+2}-4 t_{n+1}+3 t_{n}=-200(n \geq 0)$, $\left.t_{0}=3000, t_{1}=3300\right)$

Characteristic Roots (Homogeneous Consideration): $R_{1}=3, R_{2}=1$
Homogeneous Solution: $t_{n}^{(h)}=A_{1} \cdot 3^{n}+A_{2} \cdot 1^{n}=A_{1} \cdot 3^{n}+A_{2}$
Particular Solution: $\quad t_{n}^{(p)}=A . n .1^{n}=A . n$
Hence, $(n+2) A-4(n+1) A+3 n A=-200 \quad \Rightarrow A=100$
Final Solution: $\quad t_{n}=A_{1} \cdot 3^{n}+A_{2}+100 n=100 \cdot 3^{n}+2900+100 n, n \geq 0$ (as $t_{0}=3000=A_{1}+A_{2}, t_{1}=3300=3 . A_{1}+A_{2}+100$ produces $A_{1}=100, A_{2}=2900$)

Example (Total Additions to Compute Fibonacci Number)

$a_{n}=$ total number of additions to compute $n^{\text {th }}$ Fibonacci number
Recurrence Relation: $a_{n}=a_{n-1}+a_{n-2}+1(n \geq 2)$ and $a_{0}=a_{1}=0$ (initial cases)
Homogeneous Solution: $\quad a_{n}^{(h)}=A_{1} \cdot\left(\frac{1+\sqrt{5}}{2}\right)^{n}+A_{2} \cdot\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
Particular Solution: $\quad a_{n}^{(p)}=A \cdot 1^{n}=A$, hence $A=A+A+1 \Rightarrow A=-1$
Final Solution: $\quad a_{n}=A_{1} \cdot\left(\frac{1+\sqrt{5}}{2}\right)^{n}+A_{2} \cdot\left(\frac{1-\sqrt{5}}{2}\right)^{n}-1, \quad$ with $A_{1}=\frac{1+\sqrt{5}}{2 \sqrt{5}}, A_{2}=-\frac{1-\sqrt{5}}{2 \sqrt{5}}$,
$\Rightarrow a_{n}=\left(\frac{1+\sqrt{5}}{2 \sqrt{5}}\right) \cdot\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2 \sqrt{5}}\right) \cdot\left(\frac{1-\sqrt{5}}{2}\right)^{n}-1=\frac{1}{\sqrt{5}} \cdot\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}} \cdot\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}-1, n \geq 0$

Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants.
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant

Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants.
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Homogeneous Solution: $t_{n}^{(h)}$ (computed assuming $f(n)=0$ as earlier)

Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants.
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Homogeneous Solution: $t_{n}^{(h)}$ (computed assuming $f(n)=0$ as earlier) Particular Solution: Three cases to consider while constructing $t_{n}^{(p)}$:

Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants.
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Homogeneous Solution: $t_{n}^{(h)}$ (computed assuming $f(n)=0$ as earlier)
Particular Solution: Three cases to consider while constructing $t_{n}^{(p)}$:
(1) Format of $f(n)$ is a constant multiple of following table (middle column) and is NOT associated with form of $t_{n}^{(h)}$:

Types	Format of $f(n)$	Format for $t_{n}^{(p)}$
Type-1	$n^{m} \cdot R^{n}(m \in \mathbb{N}, R \in \mathbb{R})$	$R^{n} \cdot\left(\sum_{i=0}^{m} A_{i} \cdot n^{i}\right)$
Type-2	$R^{n} \cdot \sin (n \theta)$ or $R^{n} \cdot \cos (n \theta)$	$R^{n} \cdot\left(A_{1} \cdot \sin (n \theta)+A_{2} \cdot \cos (n \theta)\right)$

Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants.
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Homogeneous Solution: $t_{n}^{(h)}$ (computed assuming $f(n)=0$ as earlier)
Particular Solution: Three cases to consider while constructing $t_{n}^{(p)}$:
(1) Format of $f(n)$ is a constant multiple of following table (middle column) and is NOT associated with form of $t_{n}^{(h)}$:

Types	Format of $f(n)$	Format for $t_{n}^{(p)}$
Type-1	$n^{m} \cdot R^{n}(m \in \mathbb{N}, R \in \mathbb{R})$	$R^{n} \cdot\left(\sum_{i=0}^{m} A_{i} \cdot n^{i}\right)$
Type-2	$R^{n} \cdot \sin (n \theta)$ or $R^{n} \cdot \cos (n \theta)$	$R^{n} \cdot\left(A_{1} \cdot \sin (n \theta)+A_{2} \cdot \cos (n \theta)\right)$

(2) Format of $f(n)$ is the sum of constant multiples of above table (middle column) and is NOT associated with form of $t_{n}^{(h)}$: Take $t_{n}^{(p)}$ as the sum of above table entries (right columns)

Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0} \cdot t_{n}+C_{1} \cdot t_{n-1}+C_{2} \cdot t_{n-2}+\cdots+C_{k} \cdot t_{n-k}=f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}, C_{0}(\neq 0), C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants.
Boundary Condition: $t_{j}=D_{j}$, for each $0 \leq j \leq k-1$ and every D_{j} is a constant Homogeneous Solution: $t_{n}^{(h)}$ (computed assuming $f(n)=0$ as earlier)
Particular Solution: Three cases to consider while constructing $t_{n}^{(p)}$:
(1) Format of $f(n)$ is a constant multiple of following table (middle column) and is NOT associated with form of $t_{n}^{(h)}$:

Types	Format of $f(n)$	Format for $t_{n}^{(p)}$
Type-1	$n^{m} \cdot R^{n}(m \in \mathbb{N}, R \in \mathbb{R})$	$R^{n} \cdot\left(\sum_{i=0}^{m} A_{i} \cdot n^{i}\right)$
Type-2	$R^{n} \cdot \sin (n \theta)$ or $R^{n} \cdot \cos (n \theta)$	$R^{n} \cdot\left(A_{1} \cdot \sin (n \theta)+A_{2} \cdot \cos (n \theta)\right)$

(2) Format of $f(n)$ is the sum of constant multiples of above table (middle column) and is NOT associated with form of $t_{n}^{(h)}$: Take $t_{n}^{(p)}$ as the sum of above table entries (right columns)
(3) A summand $f^{\prime}(n)$ from $f(n)$ is an associated solution in $t_{n}^{(h)}$:

- Format of $f^{\prime}(n)$ is of Type-1 from above table:
$t_{n}^{(p)} \leftarrow n^{s} . t_{n}^{(p)}$, i.e. multiply with smallest s so that no summand of $n^{s} . f^{\prime}(n)$ is associated with $t_{n}^{(h)}$.
- Format of $f^{\prime}(n)$ is of Type-2 from above table: Left as Exerciseb ac

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself)

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $\quad H_{n}^{(p)}=n^{1} .\left(A_{1} . n+A_{0}\right)$ (with A (const.) in $H_{n}^{(h)}, H_{n}^{(p)} \leftarrow n^{1} . H_{n}^{(p)}$)

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $H_{n}^{(p)}=n^{1} \cdot\left(A_{1} \cdot n+A_{0}\right) \quad$ (with $A\left(\right.$ const.) in $\left.H_{n}^{(h)}, H_{n}^{(p)} \leftarrow n^{1} \cdot H_{n}^{(p)}\right)$
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+n \quad \Rightarrow A_{1}=\frac{1}{2}, A_{0}=-\frac{1}{2}$

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $H_{n}^{(p)}=n^{1} \cdot\left(A_{1} . n+A_{0}\right) \quad$ (with $A\left(\right.$ const.) in $H_{n}^{(h)}, H_{n}^{(p)} \leftarrow n^{1} . H_{n}^{(p)}$)
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+n \quad \Rightarrow A_{1}=\frac{1}{2}, A_{0}=-\frac{1}{2}$
Final Solution: $\quad H_{n}=A+\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n, \quad$ with $H_{1}=0=A$,

$$
\text { implying, } \quad H_{n}=\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n=\frac{n(n-1)}{2}=\binom{n}{2}, \quad n \geq 1 .
$$

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $H_{n}^{(p)}=n^{1} \cdot\left(A_{1} \cdot n+A_{0}\right) \quad$ (with A (const.) in $H_{n}^{(h)}, H_{n}^{(p)} \leftarrow n^{1} . H_{n}^{(p)}$)
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+n \quad \Rightarrow A_{1}=\frac{1}{2}, A_{0}=-\frac{1}{2}$
Final Solution: $\quad H_{n}=A+\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n$, with $H_{1}=0=A$, implying, $\quad H_{n}=\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n=\frac{n(n-1)}{2}=\binom{n}{2}, \quad n \geq 1$.

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

$L_{n}=$ number of regions formed by n non-parallel and non-colinear straight lines.

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $H_{n}^{(p)}=n^{1} \cdot\left(A_{1} \cdot n+A_{0}\right) \quad$ (with A (const.) in $H_{n}^{(h)}, H_{n}^{(p)} \leftarrow n^{1} . H_{n}^{(p)}$)
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+n \quad \Rightarrow A_{1}=\frac{1}{2}, A_{0}=-\frac{1}{2}$
Final Solution: $\quad H_{n}=A+\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n, \quad$ with $H_{1}=0=A$, implying, $\quad H_{n}=\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n=\frac{n(n-1)}{2}=\binom{n}{2}, \quad n \geq 1$.

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

$L_{n}=$ number of regions formed by n non-parallel and non-colinear straight lines. Recurrence Relation: $\quad L_{n+1}=L_{n}+(n+1)(n \geq 1)$ and $L_{0}=1$ (whole 2-D plane)

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $H_{n}^{(p)}=n^{1} \cdot\left(A_{1} \cdot n+A_{0}\right) \quad$ (with A (const.) in $H_{n}^{(h)}, H_{n}^{(p)} \leftarrow n^{1} . H_{n}^{(p)}$)
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+n \quad \Rightarrow A_{1}=\frac{1}{2}, A_{0}=-\frac{1}{2}$
Final Solution: $\quad H_{n}=A+\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n$, with $H_{1}=0=A$, implying, $\quad H_{n}=\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n=\frac{n(n-1)}{2}=\binom{n}{2}, \quad n \geq 1$.

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

$L_{n}=$ number of regions formed by n non-parallel and non-colinear straight lines. Recurrence Relation: $L_{n+1}=L_{n}+(n+1)(n \geq 1)$ and $L_{0}=1$ (whole 2-D plane) Homogeneous Solution: $\quad L_{n}^{(h)}=A \cdot 1^{n}=A$

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $H_{n}^{(p)}=n^{1} .\left(A_{1} \cdot n+A_{0}\right) \quad$ (with $A\left(\right.$ const.) in $\left.H_{n}^{(h)}, H_{n}^{(p)} \leftarrow n^{1} . H_{n}^{(p)}\right)$
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+n \quad \Rightarrow A_{1}=\frac{1}{2}, A_{0}=-\frac{1}{2}$
Final Solution: $\quad H_{n}=A+\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n, \quad$ with $H_{1}=0=A$, implying, $\quad H_{n}=\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n=\frac{n(n-1)}{2}=\binom{n}{2}, \quad n \geq 1$.

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

$L_{n}=$ number of regions formed by n non-parallel and non-colinear straight lines. Recurrence Relation: $\quad L_{n+1}=L_{n}+(n+1)(n \geq 1)$ and $L_{0}=1$ (whole 2-D plane) Homogeneous Solution: $\quad L_{n}^{(h)}=A \cdot 1^{n}=A$
Particular Solution: $\quad L_{n}^{(p)}=n^{1} \cdot\left(A_{1} \cdot n+A_{0}\right) \quad$ (with A (const.) in $\left.L_{n}^{(h)}, L_{n}^{(p)} \leftarrow n^{1} \cdot L_{n}^{(p)}\right)$

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $H_{n}^{(p)}=n^{1} .\left(A_{1} \cdot n+A_{0}\right) \quad$ (with $A\left(\right.$ const.) in $\left.H_{n}^{(h)}, H_{n}^{(p)} \leftarrow n^{1} . H_{n}^{(p)}\right)$
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+n \quad \Rightarrow A_{1}=\frac{1}{2}, A_{0}=-\frac{1}{2}$
Final Solution: $\quad H_{n}=A+\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n, \quad$ with $H_{1}=0=A$, implying, $\quad H_{n}=\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n=\frac{n(n-1)}{2}=\binom{n}{2}, \quad n \geq 1$.

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

$L_{n}=$ number of regions formed by n non-parallel and non-colinear straight lines.
Recurrence Relation: $\quad L_{n+1}=L_{n}+(n+1)(n \geq 1)$ and $L_{0}=1$ (whole 2-D plane) Homogeneous Solution: $\quad L_{n}^{(h)}=A \cdot 1^{n}=A$
Particular Solution: $L_{n}^{(p)}=n^{1} \cdot\left(A_{1} \cdot n+A_{0}\right) \quad$ (with A (const.) in $\left.L_{n}^{(h)}, L_{n}^{(p)} \leftarrow n^{1} \cdot L_{n}^{(p)}\right)$
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+(n+1) \quad \Rightarrow A_{1}=\frac{1}{2}=A_{0}$

Solving Non-Homogeneous Recurrence Relations

Example (Distinct Handshakes with n Persons)

$H_{n}=$ number of total distinct pairwise handshakes among n persons.
Recurrence Relation: $\quad H_{n+1}=H_{n}+n(n \geq 2)$ and $H_{1}=0$ (no handshakes with oneself) Homogeneous Solution: $\quad H_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $H_{n}^{(p)}=n^{1} .\left(A_{1} \cdot n+A_{0}\right) \quad$ (with $A\left(\right.$ const.) in $\left.H_{n}^{(h)}, H_{n}^{(p)} \leftarrow n^{1} . H_{n}^{(p)}\right)$
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+n \quad \Rightarrow A_{1}=\frac{1}{2}, A_{0}=-\frac{1}{2}$
Final Solution: $\quad H_{n}=A+\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n, \quad$ with $H_{1}=0=A$,

$$
\text { implying, } \quad H_{n}=\frac{1}{2} \cdot n^{2}-\frac{1}{2} \cdot n=\frac{n(n-1)}{2}=\binom{n}{2}, \quad n \geq 1 .
$$

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

$L_{n}=$ number of regions formed by n non-parallel and non-colinear straight lines.
Recurrence Relation: $\quad L_{n+1}=L_{n}+(n+1)(n \geq 1)$ and $L_{0}=1$ (whole 2-D plane)
Homogeneous Solution: $\quad L_{n}^{(h)}=A \cdot 1^{n}=A$
Particular Solution: $L_{n}^{(p)}=n^{1} \cdot\left(A_{1} \cdot n+A_{0}\right) \quad$ (with A (const.) in $L_{n}^{(h)}, L_{n}^{(p)} \leftarrow n^{1} \cdot L_{n}^{(p)}$)
Hence, $(n+1)^{2} \cdot A_{1}+(n+1) \cdot A_{0}=n^{2} \cdot A_{1}+n \cdot A_{0}+(n+1) \quad \Rightarrow A_{1}=\frac{1}{2}=A_{0}$ Final Solution: $\quad L_{n}=A+\frac{1}{2} \cdot n^{2}+\frac{1}{2} \cdot n, \quad$ with $L_{1}=1=A$, implying, $\quad H_{n}=1+\frac{1}{2} \cdot n^{2}+\frac{1}{2} \cdot n=\frac{n(n+1)}{2}+1, \quad n \geq 0$.

Solving Non-Homogeneous Recurrence Relations

$$
\begin{aligned}
& \text { Example (Deriving Formula for } S_{n}=\sum_{i=0}^{n} i^{2} \text {) } \\
& \text { Recurrence Relation: } S_{n+1}=S_{n}+(n+1)^{2}(n \geq 0) \text { and } S_{0}=0
\end{aligned}
$$

Solving Non-Homogeneous Recurrence Relations

$$
\begin{aligned}
& \text { Example (Deriving Formula for } S_{n}=\sum_{i=0}^{n} i^{2} \text {) } \\
& \text { Recurrence Relation: } \quad S_{n+1}=S_{n}+(n+1)^{2}(n \geq 0) \text { and } S_{0}=0 \\
& \text { Homogeneous Solution: } \quad S_{n}^{(h)}=A \cdot 1^{n}=A
\end{aligned}
$$

Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for $S_{n}=\sum_{i=0}^{n} i^{2}$)
Recurrence Relation: $\quad S_{n+1}=S_{n}+(n+1)^{2}(n \geq 0)$ and $S_{0}=0$
Homogeneous Solution: $\quad S_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $\quad S_{n}^{(p)}=n \cdot\left(A_{0}+A_{1} \cdot n+A_{2} \cdot n^{2}\right)=\left(A_{0} \cdot n+A_{1} \cdot n^{2}+A_{2} \cdot n^{3}\right)$

Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for $S_{n}=\sum_{i=0}^{n} i^{2}$)

Recurrence Relation: $\quad S_{n+1}=S_{n}+(n+1)^{2}(n \geq 0)$ and $S_{0}=0$
Homogeneous Solution: $\quad S_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $\quad S_{n}^{(p)}=n \cdot\left(A_{0}+A_{1} \cdot n+A_{2} \cdot n^{2}\right)=\left(A_{0} \cdot n+A_{1} \cdot n^{2}+A_{2} \cdot n^{3}\right)$
Hence, $(n+1) \cdot A_{0}+(n+1)^{2} \cdot A_{1}+(n+1)^{3} \cdot A_{2}=\left(n \cdot A_{0}+n^{2} \cdot A_{1}+n^{3} \cdot A_{2}\right)+\left(n^{2}+2 n+1\right)$

$$
\begin{aligned}
& \text { implies, } 3 A_{2}+A_{1}=A_{1}+1 \Rightarrow A_{2}=\frac{1}{3} \\
& 3 A_{2}+2 A_{1}+A_{0}=A_{0}+2 \Rightarrow A_{1}=\frac{1}{2} \quad \begin{array}{r}
\text { (comparing coefficients of } n^{2} \text {) } \\
\\
A_{2}+A_{1}+A_{0}=1 \Rightarrow A_{0}=\frac{1}{6} \\
\text { (comparing coefficients of } n \text {) }
\end{array} \\
& \hline
\end{aligned}
$$

Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for $S_{n}=\sum_{i=0}^{n} i^{2}$)

$$
\begin{aligned}
& \text { Recurrence Relation: } \quad S_{n+1}=S_{n}+(n+1)^{2}(n \geq 0) \text { and } S_{0}=0 \\
& \text { Homogeneous Solution: } \quad S_{n}^{(h)}=A .1^{n}=A \\
& \text { Particular Solution: } \quad S_{n}^{(p)}=n \cdot\left(A_{0}+A_{1} \cdot n+A_{2} \cdot n^{2}\right)=\left(A_{0} \cdot n+A_{1} \cdot n^{2}+A_{2} \cdot n^{3}\right) \\
& \text { Hence, }(n+1) \cdot A_{0}+(n+1)^{2} \cdot A_{1}+(n+1)^{3} \cdot A_{2}=\left(n \cdot A_{0}+n^{2} \cdot A_{1}+n^{3} \cdot A_{2}\right)+\left(n^{2}+2 n+1\right) \\
& \text { implies, } 3 A_{2}+A_{1}=A_{1}+1 \quad \Rightarrow A_{2}=\frac{1}{3} \quad \text { (comparing coefficients of } n^{2} \text {) } \\
& 3 A_{2}+2 A_{1}+A_{0}=A_{0}+2 \quad \Rightarrow A_{1}=\frac{1}{2} \quad \text { (comparing coefficients of } n \text {) } \\
& A_{2}+A_{1}+A_{0}=1 \quad \Rightarrow A_{0}=\frac{1}{6} \quad \text { (comparing constant coefficients) } \\
& \text { Final Solution: } \quad S_{n}=A+\frac{1}{6} \cdot n+\frac{1}{3} \cdot n^{2}+\frac{1}{2} \cdot n^{3}, \quad \text { with } S_{0}=0=A \text {, } \\
& \text { implying, } \quad H_{n}=\frac{1}{6} \cdot n+\frac{1}{2} \cdot n^{2}+\frac{1}{3} \cdot n^{3}=\frac{n(n+1)(2 n+1)}{6}, \quad n \geq 0 \text {. }
\end{aligned}
$$

Solving Non-Homogeneous Recurrence Relations

Example (Deriving Formula for $S_{n}=\sum_{i=0}^{n} i^{2}$)
Recurrence Relation: $\quad S_{n+1}=S_{n}+(n+1)^{2}(n \geq 0)$ and $S_{0}=0$
Homogeneous Solution: $\quad S_{n}^{(h)}=A .1^{n}=A$
Particular Solution: $\quad S_{n}^{(p)}=n \cdot\left(A_{0}+A_{1} \cdot n+A_{2} \cdot n^{2}\right)=\left(A_{0} \cdot n+A_{1} \cdot n^{2}+A_{2} \cdot n^{3}\right)$
Hence, $(n+1) \cdot A_{0}+(n+1)^{2} \cdot A_{1}+(n+1)^{3} \cdot A_{2}=\left(n \cdot A_{0}+n^{2} \cdot A_{1}+n^{3} \cdot A_{2}\right)+\left(n^{2}+2 n+1\right)$
implies, $3 A_{2}+A_{1}=A_{1}+1 \quad \Rightarrow A_{2}=\frac{1}{3} \quad$ (comparing coefficients of n^{2}) $3 A_{2}+2 A_{1}+A_{0}=A_{0}+2 \Rightarrow A_{1}=\frac{1}{2} \quad$ (comparing coefficients of n) $A_{2}+A_{1}+A_{0}=1 \quad \Rightarrow A_{0}=\frac{1}{6} \quad$ (comparing constant coefficients)
Final Solution: $S_{n}=A+\frac{1}{6} \cdot n+\frac{1}{3} \cdot n^{2}+\frac{1}{2} \cdot n^{3}, \quad$ with $S_{0}=0=A$, implying, $\quad H_{n}=\frac{1}{6} \cdot n+\frac{1}{2} \cdot n^{2}+\frac{1}{3} \cdot n^{3}=\frac{n(n+1)(2 n+1)}{6}, \quad n \geq 0$.
Example (Deriving Other Summation Formulas: Try Yourself!)

$$
\begin{array}{ll}
\text { (1) } \sum_{i=0}^{n} i=L_{n}=L_{n-1}+n & \text { (2) } \sum_{i=0}^{n} i^{3}=C_{n}=C_{n-1}+n^{3} \\
\text { (3) } \sum_{i=0}^{n} i^{4}=Q_{n}=Q_{n-1}+n^{4} & \text { (4) } \sum_{i=0}^{n} i^{k}=G_{n}=G_{n-1}+n^{k} \quad\left(k \in \mathbb{Z}^{+}\right)
\end{array}
$$

(Here, $n \geq 1 \quad$ and $\left.\quad L_{0}=C_{0}=Q_{0}=G_{0}=0\right)$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

$a(n, r)=$ number of ways to select r objects (repetition allowed) from n distinct objects

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

$a(n, r)=$ number of ways to select r objects (repetition allowed) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is at least once selected: $(r-1)$ objects chosen from n objects

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

$a(n, r)=$ number of ways to select r objects (repetition allowed) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is at least once selected: $(r-1)$ objects chosen from n objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

$a(n, r)=$ number of ways to select r objects (repetition allowed) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is at least once selected: $(r-1)$ objects chosen from n objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$
Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

$a(n, r)=$ number of ways to select r objects (repetition allowed) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is at least once selected: $(r-1)$ objects chosen from n objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$
Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$
Derivation: $a(n, r)=a(n-1, r)+a(n, r-1) \quad(n, r \geq 1)$

$$
\Rightarrow \quad \sum_{r=1}^{\infty} a(n, r) x^{r}=\sum_{r=1}^{\infty} a(n-1, r) x^{r}+\sum_{r=1}^{\infty} a(n, r-1) x^{r}
$$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

$a(n, r)=$ number of ways to select r objects (repetition allowed) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is at least once selected: $(r-1)$ objects chosen from n objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$
Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$
Derivation: $a(n, r)=a(n-1, r)+a(n, r-1) \quad(n, r \geq 1)$

$$
\begin{aligned}
& \Rightarrow \quad \sum_{r=1}^{\infty} a(n, r) x^{r}=\sum_{r=1}^{\infty} a(n-1, r) x^{r}+\sum_{r=1}^{\infty} a(n, r-1) x^{r} \\
& \Rightarrow \quad f_{n}(x)-a(n, 0)=f_{n-1}(x)-a(n-1,0)+x \cdot \sum_{r=1}^{\infty} a(n, r-1) x^{r-1} \\
& \Rightarrow \quad f_{n}(x)-1=f_{n-1}(x)-1+x \cdot f_{n}(x) \quad \Rightarrow \quad f_{n}(x)=\frac{f_{n-1}(x)}{1-x}=\frac{f_{0}(x)}{(1-x)^{n}}
\end{aligned}
$$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

$a(n, r)=$ number of ways to select r objects (repetition allowed) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is at least once selected: $(r-1)$ objects chosen from n objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$
Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$
Derivation: $a(n, r)=a(n-1, r)+a(n, r-1) \quad(n, r \geq 1)$

$$
\begin{aligned}
& \Rightarrow \quad \sum_{r=1}^{\infty} a(n, r) x^{r}=\sum_{r=1}^{\infty} a(n-1, r) x^{r}+\sum_{r=1}^{\infty} a(n, r-1) x^{r} \\
& \Rightarrow \quad f_{n}(x)-a(n, 0)=f_{n-1}(x)-a(n-1,0)+x \cdot \sum_{r=1}^{\infty} a(n, r-1) x^{r-1} \\
& \Rightarrow \quad f_{n}(x)-1=f_{n-1}(x)-1+x \cdot f_{n}(x) \quad \Rightarrow \quad f_{n}(x)=\frac{f_{n-1}(x)}{1-x}=\frac{f_{0}(x)}{(1-x)^{n}}
\end{aligned}
$$

So, $a(n, r)$ is the coefficient of x^{r} in $f_{n}(x)=\frac{f_{0}(x)}{(1-x)^{n}}=\frac{1}{(1-x)^{n}}=(1-x)^{-n}$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

$a(n, r)=$ number of ways to select r objects (repetition allowed) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is at least once selected: $(r-1)$ objects chosen from n objects

Recurrence Relation:

$$
\begin{aligned}
& a(n, r)=a(n-1, r)+a(n, r-1), \quad(n \geq r \text { and } n, r \in \mathbb{N}) \\
& \quad \text { and } a(n, 0)=1 \text { for } n \geq 0, \quad a(0, r)=0 \text { for } r>0
\end{aligned}
$$

Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$
Derivation: $a(n, r)=a(n-1, r)+a(n, r-1) \quad(n, r \geq 1)$

$$
\begin{aligned}
& \Rightarrow \quad \sum_{r=1}^{\infty} a(n, r) x^{r}=\sum_{r=1}^{\infty} a(n-1, r) x^{r}+\sum_{r=1}^{\infty} a(n, r-1) x^{r} \\
& \Rightarrow \quad f_{n}(x)-a(n, 0)=f_{n-1}(x)-a(n-1,0)+x \cdot \sum_{r=1}^{\infty} a(n, r-1) x^{r-1} \\
& \Rightarrow \quad f_{n}(x)-1=f_{n-1}(x)-1+x \cdot f_{n}(x) \quad \Rightarrow \quad f_{n}(x)=\frac{f_{n-1}(x)}{1-x}=\frac{f_{0}(x)}{(1-x)^{n}}
\end{aligned}
$$

So, $a(n, r)$ is the coefficient of x^{r} in $f_{n}(x)=\frac{f_{0}(x)}{(1-x)^{n}}=\frac{1}{(1-x)^{n}}=(1-x)^{-n}$
$\Rightarrow \quad a(n, r)=(-1)^{r} \cdot\binom{-n}{r}=\binom{n+r-1}{r}$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

$a(n, r)=$ number of ways to select r objects (w/o repetition) from n distinct objects

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

$a(n, r)=$ number of ways to select r objects (w/o repetition) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is once selected: $(r-1)$ objects chosen from $(n-1)$ objects

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

$a(n, r)=$ number of ways to select r objects ($w /$ o repetition) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is once selected: $(r-1)$ objects chosen from $(n-1)$ objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n-1, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

$a(n, r)=$ number of ways to select r objects (w/o repetition) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is once selected: $(r-1)$ objects chosen from $(n-1)$ objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n-1, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$
Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

$a(n, r)=$ number of ways to select r objects ($w /$ o repetition) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is once selected: $(r-1)$ objects chosen from $(n-1)$ objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n-1, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$
Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$
Derivation: $a(n, r)=a(n-1, r)+a(n-1, r-1) \quad(n, r \geq 1)$

$$
\Rightarrow \quad \sum_{r=1}^{\infty} a(n, r) x^{r}=\sum_{r=1}^{\infty} a(n-1, r) x^{r}+\sum_{r=1}^{\infty} a(n-1, r-1) x^{r}
$$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

$a(n, r)=$ number of ways to select r objects (w/o repetition) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is once selected: $(r-1)$ objects chosen from $(n-1)$ objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n-1, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$
Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$
Derivation: $a(n, r)=a(n-1, r)+a(n-1, r-1) \quad(n, r \geq 1)$

$$
\begin{aligned}
& \Rightarrow \quad \sum_{r=1}^{\infty} a(n, r) x^{r}=\sum_{r=1}^{\infty} a(n-1, r) x^{r}+\sum_{r=1}^{\infty} a(n-1, r-1) x^{r} \\
& \Rightarrow \quad f_{n}(x)-a(n, 0)=f_{n-1}(x)-a(n-1,0)+x \cdot \sum_{r=1}^{\infty} a(n-1, r-1) x^{r-1} \\
& \Rightarrow \quad f_{n}(x)-1=f_{n-1}(x)-1+x \cdot f_{n-1}(x) \\
& \Rightarrow \quad f_{n}(x)=(1+x) \cdot f_{n-1}(x)=(1+x)^{n} \cdot f_{0}(x)
\end{aligned}
$$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

$a(n, r)=$ number of ways to select r objects (w/o repetition) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is once selected: $(r-1)$ objects chosen from $(n-1)$ objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n-1, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$
Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$
Derivation: $a(n, r)=a(n-1, r)+a(n-1, r-1) \quad(n, r \geq 1)$

$$
\begin{aligned}
& \Rightarrow \quad \sum_{r=1}^{\infty} a(n, r) x^{r}=\sum_{r=1}^{\infty} a(n-1, r) x^{r}+\sum_{r=1}^{\infty} a(n-1, r-1) x^{r} \\
& \Rightarrow \quad f_{n}(x)-a(n, 0)=f_{n-1}(x)-a(n-1,0)+x \cdot \sum_{r=1}^{\infty} a(n-1, r-1) x^{r-1} \\
& \Rightarrow \quad f_{n}(x)-1=f_{n-1}(x)-1+x \cdot f_{n-1}(x) \\
& \Rightarrow \quad f_{n}(x)=(1+x) \cdot f_{n-1}(x)=(1+x)^{n} \cdot f_{0}(x) \\
& \text { So, } a(n, r) \text { is the coefficient of } x^{r} \text { in } f_{n}(x)=(1+x)^{n} \cdot f_{0}(x)=(1+x)^{n}
\end{aligned}
$$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

$a(n, r)=$ number of ways to select r objects (w/o repetition) from n distinct objects
(1) A particular object is never selected: r objects chosen from $(n-1)$ objects
(2) A particular object is once selected: $(r-1)$ objects chosen from $(n-1)$ objects

Recurrence Relation: $\quad a(n, r)=a(n-1, r)+a(n-1, r-1), \quad(n \geq r$ and $n, r \in \mathbb{N})$ and $a(n, 0)=1$ for $n \geq 0, \quad a(0, r)=0$ for $r>0$
Generating Function: Let, $f_{n}(x)=\sum_{r=0}^{\infty} a(n, r) x^{r}$ generates sequence $a(n, 0), a(n, 1), \ldots$
Derivation: $a(n, r)=a(n-1, r)+a(n-1, r-1) \quad(n, r \geq 1)$

$$
\begin{aligned}
& \Rightarrow \quad \sum_{r=1}^{\infty} a(n, r) x^{r}=\sum_{r=1}^{\infty} a(n-1, r) x^{r}+\sum_{r=1}^{\infty} a(n-1, r-1) x^{r} \\
& \Rightarrow \quad f_{n}(x)-a(n, 0)=f_{n-1}(x)-a(n-1,0)+x \cdot \sum_{r=1}^{\infty} a(n-1, r-1) x^{r-1} \\
& \Rightarrow \quad f_{n}(x)-1=f_{n-1}(x)-1+x \cdot f_{n-1}(x) \\
& \Rightarrow \quad f_{n}(x)=(1+x) \cdot f_{n-1}(x)=(1+x)^{n} \cdot f_{0}(x) \\
& \text { So, } a(n, r) \text { is the coefficient of } x^{r} \text { in } f_{n}(x)=(1+x)^{n} \cdot f_{0}(x)=(1+x)^{n} \\
& \Rightarrow \quad a(n, r)=\binom{n}{r}
\end{aligned}
$$

Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
(1) A high-energy neutron releases two high-energy and one low-energy neutrons.
(2) A low-energy neutron releases one high-energy and one low-energy neutron.

Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
(1) A high-energy neutron releases two high-energy and one low-energy neutrons.
(2) A low-energy neutron releases one high-energy and one low-energy neutron.

After $n \geq 0$ interactions, let $a_{n}=$ number of high-energy neutrons, and $b_{n}=$ number of low-energy neutrons. Assume, at beginning, $a_{0}=1, b_{0}=0$.

Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
(1) A high-energy neutron releases two high-energy and one low-energy neutrons.
(2) A low-energy neutron releases one high-energy and one low-energy neutron.

After $n \geq 0$ interactions, let $a_{n}=$ number of high-energy neutrons, and $b_{n}=$ number of low-energy neutrons. Assume, at beginning, $a_{0}=1, b_{0}=0$.
Recurrence Relation: $\quad a_{n+1}=2 a_{n}+b_{n}, \quad b_{n+1}=a_{n}+b_{n} \quad(n \geq 0)$

Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
(1) A high-energy neutron releases two high-energy and one low-energy neutrons.
(2) A low-energy neutron releases one high-energy and one low-energy neutron.

After $n \geq 0$ interactions, let $a_{n}=$ number of high-energy neutrons, and $b_{n}=$ number of low-energy neutrons. Assume, at beginning, $a_{0}=1, b_{0}=0$.
Recurrence Relation: $\quad a_{n+1}=2 a_{n}+b_{n}, \quad b_{n+1}=a_{n}+b_{n} \quad(n \geq 0)$
Generating Function: $f(x)=\sum_{n=0}^{\infty} a_{n} \cdot x^{n}, g(x)=\sum_{n=0}^{\infty} b_{n} \cdot x^{n}$ generates $\left\{a_{n}\right\},\left\{b_{n}\right\} \quad(n \geq 0)$

Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
(1) A high-energy neutron releases two high-energy and one low-energy neutrons.
(2) A low-energy neutron releases one high-energy and one low-energy neutron.

After $n \geq 0$ interactions, let $a_{n}=$ number of high-energy neutrons, and $b_{n}=$ number of low-energy neutrons. Assume, at beginning, $a_{0}=1, b_{0}=0$.
Recurrence Relation: $\quad a_{n+1}=2 a_{n}+b_{n}, \quad b_{n+1}=a_{n}+b_{n} \quad(n \geq 0)$
Generating Function: $f(x)=\sum_{n=0}^{\infty} a_{n} \cdot x^{n}, g(x)=\sum_{n=0}^{\infty} b_{n} \cdot x^{n}$ generates $\left\{a_{n}\right\},\left\{b_{n}\right\} \quad(n \geq 0)$
Derivation: $\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1}=2 x \sum_{n=0}^{\infty} a_{n} \cdot x^{n}+x \sum_{n=0}^{\infty} b_{n} \cdot x^{n} \Rightarrow f(x)-a_{0}=2 x f(x)+x g(x)$

$$
\sum_{n=0}^{\infty} b_{n+1} \cdot x^{n+1}=x \sum_{n=0}^{\infty} a_{n} \cdot x^{n}+x \sum_{n=0}^{\infty} b_{n} \cdot x^{n} \quad \Rightarrow \quad g(x)-b_{0}=x f(x)+x g(x)
$$

Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
(1) A high-energy neutron releases two high-energy and one low-energy neutrons.
(2) A low-energy neutron releases one high-energy and one low-energy neutron.

After $n \geq 0$ interactions, let $a_{n}=$ number of high-energy neutrons, and $b_{n}=$ number of low-energy neutrons. Assume, at beginning, $a_{0}=1, b_{0}=0$.
Recurrence Relation: $\quad a_{n+1}=2 a_{n}+b_{n}, \quad b_{n+1}=a_{n}+b_{n} \quad(n \geq 0)$
Generating Function: $f(x)=\sum_{n=0}^{\infty} a_{n} \cdot x^{n}, g(x)=\sum_{n=0}^{\infty} b_{n} \cdot x^{n}$ generates $\left\{a_{n}\right\},\left\{b_{n}\right\} \quad(n \geq 0)$
Derivation: $\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1}=2 x \sum_{n=0}^{\infty} a_{n} \cdot x^{n}+x \sum_{n=0}^{\infty} b_{n} \cdot x^{n} \Rightarrow f(x)-a_{0}=2 x f(x)+x g(x)$

$$
\sum_{n=0}^{\infty} b_{n+1} \cdot x^{n+1}=x \sum_{n=0}^{\infty} a_{n} \cdot x^{n}+x \sum_{n=0}^{\infty} b_{n} \cdot x^{n} \quad \Rightarrow \quad g(x)-b_{0}=x f(x)+x g(x)
$$

Solving these system of recurrence equations and using generating functions,

$$
\begin{aligned}
& f(x)=\frac{1-x}{x^{2}-3 x+1}=\left(\frac{5+\sqrt{5}}{10}\right)\left(\frac{1}{\frac{3+\sqrt{5}}{2}-x}\right)+\left(\frac{5-\sqrt{5}}{10}\right)\left(\frac{1}{\frac{3-\sqrt{5}}{2}-x}\right) \quad \text { and } \\
& g(x)=\frac{x}{x^{2}-3 x+1}=\left(\frac{-5-3 \sqrt{5}}{10}\right)\left(\frac{1}{\frac{3+\sqrt{5}}{2}-x}\right)+\left(\frac{-5+3 \sqrt{5}}{10}\right)\left(\frac{1}{\frac{3-\sqrt{5}}{2}-x}\right)
\end{aligned}
$$

Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:
(1) A high-energy neutron releases two high-energy and one low-energy neutrons.
(2) A low-energy neutron releases one high-energy and one low-energy neutron.

After $n \geq 0$ interactions, let $a_{n}=$ number of high-energy neutrons, and $b_{n}=$ number of low-energy neutrons. Assume, at beginning, $a_{0}=1, b_{0}=0$.
Recurrence Relation: $\quad a_{n+1}=2 a_{n}+b_{n}, \quad b_{n+1}=a_{n}+b_{n} \quad(n \geq 0)$
Generating Function: $f(x)=\sum_{n=0}^{\infty} a_{n} \cdot x^{n}, g(x)=\sum_{n=0}^{\infty} b_{n} \cdot x^{n}$ generates $\left\{a_{n}\right\},\left\{b_{n}\right\} \quad(n \geq 0)$
Derivation: $\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1}=2 x \sum_{n=0}^{\infty} a_{n} \cdot x^{n}+x \sum_{n=0}^{\infty} b_{n} \cdot x^{n} \Rightarrow f(x)-a_{0}=2 x f(x)+x g(x)$

$$
\sum_{n=0}^{\infty} b_{n+1} \cdot x^{n+1}=x \sum_{n=0}^{\infty} a_{n} \cdot x^{n}+x \sum_{n=0}^{\infty} b_{n} \cdot x^{n} \quad \Rightarrow \quad g(x)-b_{0}=x f(x)+x g(x)
$$

Solving these system of recurrence equations and using generating functions,

$$
\begin{gathered}
f(x)=\frac{1-x}{x^{2}-3 x+1}=\left(\frac{5+\sqrt{5}}{10}\right)\left(\frac{1}{\frac{3+\sqrt{5}}{2}-x}\right)+\left(\frac{5-\sqrt{5}}{10}\right)\left(\frac{1}{\frac{3-\sqrt{5}}{2}-x}\right) \quad \text { and } \\
g(x)=\frac{x}{x^{2}-3 x+1}=\left(\frac{-5-3 \sqrt{5}}{10}\right)\left(\frac{1}{\frac{3+\sqrt{5}}{2}-x}\right)+\left(\frac{-5+3 \sqrt{5}}{10}\right)\left(\frac{1}{\frac{3-\sqrt{5}}{2}-x}\right) \\
a_{n}=\left(\frac{5+\sqrt{5}}{10}\right)\left(\frac{3-\sqrt{5}}{2}\right)^{n+1}+\left(\frac{5-\sqrt{5}}{10}\right)\left(\frac{3+\sqrt{5}}{2}\right)^{n+1} \quad \text { and } \\
b_{n}=\left(\frac{-5-3 \sqrt{5}}{10}\right)\left(\frac{3-\sqrt{5}}{2}\right)^{n+1}+\left(\frac{-5+3 \sqrt{5}}{10}\right)\left(\frac{3+\sqrt{5}}{2}\right)^{n+1}, \quad n \geq 0
\end{gathered}
$$

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of Stacky Sequences [For $n \in \mathbb{Z}^{+}$, Push $1,2, \ldots, n$ in order into stack, but Pop (from top) + Print anytime in between from unempty stack. All stack-realizable permutations of $1,2,3, \ldots, n$ are 'stacky sequences'.]

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of Stacky Sequences [For $n \in \mathbb{Z}^{+}$, Push $1,2, \ldots, n$ in order into stack, but Pop (from top) + Print anytime in between from unempty stack. All stack-realizable permutations of $1,2,3, \ldots, n$ are 'stacky sequences'.]

Catalan Numbers solving Non-linear Recurrences

Number of ways to parenthesize ($n+1$)-length string or construct ($n+1$)-node binary trees,

$$
a_{n+1}=a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}=\sum_{i=0}^{n} a_{i} a_{n-i},(n \geq 0) \text { and } a_{0}=1
$$

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of Stacky Sequences [For $n \in \mathbb{Z}^{+}$, Push $1,2, \ldots, n$ in order into stack, but Pop (from top) + Print anytime in between from unempty stack. All stack-realizable permutations of $1,2,3, \ldots, n$ are 'stacky sequences'.]

Catalan Numbers solving Non-linear Recurrences

Number of ways to parenthesize $(n+1)$-length string or construct $(n+1)$-node binary trees,

$$
a_{n+1}=a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}=\sum_{i=0}^{n} a_{i} a_{n-i},(n \geq 0) \text { and } a_{0}=1
$$

Applying generating function, $f(x)=\sum_{n=0}^{\infty} a_{n} \cdot x^{n}$ (to generate sequence $\left\{a_{n}\right\}$), we get $\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i} a_{n-i}\right) \cdot x^{n+1} \quad \Rightarrow\left[f(x)-a_{0}\right]=x[f(x)]^{2} \quad \Rightarrow f(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}$

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of Stacky Sequences [For $n \in \mathbb{Z}^{+}$, Push $1,2, \ldots, n$ in order into stack, but Pop (from top) + Print

Catalan Numbers solving Non-linear Recurrences

Number of ways to parenthesize $(n+1)$-length string or construct $(n+1)$-node binary trees,

$$
a_{n+1}=a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}=\sum_{i=0}^{n} a_{i} a_{n-i},(n \geq 0) \text { and } a_{0}=1
$$

Applying generating function, $f(x)=\sum_{n=0}^{\infty} a_{n} \cdot x^{n}$ (to generate sequence $\left\{a_{n}\right\}$), we get -
$\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i} a_{n-i}\right) \cdot x^{n+1} \quad \Rightarrow\left[f(x)-a_{0}\right]=x[f(x)]^{2} \quad \Rightarrow f(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}$
Now, $\sqrt{1-4 x}=(1-4 x)^{\frac{1}{2}}=\binom{\frac{1}{2}}{0}+\binom{\frac{1}{2}}{1}(-4 x)+\binom{\frac{1}{2}}{2}(-4 x)^{2}+\cdots$, so the coefficient of x^{n+1} is:

$$
\binom{\frac{1}{2}}{n+1}(-4)^{n+1}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-(n+1)+1\right)}{(n+1)!}(-4)^{n+1}=\left[\frac{-1}{2(n+1)-1}\right] \cdot\binom{2(n+1)}{n+1}
$$

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of Stacky Sequences [For $n \in \mathbb{Z}^{+}$, Push $1,2, \ldots, n$ in order into stack, but Pop (from top) + Print

Catalan Numbers solving Non-linear Recurrences

Number of ways to parenthesize $(n+1)$-length string or construct $(n+1)$-node binary trees,

$$
a_{n+1}=a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}=\sum_{i=0}^{n} a_{i} a_{n-i},(n \geq 0) \text { and } a_{0}=1
$$

Applying generating function, $f(x)=\sum_{n=0}^{\infty} a_{n} \cdot x^{n}$ (to generate sequence $\left\{a_{n}\right\}$), we get -
$\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i} a_{n-i}\right) \cdot x^{n+1} \quad \Rightarrow\left[f(x)-a_{0}\right]=x[f(x)]^{2} \quad \Rightarrow f(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}$
Now, $\sqrt{1-4 x}=(1-4 x)^{\frac{1}{2}}=\binom{\frac{1}{2}}{0}+\binom{\frac{1}{2}}{1}(-4 x)+\binom{\frac{1}{2}}{2}(-4 x)^{2}+\cdots$, so the coefficient of x^{n+1} is:

$$
\binom{\frac{1}{2}}{n+1}(-4)^{n+1}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-(n+1)+1\right)}{(n+1)!}(-4)^{n+1}=\left[\frac{-1}{2(n+1)-1}\right] \cdot\binom{2(n+1)}{n+1}
$$

As $f(x)=\frac{1-\sqrt{1-4 x}}{2 x}\left(\right.$ taking - ve sign to get $\left.a_{n} \geq 0\right)$, so $a_{n}=\frac{1}{2}\left[\frac{-1}{2(n+1)-1}\right] \cdot\binom{2(n+1)}{n+1}=\frac{1}{(n+1)}\binom{2 n}{n}$

Thank You!

