Recurrence Relations

Aritra Hazra

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020 1 / 36

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.

Natural Computable Functions as Recurrences: Many natural functions are expressed using recurrence relations.

• (*linear*)
$$f(n) = f(n-1) + 1, f(1) = 1$$
 $\Rightarrow f(n) = n$

• (polynomial)
$$f(n) = f(n-1) + n, f(1) = 1 \Rightarrow f(n) = \frac{1}{2}(n^2 + n)$$

• (exponential)
$$f(n) = 2.f(n-1), f(0) = 1 \qquad \Rightarrow \bar{f}(n) = 2^n$$

• (factorial)
$$f(n) = n.f(n-1), f(0) = 1 \Rightarrow f(n) = n!$$

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.

Natural Computable Functions as Recurrences: Many natural functions are expressed using recurrence relations.

• (linear)
$$f(n) = f(n-1) + 1, f(1) = 1$$
 $\Rightarrow f(n) = n$

• (polynomial)
$$f(n) = f(n-1) + n, f(1) = 1 \Rightarrow f(n) = \frac{1}{2}(n^2 + n)$$

• (exponential)
$$f(n) = 2.f(n-1), f(0) = 1$$
 \Rightarrow $f(n) = 2^n$
• (factorial) $f(n) = n.f(n-1), f(0) = 1$ \Rightarrow $f(n) = n!$

• (factorial)
$$f(n) = n.f(n-1), f(0) = 1 \Rightarrow$$

Recurrence is Mathematical Induction:

Recurrence: T(n) = 2T(n-1) + 1 with base condition, T(0) = 0. Base-condition check: $T(0) = 2^0 - 1$ Induction Hypothesis: $T(n-1) = 2^{n-1} - 1$ **Proof:** $T(n) = 2T(n-1) + 1 = 2(2^{n-1}-1) + 1 = 2^n - 1$

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.

Natural Computable Functions as Recurrences: Many natural functions are expressed using recurrence relations.

• (linear)
$$f(n) = f(n-1) + 1, f(1) = 1$$
 $\Rightarrow f(n) = n$

• (polynomial)
$$f(n) = f(n-1) + n, f(1) = 1 \Rightarrow f(n) = \frac{1}{2}(n^2 + n)$$

• (exponential) $f(n) = 2, f(n-1), f(0) = 1 \Rightarrow f(n) = 2^n$

• (exponential)
$$f(n) = 2.f(n-1), f(0) = 1$$
 \Rightarrow $f(n) = 2^n$
• (factorial) $f(n) = n.f(n-1), f(0) = 1$ \Rightarrow $f(n) = n!$

• (factorial)
$$f(n) = n.f(n-1), f(0) = 1 =$$

Recurrence is Mathematical Induction:

Recurrence: T(n) = 2T(n-1) + 1 with base condition, T(0) = 0. Base-condition check: $T(0) = 2^0 - 1$ Induction Hypothesis: $T(n-1) = 2^{n-1} - 1$ **Proof:** $T(n) = 2T(n-1) + 1 = 2(2^{n-1}-1) + 1 = 2^n - 1$

Types of Recurrence Relations:

- First Order, Second Order, ..., Higher Order
- Linear vs. Non-Linear
- Homogeneous vs. Non-Homogeneous
- Constant vs. Variable Coefficients

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.

Natural Computable Functions as Recurrences: Many natural functions are expressed using recurrence relations.

• (linear)
$$f(n) = f(n-1) + 1, f(1) = 1$$
 $\Rightarrow f(n) = n$

• (polynomial)
$$f(n) = f(n-1) + n, f(1) = 1 \Rightarrow f(n) = \frac{1}{2}(n^2 + n)$$

• (exponential) $f(n) = 2, f(n-1), f(0) = 1 \Rightarrow f(n) = 2^n$

• (exponential)
$$f(n) = 2.f(n-1), f(0) = 1$$
 \Rightarrow $f(n) = 2^n$
• (factorial) $f(n) = n.f(n-1), f(0) = 1$ \Rightarrow $f(n) = n!$

• (factorial)
$$f(n) = n.f(n-1), f(0) = 1$$

Recurrence is Mathematical Induction:

Recurrence: T(n) = 2T(n-1) + 1 with base condition, T(0) = 0. Base-condition check: $T(0) = 2^0 - 1$ Induction Hypothesis: $T(n-1) = 2^{n-1} - 1$ **Proof:** $T(n) = 2T(n-1) + 1 = 2(2^{n-1}-1) + 1 = 2^n - 1$

Types of Recurrence Relations:

- First Order, Second Order, ..., Higher Order
- Linear vs. Non-Linear
- Homogeneous vs. Non-Homogeneous
- Constant vs. Variable Coefficients

Applications: Algorithm Analysis, Counting, Problem Solving, Reasoning etc.

Aritra Hazra (CSE, IITKGP)

Recurrent Problem: Maximum number of regions defined using *n* lines in a plane.

Recurrent Problem: Maximum number of regions defined using n lines in a plane.

Recursive Solution:

(Proposed by Jacob Steiner in 1826)

Recurrent Problem: Maximum number of regions defined using *n* lines in a plane.

Recursive Solution:

(Proposed by Jacob Steiner in 1826)

Observation-0: No line is parallel and co-linear with another.

Recurrent Problem: Maximum number of regions defined using *n* lines in a plane.

Recursive Solution:

(Proposed by Jacob Steiner in 1826)

Observation-0: No line is parallel and co-linear with another.

Observation-1: $(n + 1)^{th}$ line, when introduced into a plane with *n* lines, intersects with all *n* line exactly once.

Recurrent Problem: Maximum number of regions defined using *n* lines in a plane.

Recursive Solution:

(Proposed by Jacob Steiner in 1826)

- Observation-0: No line is parallel and co-linear with another.
- Observation-1: $(n + 1)^{th}$ line, when introduced into a plane with *n* lines, intersects with all *n* line exactly once.
- Observation-2: When traversed from one endpoint to another of a newly introduced line, every time at crossing-point of intersection with another line, the new line has created one new region.

Recurrent Problem: Maximum number of regions defined using *n* lines in a plane.

Recursive Solution:

(Proposed by Jacob Steiner in 1826)

- Observation-0: No line is parallel and co-linear with another.
- Observation-1: $(n + 1)^{th}$ line, when introduced into a plane with *n* lines, intersects with all *n* line exactly once.
- Observation-2: When traversed from one endpoint to another of a newly introduced line, every time at crossing-point of intersection with another line, the new line has created one new region.
- Observation-3: After last intersection, the line cuts the infinite ending region into two (that is, introducing the final new region).

Recurrent Problem: Maximum number of regions defined using *n* lines in a plane.

Recursive Solution:

(Proposed by Jacob Steiner in 1826)

- Observation-0: No line is parallel and co-linear with another.
- Observation-1: $(n + 1)^{th}$ line, when introduced into a plane with *n* lines, intersects with all *n* line exactly once.
- Observation-2: When traversed from one endpoint to another of a newly introduced line, every time at crossing-point of intersection with another line, the new line has created one new region.
- Observation-3: After last intersection, the line cuts the infinite ending region into two (that is, introducing the final new region).

Recurrence Relation: L_n = maximum number of regions created by n lines in a plane.

$$L_n = \begin{cases} L_{n-1} + n, & \text{if } n > 0\\ 1, & \text{if } n = 0 \end{cases}$$

Recurrent Problem: Maximum number of regions defined using *n* lines in a plane.

Recursive Solution:

(Proposed by Jacob Steiner in 1826)

- Observation-0: No line is parallel and co-linear with another.
- Observation-1: $(n + 1)^{th}$ line, when introduced into a plane with *n* lines, intersects with all *n* line exactly once.
- Observation-2: When traversed from one endpoint to another of a newly introduced line, every time at crossing-point of intersection with another line, the new line has created one new region.
- Observation-3: After last intersection, the line cuts the infinite ending region into two (that is, introducing the final new region).

Recurrence Relation: $L_n =$ maximum number of regions created by *n* lines in a plane.

 $L_n = \begin{cases} L_{n-1} + n, & \text{if } n > 0\\ 1, & \text{if } n = 0 \end{cases}$

Number of Regions: $L_n = L_{n-1} + n = L_{n-2} + (n-1) + n = L_{n-3} + (n-2) + (n-1) + n$ = $\dots = L_0 + 1 + 2 + 3 + \dots + (n-2) + (n-1) + n = 1 + \sum_{i=1}^n i = \frac{n(n+1)}{2} + 1$

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.

Recursive Solution: (Variant of Maximum Regions by Straight Lines Problem)

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using *n* bent-lines (V-shaped) in a plane.

Recursive Solution:

(Variant of Maximum Regions by Straight Lines Problem)

Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.

Recurrent Problem: Maximum number of regions defined using *n* bent-lines (V-shaped) in a plane.

Recursive Solution:

(Variant of Maximum Regions by Straight Lines Problem)

- Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.
- Observation-1: A bent-line is like two straight lines except that regions merge when the two lines do not extend past their intersection point.

Recurrent Problem: Maximum number of regions defined using *n* bent-lines (V-shaped) in a plane.

Recursive Solution:

(Variant of Maximum Regions by Straight Lines Problem)

- Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.
- Observation-1: A bent-line is like two straight lines except that regions merge when the two lines do not extend past their intersection point.
- Observation-2: The tip point must lie beyond the intersections with the other lines – that is all we lose; that is, we lose only two regions per line.

Recurrent Problem: Maximum number of regions defined using *n* bent-lines (V-shaped) in a plane.

Recursive Solution:

(Variant of Maximum Regions by Straight Lines Problem)

- Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.
- Observation-1: A bent-line is like two straight lines except that regions merge when the two lines do not extend past their intersection point.
- Observation-2: The tip point must lie beyond the intersections with the other lines – that is all we lose; that is, we lose only two regions per line.

Recurrence Relation: V_n = maximum number of regions created by n bent-lines.

$$\mathcal{V}_n = \begin{cases} L_{2n} - 2n, & \text{if } n > 0\\ 1, & \text{if } n = 0 \end{cases}$$

Recurrent Problem: Maximum number of regions defined using *n* bent-lines (V-shaped) in a plane.

Recursive Solution:

(Variant of Maximum Regions by Straight Lines Problem)

- Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.
- Observation-1: A bent-line is like two straight lines except that regions merge when the two lines do not extend past their intersection point.
- Observation-2: The tip point must lie beyond the intersections with the other lines – that is all we lose; that is, we lose only two regions per line.

Recurrence Relation: V_n = maximum number of regions created by n bent-lines.

Number of Regions: $V_n = L_{2n} - 2n = \frac{2n(2n+1)}{2} + 1 - 2n = 2n^2 - n + 1$

Tower of Hanoi:

n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all *n* disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that –

- Always smaller sized disk is placed above larger sized disk.
- At start, all *n* disks are stacked together in Peg-A in their descending order of size (bottom-up).

Tower of Hanoi:

n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all *n* disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that –

- Always smaller sized disk is placed above larger sized disk.
- At start, all *n* disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

(Proposed by François Édouard Anatole Lucas in 1883)

Tower of Hanoi:

n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all *n* disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that –

- Always smaller sized disk is placed above larger sized disk.
- At start, all *n* disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

(Proposed by François Édouard Anatole Lucas in 1883)

If n = 1, Move the disk from Peg-A to Peg-B.

Tower of Hanoi:

n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all n disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that –
Always smaller sized disk is placed above larger sized disk.
At start, all n disks are stacked together in Peg-A in their

 At start, all n disks are stacked together in Peg-A in th descending order of size (bottom-up).

Recursive Solution:

(Proposed by François Édouard Anatole Lucas in 1883)

If n = 1, Move the disk from Peg-A to Peg-B.

If n > 1, Move top (n - 1) disks from Peg-A to Peg-C using Peg-B as auxiliary. Move Largest disk directly from Peg-A to Peg-B. Move (n - 1) disks from Peg-C to Peg-B using Peg-A as auxiliary.

Tower of Hanoi: *n* Disk Transfer with 3 Pegs Recurrent Problem: Number of steps required in transferring all n disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that - Always smaller sized disk is placed above larger sized disk. • At start, all *n* disks are stacked together in Peg-A in their descending order of size (bottom-up). Recursive Solution: (Proposed by François Édouard Anatole Lucas in 1883) If n = 1, Move the disk from Peg-A to Peg-B. 2 If n > 1, Move top (n - 1) disks from Peg-A to Peg-C using Peg-B as auxiliary. Move Largest disk directly from Peg-A to Peg-B. Move (n-1) disks from Peg-C to Peg-B using Peg-A as auxiliary. Recurrence Relation: T_n = number of movements for transferring *n* disks.

$$T_n = \begin{cases} T_{n-1} + 1 + T_{n-1}, & \text{if } n > 1 \\ 1, & \text{if } n = 1 \end{cases} \Rightarrow T_n = 2T_{n-1} + 1 \ (n > 1), T_1 = 1$$

Tower of Hanoi: *n* Disk Transfer with 3 Pegs Recurrent Problem: Number of steps required in transferring all n disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that -Always smaller sized disk is placed above larger sized disk. • At start, all *n* disks are stacked together in Peg-A in their descending order of size (bottom-up). Recursive Solution: (Proposed by François Édouard Anatole Lucas in 1883) If n = 1, Move the disk from Peg-A to Peg-B. 2 If n > 1, Move top (n - 1) disks from Peg-A to Peg-C using Peg-B as auxiliary. Move Largest disk directly from Peg-A to Peg-B. Move (n-1) disks from Peg-C to Peg-B using Peg-A as auxiliary. Recurrence Relation: T_n = number of movements for transferring *n* disks. $T_n = \begin{cases} T_{n-1} + 1 + T_{n-1}, & \text{if } n > 1 \\ 1, & \text{if } n = 1 \end{cases} \Rightarrow T_n = 2T_{n-1} + 1 \ (n > 1), T_1 = 1$ Number of Moves: $T_n = 2T_{n-1} + 1 = 2^2T_{n-2} + 2 + 1 = 2^3T_{n-3} + 2^2 + 2 + 1 = \cdots$ $=2^{n-1}T_1+2^{n-2}+2^{n-3}+\cdots+2^2+2^1+2^0=\sum_{i=1}^{n-1}2^i=2^n-1$

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring *n* different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that –

- Always smaller sized disk is placed above larger sized disk.
- At start, all *n* disks are stacked together in Peg-A in their descending order of size (bottom-up).

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring *n* different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that –

- Always smaller sized disk is placed above larger sized disk.
- At start, all *n* disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

(Proposed by J.S. Frame and B.M. Stewart in 1941)

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring *n* different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that –

- Always smaller sized disk is placed above larger sized disk.
- At start, all *n* disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

(Proposed by J.S. Frame and B.M. Stewart in 1941)

1 If $n \leq 3$, Solve the problem directly using 3 pegs.

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring *n* different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that –

- Always smaller sized disk is placed above larger sized disk.
- At start, all *n* disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

(Proposed by J.S. Frame and B.M. Stewart in 1941)

- If $n \leq 3$, Solve the problem directly using 3 pegs.
- 2 Fix a value of k in the range $1 \le k \le n$.

Tower of Hanoi:

n Disk Transfer with 4 Pegs

the second second states of the second states of th

Peg-	A to Peg-B using auxiliary Peg-C and Peg-D, such that –
9 9	Always smaller sized disk is placed above larger sized disk. At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).
Recursive Solution:	(Proposed by J.S. Frame and B.M. Stewart in 1941)
3 3 3	If $n \le 3$, Solve the problem directly using 3 pegs. Fix a value of k in the range $1 \le k \le n$. Keep the k largest disks on Peg-A, and transfer the smallest $(n - k)$ disks from Peg-A to Peg-D.

.

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Peg-	Number of steps required in transferring n different-sized disks from A to Peg-B using auxiliary Peg-C and Peg-D, such that –
0 0	Always smaller sized disk is placed above larger sized disk. At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).
Recursive Solution:	(Proposed by J.S. Frame and B.M. Stewart in 1941)
9 2 3 3	If $n \leq 3$, Solve the problem directly using 3 pegs. Fix a value of k in the range $1 \leq k \leq n$. Keep the k largest disks on Peg-A, and transfer the smallest $(n-k)$ disks from Peg-A to Peg-D. Transfer the largest k disks from Peg-A to Peg-B without disturbing the smallest $(n-k)$ disks already sitting on Peg-D. (Since larger disk can never be above smaller disk, Peg-D is unusable in this part, that is, we solve 3-peg Tower-of-Hanoi problem on k disks.)

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Peg-	Number of steps required in transferring n different-sized disks from A to Peg-B using auxiliary Peg-C and Peg-D, such that –
•	Always smaller sized disk is placed above larger sized disk. At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).
Recursive Solution:	(Proposed by J.S. Frame and B.M. Stewart in 1941)
3 3 3	If $n \le 3$, Solve the problem directly using 3 pegs. Fix a value of k in the range $1 \le k \le n$. Keep the k largest disks on Peg-A, and transfer the smallest $(n - k)$ disks from Peg-A to Peg-D. Transfer the largest k disks from Peg-A to Peg-B without disturbing the smallest $(n - k)$ disks already sitting on Peg-D. (Since larger disk can never be above smaller disk, Peg-D is unusable in this part, that is, we solve 3-peg Tower-of-Hanoi problem on k disks.) Transfer the smallest $(n - k)$ disks from Peg-D to Peg-B without disturbing the largest k disks on Peg-B.

(In this step, all the four pegs can be used.)

Aritra Hazra (CSE, IITKGP)

Autumn 2020 6 / 36

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrence Relation: H_n = number of movements for transferring *n* disks with 4-pegs.

 T_n = number of movements for transferring *n* disks with 3-pegs.

$$\therefore H_n = \begin{cases} H_{n-k} + T_k + H_{n-k} &= 2H_{n-k} + 2^k - 1, & \text{if } n > 3\\ T_n &= 2^n - 1, & \text{if } 0 \le n \le 3 \end{cases}$$
Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrence Relation: H_n = number of movements for transferring *n* disks with 4-pegs. T_n = number of movements for transferring *n* disks with 3-pegs. $\therefore H_n = \begin{cases} H_{n-k} + T_k + H_{n-k} &= 2H_{n-k} + 2^k - 1, & \text{if } n > 3\\ T_n &= 2^n - 1, & \text{if } 0 \le n \le 3 \end{cases}$

Number of Moves: Depends on best choice of k. For simplicity, let us assume n = uk.

$$\begin{aligned} & \bigcup_{n} \approx 2 \bigcup_{n-k} + 2^{k} \approx 2^{2} \bigcup_{n-2k} + (2+1) \cdot 2^{k} \approx 2^{3} \bigcup_{n-3k} + (2^{2}+2+1) \cdot 2^{k} \\ & \approx \cdots \approx 2^{u-1} \bigcup_{k} + (2^{u-2}+2^{u-3}+\cdots+2^{2}+2^{1}+2^{0}) \cdot 2^{k} \\ & \approx \left(\sum_{i=0}^{u-1} 2^{i} \right) \cdot 2^{k} = 2^{u+k} = 2^{\frac{n}{k}+k} \qquad \text{(by Paul Stockmeyer in 1994)} \end{aligned}$$

Recurrent Problems

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrence Relation: H_n = number of movements for transferring *n* disks with 4-pegs. T_n = number of movements for transferring *n* disks with 3-pegs.

$$\therefore H_n = \begin{cases} H_{n-k} + T_k + H_{n-k} &= 2H_{n-k} + 2^k - 1, & \text{if } n > 3\\ T_n &= 2^n - 1, & \text{if } 0 \le n \le 3 \end{cases}$$

Number of Moves: Depends on best choice of k. For simplicity, let us assume n = uk.

$$\begin{array}{l} U_n \approx 2U_{n-k} + 2^k \approx 2^2 U_{n-2k} + (2+1) \cdot 2^k \approx 2^3 U_{n-3k} + (2^2+2+1) \cdot 2^k \\ \approx \cdots \approx 2^{u-1} U_k + (2^{u-2} + 2^{u-3} + \cdots + 2^2 + 2^1 + 2^0) \cdot 2^k \\ \approx \left(\sum_{i=0}^{u-1} 2^i \right) \cdot 2^k = 2^{u+k} = 2^{\frac{n}{k}+k} \qquad (\text{by Paul Stockmeyer in 1994}) \\ \text{Since, } \left(\frac{n}{k} + k \right) \text{ can be minimized for } k = \sqrt{n}, \text{ therefore } \frac{U_n \approx 2^{2\sqrt{n}}}{n}. \end{array}$$

Aritra Hazra (CSE, IITKGP)

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} = c.t_n$, where $n \ge 0$ and c is a constant

Boundary Condition: $t_0 = B$, where B is a constant

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} = c.t_n$, where $n \ge 0$ and c is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution: $t_n = c \cdot t_{n-1} = c^2 \cdot t_{n-2} = \cdots = c^i \cdot t_{n-i} = \cdots = c^n \cdot t_0 = B \cdot c^n$, for $n \ge 0$

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} = c.t_n$, where $n \ge 0$ and c is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution: $t_n = c \cdot t_{n-1} = c^2 \cdot t_{n-2} = \cdots = c^i \cdot t_{n-i} = \cdots = c^n \cdot t_0 = B \cdot c^n$, for $n \ge 0$

Example

a_n = 3.a_{n-1} where $n \ge 1$ and $a_2 = 18$. Clearly, $a_2 = 3^2 \cdot a_0 = 18 \Rightarrow a_0 = 2$. So, $a_n = 2 \cdot 3^n$ for $n \ge 0$ is the unique solution.

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} = c.t_n$, where $n \ge 0$ and c is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution: $t_n = c \cdot t_{n-1} = c^2 \cdot t_{n-2} = \cdots = c^i \cdot t_{n-i} = \cdots = c^n \cdot t_0 = B \cdot c^n$, for $n \ge 0$

Example

- $a_n = 3.a_{n-1}$ where $n \ge 1$ and $a_2 = 18$. Clearly, $a_2 = 3^2.a_0 = 18 \Rightarrow a_0 = 2$. So, $a_n = 2.3^n$ for $n \ge 0$ is the unique solution.
- Solution Number of Different Summands of n: $s_{n+1} = 2.s_n$ where $n \ge 1$ with boundary condition $s_1 = 1$.

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} = c.t_n$, where $n \ge 0$ and c is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution: $t_n = c \cdot t_{n-1} = c^2 \cdot t_{n-2} = \cdots = c^i \cdot t_{n-i} = \cdots = c^n \cdot t_0 = B \cdot c^n$, for $n \ge 0$

Example

- a_n = 3.a_{n-1} where $n \ge 1$ and $a_2 = 18$. Clearly, $a_2 = 3^2 \cdot a_0 = 18 \Rightarrow a_0 = 2$. So, $a_n = 2 \cdot 3^n$ for $n \ge 0$ is the unique solution.
- Number of Different Summands of $n: s_{n+1} = 2.s_n$ where $n \ge 1$ with boundary condition $s_1 = 1$. To directly apply the formula proposed, let $t_n = s_{n+1}$, which formulates the reccurence as, $t_n = 2.t_{n-1}$ where $n \ge 0$ with $t_0 = 1$. So, $t_n = 1.2^n$. Now, $s_n = t_{n-1} = 2^{n-1}$ for $n \ge 1$.

Different Summands of 3		Different Summands of 4			
(1) 3	(2) $1+2$	(1') 4	(2') 1 + 3	(3') 2 + 2	(4') 1 + 1 + 2
(3) 2 + 1	(4) 1 + 1 + 1	(1") 3 +1	(2'') 1 + 2+1	(3") 2 + 1 <mark>+1</mark>	(4'') 1 + 1 + 1+1

Image: A matrix

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n) \cdot t_n$, where $n \ge 0$

Boundary Condition: $t_0 = B$, where B is a constant

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n) \cdot t_n$, where $n \ge 0$

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = f(n-1).t_{n-1} = f(n-2).f(n-1).t_{n-2} = \cdots = B.\left[\prod_{k=1}^n f(n-k)\right]$$

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n) \cdot t_n$, where $n \ge 0$

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = f(n-1).t_{n-1} = f(n-2).f(n-1).t_{n-2} = \cdots = B.\left[\prod_{k=1}^n f(n-k)\right]$$

Example: (Factorials) $f_n = n.f_{n-1}$, $n \ge 1$ and $f_0 = 1$. Solution: $f_n = n!$ $(n \ge 0)$.

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n) \cdot t_n$, where $n \ge 0$

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = f(n-1) \cdot t_{n-1} = f(n-2) \cdot f(n-1) \cdot t_{n-2} = \cdots = B \cdot \left[\prod_{k=1}^n f(n-k)\right]$$

Example: (Factorials) $f_n = n.f_{n-1}$, $n \ge 1$ and $f_0 = 1$. Solution: $f_n = n!$ $(n \ge 0)$.

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}^k = c.t_n^k$, where $t_n > 0$ for $n \ge 0$ and c, k are constants Boundary Condition: $t_0 = B$, where B is a constant

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n) \cdot t_n$, where $n \ge 0$

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = f(n-1) \cdot t_{n-1} = f(n-2) \cdot f(n-1) \cdot t_{n-2} = \cdots = B \cdot \left[\prod_{k=1}^n f(n-k)\right]$$

Example: (Factorials) $f_n = n f_{n-1}$, $n \ge 1$ and $f_0 = 1$. Solution: $f_n = n!$ $(n \ge 0)$.

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}^k = c.t_n^k$, where $t_n > 0$ for $n \ge 0$ and c, k are constants Boundary Condition: $t_0 = B$, where B is a constant

Solution: Let $r_n = t_n^k$. So, the recurrence becomes, $r_{n+1} = c.r_n$ for $n \ge 0$ and $r_0 = B^k$. Hence, $t_n^k = r_n = B^k.c^n$ implying $t_n = B.(\sqrt[k]{c})^n$ for $n \ge 0$.

Aritra Hazra (CSE, IITKGP)

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n) \cdot t_n$, where $n \ge 0$

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = f(n-1) \cdot t_{n-1} = f(n-2) \cdot f(n-1) \cdot t_{n-2} = \cdots = B \cdot \left[\prod_{k=1}^n f(n-k)\right]$$

Example: (Factorials) $f_n = n f_{n-1}$, $n \ge 1$ and $f_0 = 1$. Solution: $f_n = n!$ $(n \ge 0)$.

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}^k = c.t_n^k$, where $t_n > 0$ for $n \ge 0$ and c, k are constants Boundary Condition: $t_0 = B$, where B is a constant

Solution: Let $r_n = t_n^k$. So, the recurrence becomes, $r_{n+1} = c.r_n$ for $n \ge 0$ and $r_0 = B^k$. Hence, $t_n^k = r_n = B^k.c^n$ implying $t_n = B.(\sqrt[k]{c})^n$ for $n \ge 0$.

Example (a small Variation): $\log_2 a_{n+1} = 2$. $\log_2 a_n$ for $n \ge 0$ and $a_0 = 2$.

Putting
$$b_n = \log_2 a_n$$
 gives $b_{n+1} = 2.b_n$ and $b_0 = 1$.
So, $b_n = 2^n$ and hence $a_n = 2^{2^n}$ for $n \ge 0$.

Aritra Hazra (CSE, IITKGP)

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} + d.t_n = f(n)$ or alternatively, $t_{n+1} = c.t_n + f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \ge 0$ and c = -d is a constant

Boundary Condition: $t_0 = B$, where B is a constant

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} + d.t_n = f(n)$ or alternatively, $t_{n+1} = c.t_n + f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \ge 0$ and c = -d is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = c \cdot t_{n-1} + f(n-1) = c^2 \cdot t_{n-2} + c^1 \cdot f(n-2) + f(n-1) = \cdots$$

= $c^i \cdot t_{n-i} + \sum_{k=0}^{i-1} c^k \cdot f(n-i+k) = \cdots = B \cdot c^n + \sum_{k=0}^{n-1} c^k \cdot f(k)$, for $n \ge 0$

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} + d.t_n = f(n)$ or alternatively, $t_{n+1} = c.t_n + f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \ge 0$ and c = -d is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = c \cdot t_{n-1} + f(n-1) = c^2 \cdot t_{n-2} + c^1 \cdot f(n-2) + f(n-1) = \cdots$$

= $c^i \cdot t_{n-i} + \sum_{k=0}^{i-1} c^k \cdot f(n-i+k) = \cdots = B \cdot c^n + \sum_{k=0}^{n-1} c^k \cdot f(k)$, for $n \ge 0$

Example:

• (Comparisons in Sorting) – Bubble, Selection and Insertion

$$a_n = a_{n-1} + (n-1)$$
 where $n \ge 2$ and $a_1 = 0$.
Hence, the solution, $a_n = 0 + \sum_{k=1}^{n-1} k = \frac{n^2 - n}{2}$. $\Rightarrow O(n^2)$

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} + d.t_n = f(n)$ or alternatively, $t_{n+1} = c.t_n + f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \ge 0$ and c = -d is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = c \cdot t_{n-1} + f(n-1) = c^2 \cdot t_{n-2} + c^1 \cdot f(n-2) + f(n-1) = \cdots$$

= $c^i \cdot t_{n-i} + \sum_{k=0}^{i-1} c^k \cdot f(n-i+k) = \cdots = B \cdot c^n + \sum_{k=0}^{n-1} c^k \cdot f(k)$, for $n \ge 0$

Example:

: • (Comparisons in Sorting) - Bubble, Selection and Insertion

$$a_n = a_{n-1} + (n-1)$$
 where $n \ge 2$ and $a_1 = 0$.
Hence, the solution, $a_n = 0 + \sum_{k=1}^{n-1} k = \frac{n^2 - n}{2}$. $\Rightarrow O(n^2)$
• $(n^{th} \text{ term in Sequence}) 0, 2, 6, 12, 20, 30, 42, ...$
 $a_n = a_{n-1} + 2n$ where $n \ge 1$ and $a_0 = 0$. (How?)
Since $a_1 - a_0 = 2$, $a_2 - a_1 = 4$, $a_3 - a_2 = 6$, $a_4 - a_3 = 8$, $a_5 - a_4 = 10$, $a_6 - a_5 = 12$,
therefore $a_n - a_0 = 2 + 4 + \dots + 2n = n^2 + n$, implies $a_n = n^2 + n$.

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} + d.t_n = f(n)$ or alternatively, $t_{n+1} = c.t_n + f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \ge 0$ and c = -d is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = c.t_{n-1} + f(n-1) = c^2.t_{n-2} + c^1.f(n-2) + f(n-1) = \cdots$$

= $c^i.t_{n-i} + \sum_{k=0}^{i-1} c^k.f(n-i+k) = \cdots = B.c^n + \sum_{k=0}^{n-1} c^k.f(k)$, for $n \ge 0$

Example:

e: (Comparisons in Sorting) - Bubble, Selection and Insertion

$$a_n = a_{n-1} + (n-1)$$
 where $n \ge 2$ and $a_1 = 0$.
Hence, the solution, $a_n = 0 + \sum_{k=1}^{n-1} k = \frac{n^2 - n}{2}$. $\Rightarrow O(n^2)$
(n^{th} term in Sequence) $0, 2, 6, 12, 20, 30, 42, ...$
 $a_n = a_{n-1} + 2n$ where $n \ge 1$ and $a_0 = 0$. (How?)
Since $a_1 - a_0 = 2$, $a_2 - a_1 = 4$, $a_3 - a_2 = 6$, $a_4 - a_3 = 8$, $a_5 - a_4 = 10$, $a_6 - a_5 = 12$,
therefore $a_n - a_0 = 2 + 4 + \dots + 2n = n^2 + n$, implies $a_n = n^2 + n$.

First-Order Linear Non-Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n) \cdot t_n + g(n)$, where $g(n) \neq 0$ for $n \ge 0$ and $t_0 = B$ (constant)

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} + d.t_n = f(n)$ or alternatively, $t_{n+1} = c.t_n + f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \ge 0$ and c = -d is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = c.t_{n-1} + f(n-1) = c^2.t_{n-2} + c^1.f(n-2) + f(n-1) = \cdots$$

= $c^i.t_{n-i} + \sum_{k=0}^{i-1} c^k.f(n-i+k) = \cdots = B.c^n + \sum_{k=0}^{n-1} c^k.f(k)$, for $n \ge 0$

Example:

• (Comparisons in Sorting) – Bubble, Selection and Insertion

$$a_n = a_{n-1} + (n-1)$$
 where $n \ge 2$ and $a_1 = 0$.
Hence, the solution, $a_n = 0 + \sum_{k=1}^{n-1} k = \frac{n^2 - n}{2}$. $\Rightarrow O(n^2)$
• $(n^{th} \text{ term in Sequence}) 0, 2, 6, 12, 20, 30, 42, ...$
 $a_n = a_{n-1} + 2n$ where $n \ge 1$ and $a_0 = 0$. (How?)
Since $a_1 - a_0 = 2$, $a_2 - a_1 = 4$, $a_3 - a_2 = 6$, $a_4 - a_3 = 8$, $a_5 - a_4 = 10$, $a_6 - a_5 = 12$,
therefore $a_n - a_0 = 2 + 4 + \dots + 2n = n^2 + n$ implies $a_n = n^2 + n$

First-Order Linear Non-Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n).t_n + g(n)$, where $g(n) \neq 0$ for $n \ge 0$ and $t_0 = B$ (constant) Generic Solution: $t_n = B.\left[\prod_{k=0}^{n-1} f(k)\right] + \sum_{k=1}^{n-1} \left[\prod_{j=1}^{k-1} f(n-j)\right].g(n-k)$, for $n \ge 0$

Aritra Hazra (CSE, IITKGP)

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1$; $C_0(\neq 0), C_1, C_2(\neq 0)$ and D_0, D_1 all are constants.

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1$; $C_0(\neq 0), C_1, C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ $(c, x \neq 0)$, after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\neq 0), C_1, C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ ($c, x \neq 0$), after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: <u>2 Distinct Real Roots</u> as, $R_1 = \frac{-C_1 + \sqrt{C_1^2 - 4C_0C_2}}{2C_0}$, $R_2 = \frac{-C_1 - \sqrt{C_1^2 - 4C_0C_2}}{2C_0}$

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form:
$$C_{0}t_{n} + C_{1}t_{n-1} + C_{2}t_{n-2} = 0$$
 $(n \ge 2)$ and $t_{0} = D_{0}, t_{1} = D_{1}$
 $C_{0}(\neq 0), C_{1}, C_{2}(\neq 0)$ and D_{0}, D_{1} all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ ($c, x \neq 0$), after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: <u>2 Distinct Real Roots</u> as, $R_1 = \frac{-C_1 + \sqrt{C_1^2 - 4C_0C_2}}{2C_0}$, $R_2 = \frac{-C_1 - \sqrt{C_1^2 - 4C_0C_2}}{2C_0}$ Exact Solution: As $t_n = A_1 \cdot R_1^n$ and $t_n = A_2 \cdot R_2^n$ are linearly independent solutions, so

$$t_n = A_1 \cdot R_1^n + A_2 \cdot R_2^n = A_1 \cdot \left(\frac{-C_1 + \sqrt{C_1^2 - 4C_0C_2}}{2C_0}\right)^n + A_2 \cdot \left(\frac{-C_1 - \sqrt{C_1^2 - 4C_0C_2}}{2C_0}\right)$$

(Here, A_1 and A_2 are arbitrary constants)

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form:
$$C_{0}.t_{n} + C_{1}.t_{n-1} + C_{2}.t_{n-2} = 0$$
 $(n \ge 2)$ and $t_{0} = D_{0}, t_{1} = D_{1};$
 $C_{0}(\ne 0), C_{1}, C_{2}(\ne 0)$ and D_{0}, D_{1} all are constants.
Characteristic Equation: Seeking a solution, $t_{n} = c.x^{n}$ $(c, x \ne 0)$, after substitution,
 $C_{0}.c.x^{n} + C_{1}.c.x^{n-1} + C_{2}.c.x^{n-2} = 0 \Rightarrow C_{0}.x^{2} + C_{1}.x + C_{2} = 0$
Equation Roots: 2 Distinct Real Roots as, $R_{1} = \frac{-C_{1} + \sqrt{C_{1}^{2} - 4C_{0}C_{2}}}{2C_{0}}, R_{2} = \frac{-C_{1} - \sqrt{C_{1}^{2} - 4C_{0}C_{2}}}{2C_{0}}$
Exact Solution: As $t_{n} = A_{1}.R_{1}^{n}$ and $t_{n} = A_{2}.R_{2}^{n}$ are linearly independent solutions, so
 $t_{n} = A_{1}.R_{1}^{n} + A_{2}.R_{2}^{n} = A_{1}.(\frac{-C_{1} + \sqrt{C_{1}^{2} - 4C_{0}C_{2}}}{2C_{0}})^{n} + A_{2}.(\frac{-C_{1} - \sqrt{C_{1}^{2} - 4C_{0}C_{2}}}{2C_{0}})^{n}$
(Here, A_{1} and A_{2} are arbitrary constants)
Constant Determination: $A_{1} = A_{2} = D_{1}$ and $A_{2} = A_{2} = \frac{2C_{0}D_{1}+C_{1}D_{0}}{2C_{0}}$

 $A_{2} = t_{0} = D_{0}$ and A_{1} $\sqrt{C_1^2 - 4C_0C_2}$

because,
$$D_1 = t_1 = (A_1 + A_2).(-\frac{C_1}{2C_0}) + (A_1 - A_2).(\frac{\sqrt{C_1^2 - 4C_0C_2}}{2C_0})$$

 $\therefore A_1 = \frac{1}{2} \left(D_0 + \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}} \right) \text{ and } A_2 = \frac{1}{2} \left(D_0 - \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}} \right)$

Aritra Hazra (CSE, IITKGP)

n

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form:
$$C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$$
 $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$
 $C_0(\ne 0), C_1, C_2(\ne 0)$ and D_0, D_1 all are constants.
Characteristic Equation: Seeking a solution, $t_n = c.x^n$ $(c, x \ne 0)$, after substitution,
 $C_{0.c.x^n} + C_{1.c.x^{n-1}} + C_{2.c.x^{n-2}} = 0 \implies C_{0.x^2} + C_{1.x} + C_2 = 0$

Equation Roots: <u>2 Distinct Real Roots</u> as, $R_1 = \frac{-C_1 + \sqrt{C_1^2 - 4C_0C_2}}{2C_0}$, $R_2 = \frac{-C_1 - \sqrt{C_1^2 - 4C_0C_2}}{2C_0}$

Exact Solution: As $t_n = A_1.R_1^n$ and $t_n = A_2.R_2^n$ are linearly independent solutions, so $t_n = A_1.R_1^n + A_2.R_2^n = A_1.(\frac{-C_1+\sqrt{C_1^2-4C_0C_2}}{2C_0})^n + A_2.(\frac{-C_1-\sqrt{C_1^2-4C_0C_2}}{2C_0})^n$

(Here, A_1 and A_2 are arbitrary constants)

Constant Determination: $A_1 + A_2 = t_0 = D_0$ and $A_1 - A_2 = \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}}$

because,
$$D_1 = t_1 = (A_1 + A_2) \cdot \left(-\frac{C_1}{2C_0}\right) + (A_1 - A_2) \cdot \left(\frac{\sqrt{C_1^2 - 4C_0C_2}}{2C_0}\right)$$

 $\therefore A_1 = \frac{1}{2} \left(D_0 + \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}}\right) \text{ and } A_2 = \frac{1}{2} \left(D_0 - \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}}\right).$

Unique Solution:

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form:
$$C_{0}.t_{n} + C_{1}.t_{n-1} + C_{2}.t_{n-2} = 0$$
 $(n \ge 2)$ and $t_{0} = D_{0}, t_{1} = D_{1};$
 $C_{0}(\ne 0), C_{1}, C_{2}(\ne 0)$ and D_{0}, D_{1} all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ ($c, x \neq 0$), after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: <u>2 Distinct Real Roots</u> as, $R_1 = \frac{-C_1 + \sqrt{C_1^2 - 4C_0C_2}}{2C_0}$, $R_2 = \frac{-C_1 - \sqrt{C_1^2 - 4C_0C_2}}{2C_0}$ Exact Solution: As $t_n = A_1$, R_1^n and $t_n = A_2$, R_2^n are linearly independent solutions, so

$$t_n = A_1.R_1^n + A_2.R_2^n = A_1.\left(\frac{-C_1 + \sqrt{C_1^2 - 4C_0C_2}}{2C_0}\right)^n + A_2.\left(\frac{-C_1 - \sqrt{C_1^2 - 4C_0C_2}}{2C_0}\right)^n$$

(Here, A_1 and A_2 are arbitrary constants)

Constant Determination: $A_1 + A_2 = t_0 = D_0$ and $A_1 - A_2 = \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}}$

because,
$$D_1 = t_1 = (A_1 + A_2) \cdot \left(-\frac{C_1}{2C_0}\right) + (A_1 - A_2) \cdot \left(\frac{\sqrt{C_1^2 - 4C_0C_2}}{2C_0}\right)$$

 $\therefore A_1 = \frac{1}{2} \left(D_0 + \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}}\right) \text{ and } A_2 = \frac{1}{2} \left(D_0 - \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}}\right)$

Unique Solution:

$$\therefore t_n = \frac{1}{2} \left[\left(D_0 + \frac{2C_0 D_1 + C_1 D_0}{\sqrt{C_1^2 - 4C_0 C_2}} \right) \cdot \left(\frac{-C_1 + \sqrt{C_1^2 - 4C_0 C_2}}{2C_0} \right)^n + \left(D_0 - \frac{2C_0 D_1 + C_1 D_0}{\sqrt{C_1^2 - 4C_0 C_2}} \right) \cdot \left(\frac{-C_1 - \sqrt{C_1^2 - 4C_0 C_2}}{2C_0} \right)^n \right]$$

Aritra Hazra (CSE, IITKGP)

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2} = F_{n+1} + F_n$, where $n \ge 0$ and $F_0 = 0, F_1 = 1$

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2} = F_{n+1} + F_n$, where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$ Substituting with $F_n = c.x^n$ ($c, x \ne 0$), we get $cx^{n+2} = cx^{n+1} + cx^n$. Characteristic Equation $x^2 - x - 1 = 0$ has two distinct roots, $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$.

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2} = F_{n+1} + F_n$, where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$ Substituting with $F_n = c.x^n$ ($c, x \ne 0$), we get $cx^{n+2} = cx^{n+1} + cx^n$. Characteristic Equation $x^2 - x - 1 = 0$ has two distinct roots, $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. Hence, $F_n = c_1(\frac{1+\sqrt{5}}{2})^n + c_2(\frac{1-\sqrt{5}}{2})^n$, with the constants derived as, $c_1 = \frac{1}{\sqrt{5}}$, $c_2 = -\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_n = \frac{1}{\sqrt{5}} \left[\alpha^n - \beta^n \right]$ ($\alpha = 1 - \beta$ is called the Golden Ratio)

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2} = F_{n+1} + F_n$, where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$ Substituting with $F_n = c.x^n$ ($c, x \ne 0$), we get $cx^{n+2} = cx^{n+1} + cx^n$. Characteristic Equation $x^2 - x - 1 = 0$ has two distinct roots, $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. Hence, $F_n = c_1(\frac{1+\sqrt{5}}{2})^n + c_2(\frac{1-\sqrt{5}}{2})^n$, with the constants derived as, $c_1 = \frac{1}{\sqrt{5}}$, $c_2 = -\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_n = \frac{1}{\sqrt{5}} \left[\alpha^n - \beta^n \right]$ ($\alpha = 1 - \beta$ is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of $S = \{x_1, x_2, \dots, x_n\}$ is $= a_n$ If $n = 0 \Rightarrow S = \phi$, $a_0 = 1$. If $n = 1 \Rightarrow S = \{x_1\}$, $a_1 = 2$.

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2} = F_{n+1} + F_n$, where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$ Substituting with $F_n = c.x^n$ ($c, x \ne 0$), we get $cx^{n+2} = cx^{n+1} + cx^n$. Characteristic Equation $x^2 - x - 1 = 0$ has two distinct roots, $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. Hence, $F_n = c_1(\frac{1+\sqrt{5}}{2})^n + c_2(\frac{1-\sqrt{5}}{2})^n$, with the constants derived as, $c_1 = \frac{1}{\sqrt{5}}$, $c_2 = -\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_n = \frac{1}{\sqrt{5}} \left[\alpha^n - \beta^n \right]$ ($\alpha = 1 - \beta$ is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of $S = \{x_1, x_2, ..., x_n\}$ is $= a_n$ If $n = 0 \Rightarrow S = \phi$, $a_0 = 1$. If $n = 1 \Rightarrow S = \{x_1\}$, $a_1 = 2$. Let $n \ge 2$ and $A \subseteq S = \{x_1, x_2, ..., x_{n-1}, x_n\}$, a_n can be contributed from:

- When $x_n \in \mathcal{A} \Rightarrow x_{n-1} \notin \mathcal{A}$, $\therefore \mathcal{A}$ may be counted in a_{n-2} ways.
- When $x_n \notin A$, $\therefore A$ may be counted in a_{n-1} ways.

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2} = F_{n+1} + F_n$, where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$ Substituting with $F_n = c.x^n$ ($c, x \ne 0$), we get $cx^{n+2} = cx^{n+1} + cx^n$. Characteristic Equation $x^2 - x - 1 = 0$ has two distinct roots, $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. Hence, $F_n = c_1(\frac{1+\sqrt{5}}{2})^n + c_2(\frac{1-\sqrt{5}}{2})^n$, with the constants derived as, $c_1 = \frac{1}{\sqrt{5}}$, $c_2 = -\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_n = \frac{1}{\sqrt{5}} \left[\alpha^n - \beta^n \right]$ ($\alpha = 1 - \beta$ is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of $S = \{x_1, x_2, \dots, x_n\}$ is $= a_n$ If $n = 0 \Rightarrow S = \phi$, $a_0 = 1$. If $n = 1 \Rightarrow S = \{x_1\}$, $a_1 = 2$. Let $n \ge 2$ and $A \subseteq S = \{x_1, x_2, \dots, x_{n-1}, x_n\}$, a_n can be contributed from:

- When $x_n \in \mathcal{A} \Rightarrow x_{n-1} \notin \mathcal{A}$, $\therefore \mathcal{A}$ may be counted in a_{n-2} ways.
- When $x_n \notin A$, $\therefore A$ may be counted in a_{n-1} ways.

Recurrence Relation: $a_n = a_{n-1} + a_{n-2}$ $(n \ge 2)$ and $a_0 = 1, a_1 = 2$.

Example (Fibonacci Number)

Recurrence Relation: $F_{n+2} = F_{n+1} + F_n$, where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$ Substituting with $F_n = c.x^n$ ($c, x \ne 0$), we get $cx^{n+2} = cx^{n+1} + cx^n$. Characteristic Equation $x^2 - x - 1 = 0$ has two distinct roots, $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. Hence, $F_n = c_1(\frac{1+\sqrt{5}}{2})^n + c_2(\frac{1-\sqrt{5}}{2})^n$, with the constants derived as, $c_1 = \frac{1}{\sqrt{5}}$, $c_2 = -\frac{1}{\sqrt{5}}$. Solution: (Binet Form) $F_n = \frac{1}{\sqrt{5}} \left[\alpha^n - \beta^n \right]$ ($\alpha = 1 - \beta$ is called the Golden Ratio)

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of $S = \{x_1, x_2, ..., x_n\}$ is $= a_n$ If $n = 0 \Rightarrow S = \phi$, $a_0 = 1$. If $n = 1 \Rightarrow S = \{x_1\}$, $a_1 = 2$. Let $n \ge 2$ and $A \subseteq S = \{x_1, x_2, ..., x_{n-1}, x_n\}$, a_n can be contributed from:

- When $x_n \in \mathcal{A} \Rightarrow x_{n-1} \notin \mathcal{A}$, $\therefore \mathcal{A}$ may be counted in a_{n-2} ways.
- When $x_n \notin A$, $\therefore A$ may be counted in a_{n-1} ways.

Recurrence Relation: $a_n = a_{n-1} + a_{n-2}$ $(n \ge 2)$ and $a_0 = 1, a_1 = 2$. Solution: $a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+2} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+2} \right]$, $n \ge 0$ (Note that, $a_n = F_{n+2}$)

Example (Count of Binary Strings having NO consecutive 0s)

Let, $b_n =$ number of such binary strings of length *n*; $b_n^{(0)} =$ count of such strings ending with 0 and $b_n^{(1)} =$ count of such strings ending with 1

Example (Count of Binary Strings having NO consecutive 0s)

Let, $b_n =$ number of such binary strings of length n; $b_n^{(0)} =$ count of such strings ending with 0 and $b_n^{(1)} =$ count of such strings ending with 1 Recurrence Relation: $b_n = 2.b_{n-1}^{(1)} + b_{n-1}^{(0)} = b_{n-1}^{(1)} + b_{n-1} = b_{n-2} + b_{n-1}$ $(n \ge 3)$ and $b_1 = 2, b_2 = 3$, implying $b_0 = b_2 - b_1 = 1$.

Example (Count of Binary Strings having NO consecutive 0s)

Let, $b_n =$ number of such binary strings of length n; $b_n^{(0)} =$ count of such strings ending with 0 and $b_n^{(1)} =$ count of such strings ending with 1 Recurrence Relation: $b_n = 2.b_{n-1}^{(1)} + b_{n-1}^{(0)} = b_{n-1}^{(1)} + b_{n-1} = b_{n-2} + b_{n-1}$ ($n \ge 3$) and $b_1 = 2, b_2 = 3$, implying $b_0 = b_2 - b_1 = 1$. Solution: $b_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+2} \right]$, $n \ge 0$ (Note that, $b_n = F_{n+2}$)
Example (Count of Binary Strings having NO consecutive 0s)

Let, b_n = number of such binary strings of length n; $b_n^{(0)}$ = count of such strings ending with 0 and $b_n^{(1)}$ = count of such strings ending with 1 Recurrence Relation: $b_n = 2.b_{n-1}^{(1)} + b_{n-1}^{(0)} = b_{n-1}^{(1)} + b_{n-1} = b_{n-2} + b_{n-1}$ ($n \ge 3$) and $b_1 = 2, b_2 = 3$, implying $b_0 = b_2 - b_1 = 1$. Solution: $b_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+2} \right]$, $n \ge 0$ (Note that, $b_n = F_{n+2}$)

Example $(2 \times n$ Chessboard Tiling using Dominoes)

Let, $t_n =$ number of ways to tile $2 \times n$ ($n \in \mathbb{Z}^+$) chessboard.

Example (Count of Binary Strings having NO consecutive 0s)

Let, b_n = number of such binary strings of length n; $b_n^{(0)}$ = count of such strings ending with 0 and $b_n^{(1)}$ = count of such strings ending with 1 Recurrence Relation: $b_n = 2.b_{n-1}^{(1)} + b_{n-1}^{(0)} = b_{n-1}^{(1)} + b_{n-1} = b_{n-2} + b_{n-1}$ ($n \ge 3$) and $b_1 = 2, b_2 = 3$, implying $b_0 = b_2 - b_1 = 1$. Solution: $b_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+2} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+2} \right]$, $n \ge 0$ (Note that, $b_n = F_{n+2}$)

Example $(2 \times n$ Chessboard Tiling using Dominoes)

Let, t_n = number of ways to tile $2 \times n$ ($n \in \mathbb{Z}^+$) chessboard. Recurrence Relation: $t_n = t_{n-1} + t_{n-2}$ ($n \ge 2$) and $t_1 = 1, t_2 = 2$

Example (Count of Binary Strings having NO consecutive 0s)

Let, b_n = number of such binary strings of length n; $b_n^{(0)}$ = count of such strings ending with 0 and $b_n^{(1)}$ = count of such strings ending with 1 Recurrence Relation: $b_n = 2.b_{n-1}^{(1)} + b_{n-1}^{(0)} = b_{n-1}^{(1)} + b_{n-1} = b_{n-2} + b_{n-1}$ ($n \ge 3$) and $b_1 = 2, b_2 = 3$, implying $b_0 = b_2 - b_1 = 1$. Solution: $b_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+2} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+2} \right]$, $n \ge 0$ (Note that, $b_n = F_{n+2}$)

Example $(2 \times n$ Chessboard Tiling using Dominoes)

Let, t_n = number of ways to tile $2 \times n$ ($n \in \mathbb{Z}^+$) chessboard. Recurrence Relation: $t_n = t_{n-1} + t_{n-2}$ ($n \ge 2$) and $t_1 = 1, t_2 = 2$

Aritra Hazra (CSE, IITKGP)

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0, 1, 2, ..., 9 and 4 binary operation symbols: $+, -, *, / e_n =$ number of legal arithmetic expressions with *n* symbols.

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0, 1, 2, ..., 9 and 4 binary operation symbols: $+, -, *, / e_n =$ number of legal arithmetic expressions with *n* symbols. Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_n :

 $10e_{n-1}$ (last two symbols as digits) and $39e_{n-2}$ (last two symbol as operator and digit)

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0, 1, 2, ..., 9 and 4 binary operation symbols: $+, -, *, / e_n =$ number of legal arithmetic expressions with *n* symbols. Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_n : $10e_{n-1}$ (last two symbols as digits) and $39e_{n-2}$ (last two symbol as operator and digit)

Recurrence Relation: $e_n = 10e_{n-1} + 39e_{n-2}$ ($n \ge 0$) and $e_1 = 10$, $e_2 = 100 \Rightarrow e_0 = 0$

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0, 1, 2, ..., 9 and 4 binary operation symbols: +, -, *, / $e_n =$ number of legal arithmetic expressions with *n* symbols. Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_n : $10e_{n-1}$ (last two symbols as digits) and $39e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_n = 10e_{n-1} + 39e_{n-2}$ ($n \ge 0$) and $e_1 = 10$, $e_2 = 100 \Rightarrow e_0 = 0$ Characteristics Roots: $R_1 = 5 + 3\sqrt{6}$ and $R_2 = 5 - 3\sqrt{6}$ Solution: $e_n = \frac{5}{3\sqrt{6}} \left[(5 + 3\sqrt{6})^n - (5 - 3\sqrt{6})^n \right]$, $n \ge 0$

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0, 1, 2, ..., 9 and 4 binary operation symbols: +, -, *, / $e_n =$ number of legal arithmetic expressions with *n* symbols. Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_n : $10e_{n-1}$ (last two symbols as digits) and $39e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_n = 10e_{n-1} + 39e_{n-2}$ ($n \ge 0$) and $e_1 = 10$, $e_2 = 100 \Rightarrow e_0 = 0$ Characteristics Roots: $R_1 = 5 + 3\sqrt{6}$ and $R_2 = 5 - 3\sqrt{6}$ Solution: $e_n = \frac{5}{3\sqrt{6}} \left[(5 + 3\sqrt{6})^n - (5 - 3\sqrt{6})^n \right]$, $n \ge 0$

Example (Count of Transmission Words with Constraints)

 w_n = number of *n*-length words using *a*, *b*, *c* (three) letters that can be transmitted where no word having two consecutive *a*'s

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0, 1, 2, ..., 9 and 4 binary operation symbols: +, -, *, / $e_n =$ number of legal arithmetic expressions with *n* symbols. Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_n : $10e_{n-1}$ (last two symbols as digits) and $39e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_n = 10e_{n-1} + 39e_{n-2}$ ($n \ge 0$) and $e_1 = 10$, $e_2 = 100 \Rightarrow e_0 = 0$ Characteristics Roots: $R_1 = 5 + 3\sqrt{6}$ and $R_2 = 5 - 3\sqrt{6}$ Solution: $e_n = \frac{5}{3\sqrt{6}} \left[(5 + 3\sqrt{6})^n - (5 - 3\sqrt{6})^n \right]$, $n \ge 0$

Example (Count of Transmission Words with Constraints)

 w_n = number of *n*-length words using a, b, c (three) letters that can be transmitted where no word having two consecutive a's

Two ways to construct recurrence for w_n :

- First letter is b or c: Number of words = w_{n-1} (each)
- First letter is a, Second letter is b or c: Number of words = w_{n-2} (each)

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0, 1, 2, ..., 9 and 4 binary operation symbols: +, -, *, / $e_n =$ number of legal arithmetic expressions with *n* symbols. Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_n : $10e_{n-1}$ (last two symbols as digits) and $39e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_n = 10e_{n-1} + 39e_{n-2}$ ($n \ge 0$) and $e_1 = 10$, $e_2 = 100 \Rightarrow e_0 = 0$ Characteristics Roots: $R_1 = 5 + 3\sqrt{6}$ and $R_2 = 5 - 3\sqrt{6}$ Solution: $e_n = \frac{5}{3\sqrt{6}} \left[(5 + 3\sqrt{6})^n - (5 - 3\sqrt{6})^n \right]$, $n \ge 0$

Example (Count of Transmission Words with Constraints)

 w_n = number of *n*-length words using a, b, c (three) letters that can be transmitted where no word having two consecutive a's

Two ways to construct recurrence for w_n :

- First letter is b or c: Number of words = w_{n-1} (each)
- First letter is a, Second letter is b or c: Number of words = w_{n-2} (each)

Recurrence Relation: $w_n = 2w_{n-1} + 2w_{n-2}$ $(n \ge 2)$ and $w_0 = 1, w_1 = 3$

Example (Counting Legal Arithmetic Expressions without Parenthesis)

10 digit symbols: 0, 1, 2, ..., 9 and 4 binary operation symbols: +, -, *, / $e_n =$ number of legal arithmetic expressions with *n* symbols. Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_n : $10e_{n-1}$ (last two symbols as digits) and $39e_{n-2}$ (last two symbol as operator and digit) Recurrence Relation: $e_n = 10e_{n-1} + 39e_{n-2}$ ($n \ge 0$) and $e_1 = 10$, $e_2 = 100 \Rightarrow e_0 = 0$ Characteristics Roots: $R_1 = 5 + 3\sqrt{6}$ and $R_2 = 5 - 3\sqrt{6}$ Solution: $e_n = \frac{5}{3\sqrt{6}} \left[(5 + 3\sqrt{6})^n - (5 - 3\sqrt{6})^n \right]$, $n \ge 0$

Example (Count of Transmission Words with Constraints)

 w_n = number of *n*-length words using *a*, *b*, *c* (three) letters that can be transmitted where no word having two consecutive *a*'s

Two ways to construct recurrence for w_n :

• First letter is b or c: Number of words = w_{n-1} (each)

• First letter is *a*, Second letter is *b* or *c*: Number of words = w_{n-2} (each) Recurrence Relation: $w_n = 2w_{n-1} + 2w_{n-2}$ ($n \ge 2$) and $w_0 = 1$, $w_1 = 3$ Characteristics Roots: $R_1 = 1 + \sqrt{3}$ and $R_2 = 1 - \sqrt{3}$ Solution: $w_n = (\frac{2+\sqrt{3}}{2\sqrt{3}})(1+\sqrt{3})^n + (\frac{-2+\sqrt{3}}{2\sqrt{3}})(1-\sqrt{3})^n$, $n \ge 0$

Example (Number of Palindromic Summands)

 p_n = number of palindromic summands of n.

Example (Number of Palindromic Summands)

 p_n = number of palindromic summands of n. Two ways to construct recurrence for p_n :

- Appending +1 at both sides of all the $(n-2)^{th}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{th}$ palindromic summands by +1.

For 3:	For 5:	For 4:	For 6:	
	(1') 5	(1) 4	(1') 6	(1'') 1 + 4 + 1
(1) 3	(2') 2 + 1 + 2	(2) 1 + 2 + 1	(2') 2 + 2 + 2	(2'') 1 + 1 + 2 + 1 + 1
(2) 1 + 1 + 1	(1'') 1 + 3 + 1	(3) 2 + 2	(3') 3 + 3	(3'') 1 + 2 + 2 + 1
	(2'') 1 + 1 + 1 + 1 + 1	(4) 1 + 1 + 1 + 1	(4') 2 + 1 + 1 + 2	$(4^{\prime\prime})$ 1 + 1 + 1 + 1 + 1 + 1

Example (Number of Palindromic Summands)

 p_n = number of palindromic summands of n. Two ways to construct recurrence for p_n :

- Appending +1 at both sides of all the $(n-2)^{th}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{th}$ palindromic summands by +1.

For 3:	For 5:	For 4:	For 6:	
	(1') 5	(1) 4	(1') 6	(1'') 1 + 4 + 1
(1) 3	(2') 2 + 1 + 2	(2) 1 + 2 + 1	(2') 2 + 2 + 2	$(2^{\prime\prime})$ 1 + 1 + 2 + 1 + 1
(2) 1 + 1 + 1	(1'') 1 + 3 + 1	(3) 2 + 2	(3') 3 + 3	(3'') 1 + 2 + 2 + 1
	$(2^{\prime\prime})$ 1 + 1 + 1 + 1 + 1	(4) 1 + 1 + 1 + 1	(4') 2 + 1 + 1 + 2	$(4^{\prime\prime})$ 1 + 1 + 1 + 1 + 1 + 1 + 1

Recurrence Relation: $p_n = 2p_{n-2}$ $(n \ge 3)$ and $p_1 = 1, p_2 = 2$

Example (Number of Palindromic Summands)

 p_n = number of palindromic summands of n. Two ways to construct recurrence for p_n :

- Appending +1 at both sides of all the $(n-2)^{th}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{th}$ palindromic summands by +1.

For 3:	For 5:	For 4:	For 6:	
	(1') 5	(1) 4	(1') 6	(1'') 1 + 4 + 1
(1) 3	(2') 2 + 1 + 2	(2) 1 + 2 + 1	(2') 2 + 2 + 2	$(2^{\prime\prime})$ 1 + 1 + 2 + 1 + 1
(2) 1 + 1 + 1	(1'') 1 + 3 + 1	(3) 2 + 2	(3') 3 + 3	(3'') 1 + 2 + 2 + 1
	$(2^{\prime\prime})$ 1 + 1 + 1 + 1 + 1	(4) 1 + 1 + 1 + 1	(4') 2 + 1 + 1 + 2	$(4^{\prime\prime})$ 1 + 1 + 1 + 1 + 1 + 1 + 1

Recurrence Relation: $p_n = 2p_{n-2}$ $(n \ge 3)$ and $p_1 = 1, p_2 = 2$ Characteristics Roots: $R_1 = \sqrt{2}$ and $R_2 = -\sqrt{2}$ Solution: $p_n = (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^n + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^n, n \ge 1$

Example (Number of Palindromic Summands)

 p_n = number of palindromic summands of n. Two ways to construct recurrence for p_n :

- Appending +1 at both sides of all the $(n-2)^{th}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{th}$ palindromic summands by +1.

For 3:	For 5:	For 4:	For 6:	
	(1') 5	(1) 4	(1') 6	(1'') 1 + 4 + 1
(1) 3	(2') 2 + 1 + 2	(2) 1 + 2 + 1	(2') 2 + 2 + 2	(2'') 1 + 1 + 2 + 1 + 1
(2) 1 + 1 + 1	(1'') 1 + 3 + 1	(3) 2 + 2	(3') 3 + 3	(3'') 1 + 2 + 2 + 1
	(2'') 1 + 1 + 1 + 1 + 1	(4) 1 + 1 + 1 + 1	(4') 2 + 1 + 1 + 2	$(4^{\prime\prime})$ 1 + 1 + 1 + 1 + 1 + 1

Recurrence Relation: $p_n = 2p_{n-2}$ $(n \ge 3)$ and $p_1 = 1, p_2 = 2$ Characteristics Roots: $R_1 = \sqrt{2}$ and $R_2 = -\sqrt{2}$ Solution: $p_n = (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^n + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^n, n \ge 1$

Observation: $p_n = 2^{\frac{n}{2}}$ (when *n* is even) and $p_n = 2^{\lfloor \frac{n}{2} \rfloor}$ (when *n* is odd) (How?)

Example (Number of Palindromic Summands)

 p_n = number of palindromic summands of n. Two ways to construct recurrence for p_n :

- Appending +1 at both sides of all the $(n-2)^{th}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{th}$ palindromic summands by +1.

For 3:	For 5:	For 4:	For 6:	
	(1') 5	(1) 4	(1') 6	(1'') 1 + 4 + 1
(1) 3	(2') 2 + 1 + 2	(2) 1 + 2 + 1	(2') 2 + 2 + 2	$(2^{\prime\prime})$ 1 + 1 + 2 + 1 + 1
(2) 1 + 1 + 1	(1'') 1 + 3 + 1	(3) 2 + 2	(3') 3 + 3	(3'') 1 + 2 + 2 + 1
	(2'') 1 + 1 + 1 + 1 + 1	(4) 1 + 1 + 1 + 1	(4') 2 + 1 + 1 + 2	(4'') 1 + 1 + 1 + 1 + 1 + 1

Recurrence Relation: $p_n = 2p_{n-2}$ $(n \ge 3)$ and $p_1 = 1, p_2 = 2$ Characteristics Roots: $R_1 = \sqrt{2}$ and $R_2 = -\sqrt{2}$ Solution: $p_n = (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^n + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^n, n \ge 1$

Observation: $p_n = 2^{\frac{n}{2}}$ (when *n* is even) and $p_n = 2^{\lfloor \frac{n}{2} \rfloor}$ (when *n* is odd) (How?) Reason: For n = 2k ($k \in \mathbb{Z}^+$), $p_n = (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^{2k} + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^{2k} = 2^k = 2^{\frac{n}{2}}$

Example (Number of Palindromic Summands)

 p_n = number of palindromic summands of n. Two ways to construct recurrence for p_n :

- Appending +1 at both sides of all the $(n-2)^{th}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{th}$ palindromic summands by +1.

For 3:	For 5:	For 4:	For 6:	
	(1') 5	(1) 4	(1') 6	(1'') 1 + 4 + 1
(1) 3	(2') 2 + 1 + 2	(2) 1 + 2 + 1	(2') 2 + 2 + 2	$(2^{\prime\prime})$ 1 + 1 + 2 + 1 + 1
(2) 1 + 1 + 1	(1'') 1 + 3 + 1	(3) 2 + 2	(3') 3 + 3	(3'') 1 + 2 + 2 + 1
	(2'') 1 + 1 + 1 + 1 + 1	(4) 1 + 1 + 1 + 1	(4') 2 + 1 + 1 + 2	(4'') 1 + 1 + 1 + 1 + 1 + 1

Recurrence Relation: $p_n = 2p_{n-2}$ $(n \ge 3)$ and $p_1 = 1$, $p_2 = 2$ Characteristics Roots: $R_1 = \sqrt{2}$ and $R_2 = -\sqrt{2}$ Solution: $p_n = (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^n + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^n$, $n \ge 1$

Observation: $p_n = 2^{\frac{n}{2}}$ (when *n* is even) and $p_n = 2^{\lfloor \frac{n}{2} \rfloor}$ (when *n* is odd) (How?) Reason: For n = 2k ($k \in \mathbb{Z}^+$), $p_n = (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^{2k} + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^{2k} = 2^k = 2^{\frac{n}{2}}$ For n = 2k - 1 ($k \in \mathbb{Z}^+$), $p_n = (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^{2k-1} + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^{2k-1} = 2^{k-1} = 2^{\lfloor \frac{n}{2} \rfloor}$

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows: $(\text{Let } r_0 = a \text{ and } r_1 = b)$ $r_0 = q_1r_1 + r_2 (0 < r_2 < r_1, q_1 \ge 1), \quad r_1 = q_2r_2 + r_3 (0 < r_3 < r_2, q_2 \ge 1), \quad r_2 = q_3r_3 + r_4 (0 < r_4 < r_3, q_3 \ge 1)$ \dots $r_{n-2} = q_{n-1}r_{n-1} + r_n (0 < r_n < r_{n-1}, q_{n-1} \ge 1), \quad r_{n-1} = q_nr_n (q_n \ge 2 \text{ as } r_n < r_{n-1})$

Example (Number of Divisions in Euclidean GCD Computation)

Example (Number of Divisions in Euclidean GCD Computation)

Computation of *GCD*(*a*, *b*) is done as follows: (Let $r_0 = a$ and $r_1 = b$) $r_0 = q_1r_1 + r_2 (0 < r_2 < r_1, q_1 \ge 1)$, $r_1 = q_2r_2 + r_3 (0 < r_3 < r_2, q_2 \ge 1)$, $r_2 = q_3r_3 + r_4 (0 < r_4 < r_3, q_3 \ge 1)$ \dots $r_{n-2} = q_{n-1}r_{n-1} + r_n (0 < r_n < r_{n-1}, q_{n-1} \ge 1)$, $r_{n-1} = q_nr_n (q_n \ge 2 \text{ as } r_n < r_{n-1})$ Estimation of remainders are done as follows: ($F_n = n^{th}$ Fibonacci Number) $(r_n > 0) \Rightarrow r_n \ge 1 = F_2$ $(q_n \ge 2) \land (r_n \ge F_2) \Rightarrow r_{n-1} = q_nr_n \ge 2.1 = 2 = F_3$ $(q_{n-1} \ge 1) \land (r_{n-1} \ge F_3) \land (r_n \ge F_2) \Rightarrow r_2 = q_{n-1}r_{n-1} + r_n \ge 1.r_{n-1} + r_n = F_3 + F_2 = F_4$ \dots $(q_3 \ge 1) \land (r_3 \ge F_{n-1}) \land (r_4 \ge F_{n-2}) \Rightarrow r_2 = q_3r_3 + r_4 \ge 1.r_3 + r_4 = F_{n-1} + F_{n-2} = F_n$ $(q_2 \ge 1) \land (r_2 \ge F_n) \land (r_3 \ge F_{n-1}) \Rightarrow b = r_1 = q_2r_2 + r_3 \ge 1.r_2 + r_3 = F_n + F_{n-1} = F_{n+1}$ Important Property of Fibonacci Numbers: $F_n > \alpha^{n-2}$ (for $n \ge 3$), where $\alpha = \frac{1 \pm \sqrt{5}}{2}$

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows: (Let $r_0 = a$ and $r_1 = b$) $r_0 = q_1 r_1 + r_2 \ (0 < r_2 < r_1, q_1 \ge 1), \quad r_1 = q_2 r_2 + r_3 \ (0 < r_3 < r_2, q_2 \ge 1), \quad r_2 = q_3 r_3 + r_4 \ (0 < r_4 < r_3, q_3 \ge 1)$ $r_{n-2} = q_{n-1}r_{n-1} + r_n \ (0 < r_n < r_{n-1}, q_{n-1} \ge 1), \quad r_{n-1} = q_n r_n \ (q_n \ge 2 \ \text{as} \ r_n < r_{n-1})$ Estimation of remainders are done as follows: $(F_n = n^{th} \text{ Fibonacci Number})$ $(r_n > 0) \Rightarrow r_n > 1 = F_2$ $(q_n > 2) \land (r_n > F_2) \Rightarrow r_{n-1} = q_n r_n > 2.1 = 2 = F_3$ $(q_{n-1} \ge 1) \land (r_{n-1} \ge F_3) \land (r_n \ge F_2) \quad \Rightarrow \quad r_{n-2} = q_{n-1}r_{n-1} + r_n \ge 1.r_{n-1} + r_n = F_3 + F_2 = F_4$ $(q_3 \ge 1) \land (r_3 \ge F_{n-1}) \land (r_4 \ge F_{n-2}) \implies r_2 = q_3r_3 + r_4 \ge 1.r_3 + r_4 = F_{n-1} + F_{n-2} = F_n$ $(q_2 > 1) \land (r_2 > F_n) \land (r_3 > F_{n-1}) \Rightarrow b = r_1 = q_2r_2 + r_3 > 1.r_2 + r_3 = F_n + F_{n-1} = F_{n+1}$ Important Property of Fibonacci Numbers: $F_n > \alpha^{n-2}$ (for $n \ge 3$), where $\alpha = \frac{1+\sqrt{5}}{2}$ Let, GCD(a, b) uses n Divisions $(a \ge b \ge 2)$. So, $b \ge F_{n+1} > \alpha^{n-1} = (\frac{1+\sqrt{5}}{2})^{n-1}$.

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows: (Let $r_0 = a$ and $r_1 = b$) $r_0 = q_1 r_1 + r_2 \ (0 < r_2 < r_1, q_1 \ge 1), \quad r_1 = q_2 r_2 + r_3 \ (0 < r_3 < r_2, q_2 \ge 1), \quad r_2 = q_3 r_3 + r_4 \ (0 < r_4 < r_3, q_3 \ge 1)$ $r_{n-2} = q_{n-1}r_{n-1} + r_n \ (0 < r_n < r_{n-1}, q_{n-1} \ge 1), \quad r_{n-1} = q_n r_n \ (q_n \ge 2 \ \text{as} \ r_n < r_{n-1})$ Estimation of remainders are done as follows: $(F_n = n^{th} \text{ Fibonacci Number})$ $(r_n > 0) \Rightarrow r_n > 1 = F_2$ $(q_n > 2) \land (r_n > F_2) \Rightarrow r_{n-1} = q_n r_n > 2.1 = 2 = F_3$ $(q_{n-1} \ge 1) \land (r_{n-1} \ge F_3) \land (r_n \ge F_2) \quad \Rightarrow \quad r_{n-2} = q_{n-1}r_{n-1} + r_n \ge 1.r_{n-1} + r_n = F_3 + F_2 = F_4$ $(q_3 \ge 1) \land (r_3 \ge F_{n-1}) \land (r_4 \ge F_{n-2}) \implies r_2 = q_3r_3 + r_4 \ge 1.r_3 + r_4 = F_{n-1} + F_{n-2} = F_n$ $(q_2 > 1) \land (r_2 > F_n) \land (r_3 > F_{n-1}) \Rightarrow b = r_1 = q_2r_2 + r_3 > 1.r_2 + r_3 = F_n + F_{n-1} = F_{n+1}$ Important Property of Fibonacci Numbers: $F_n > \alpha^{n-2}$ (for $n \ge 3$), where $\alpha = \frac{1+\sqrt{5}}{2}$ Let, GCD(a, b) uses *n* Divisions $(a \ge b \ge 2)$. So, $b \ge F_{n+1} > \alpha^{n-1} = (\frac{1+\sqrt{5}}{2})^{n-1}$. $\therefore b > \alpha^{n-1} \Rightarrow \log_{10} b > (n-1) \log_{10} \alpha > \frac{n-1}{5} \text{ (as } \log_{10} \alpha = \log_{10} \left(\frac{1+\sqrt{5}}{2}\right) \approx 0.209 > \frac{1}{5}\text{)}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows: (Let $r_0 = a$ and $r_1 = b$) $r_0 = q_1 r_1 + r_2 \ (0 < r_2 < r_1, q_1 \ge 1), \quad r_1 = q_2 r_2 + r_3 \ (0 < r_3 < r_2, q_2 \ge 1), \quad r_2 = q_3 r_3 + r_4 \ (0 < r_4 < r_3, q_3 \ge 1)$ $r_{n-2} = q_{n-1}r_{n-1} + r_n \ (0 < r_n < r_{n-1}, q_{n-1} \ge 1), \quad r_{n-1} = q_n r_n \ (q_n \ge 2 \ \text{as} \ r_n < r_{n-1})$ Estimation of remainders are done as follows: $(F_n = n^{th} \text{ Fibonacci Number})$ $(r_n > 0) \Rightarrow r_n > 1 = F_2$ $(q_n \geq 2) \land (r_n \geq F_2) \Rightarrow r_{n-1} = q_n r_n \geq 2.1 = 2 = F_3$ $(q_{n-1} \ge 1) \land (r_{n-1} \ge F_3) \land (r_n \ge F_2) \quad \Rightarrow \quad r_{n-2} = q_{n-1}r_{n-1} + r_n \ge 1.r_{n-1} + r_n = F_3 + F_2 = F_4$ $(q_3 > 1) \land (r_3 > F_{n-1}) \land (r_4 > F_{n-2}) \Rightarrow r_2 = q_3r_3 + r_4 > 1.r_3 + r_4 = F_{n-1} + F_{n-2} = F_n$ $(q_2 \ge 1) \land (r_2 \ge F_n) \land (r_3 \ge F_{n-1}) \Rightarrow b = r_1 = q_2r_2 + r_3 \ge 1.r_2 + r_3 = F_n + F_{n-1} = F_{n+1}$ Important Property of Fibonacci Numbers: $F_n > \alpha^{n-2}$ (for $n \ge 3$), where $\alpha = \frac{1+\sqrt{5}}{2}$ Let, GCD(a, b) uses *n* Divisions $(a \ge b \ge 2)$. So, $b \ge F_{n+1} > \alpha^{n-1} = (\frac{1+\sqrt{5}}{2})^{n-1}$. $\therefore b > \alpha^{n-1} \Rightarrow \log_{10} b > (n-1) \log_{10} \alpha > \frac{n-1}{5} \text{ (as } \log_{10} \alpha = \log_{10} \left(\frac{1+\sqrt{5}}{2}\right) \approx 0.209 > \frac{1}{5}\text{)}.$ If b is k-digit decimal number, $10^{k-1} \le b < 10^k \Rightarrow k > \log_{10} b > \frac{n-1}{5} \Rightarrow n < 5k+1$.

Aritra Hazra (CSE, IITKGP)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows: (Let $r_0 = a$ and $r_1 = b$) $r_0 = q_1 r_1 + r_2 \ (0 < r_2 < r_1, q_1 \ge 1), \quad r_1 = q_2 r_2 + r_3 \ (0 < r_3 < r_2, q_2 \ge 1), \quad r_2 = q_3 r_3 + r_4 \ (0 < r_4 < r_3, q_3 \ge 1)$ $r_{n-2} = q_{n-1}r_{n-1} + r_n \ (0 < r_n < r_{n-1}, q_{n-1} \ge 1), \quad r_{n-1} = q_n r_n \ (q_n \ge 2 \ as \ r_n < r_{n-1})$ Estimation of remainders are done as follows: $(F_n = n^{th} \text{ Fibonacci Number})$ $(r_n > 0) \Rightarrow r_n > 1 = F_2$ $(q_n \geq 2) \land (r_n \geq F_2) \Rightarrow r_{n-1} = q_n r_n \geq 2.1 = 2 = F_3$ $(q_{n-1} \ge 1) \land (r_{n-1} \ge F_3) \land (r_n \ge F_2) \quad \Rightarrow \quad r_{n-2} = q_{n-1}r_{n-1} + r_n \ge 1.r_{n-1} + r_n = F_3 + F_2 = F_4$ $(q_3 \ge 1) \land (r_3 \ge F_{n-1}) \land (r_4 \ge F_{n-2}) \implies r_2 = q_3r_3 + r_4 \ge 1.r_3 + r_4 = F_{n-1} + F_{n-2} = F_n$ $(q_2 > 1) \land (r_2 > F_n) \land (r_3 > F_{n-1}) \Rightarrow b = r_1 = q_2 r_2 + r_3 > 1.r_2 + r_3 = F_n + F_{n-1} = F_{n+1}$ Important Property of Fibonacci Numbers: $F_n > \alpha^{n-2}$ (for $n \ge 3$), where $\alpha = \frac{1+\sqrt{5}}{2}$ Let, GCD(a, b) uses n Divisions $(a \ge b \ge 2)$. So, $b \ge F_{n+1} > \alpha^{n-1} = (\frac{1+\sqrt{5}}{2})^{n-1}$. $\therefore b > \alpha^{n-1} \Rightarrow \log_{10} b > (n-1) \log_{10} \alpha > \frac{n-1}{5} \text{ (as } \log_{10} \alpha = \log_{10} \left(\frac{1+\sqrt{5}}{2}\right) \approx 0.209 > \frac{1}{5}\text{)}.$ If b is k-digit decimal number, $10^{k-1} \le b < 10^k \Rightarrow k > \log_{10} b > \frac{n-1}{5} \Rightarrow n < 5k+1$.

Lamé's Theorem: Number of divisions performed in Euclidean GCD computation GCD(a, b) $(a \ge b \ge 2, a, b \in \mathbb{Z}+)$ is at most 5 times the number of decimal digits in b.

Aritra Hazra (CSE, IITKGP)

Example (Number of Divisions in Euclidean GCD Computation)

Computation of GCD(a, b) is done as follows: (Let $r_0 = a$ and $r_1 = b$) $r_0 = q_1r_1 + r_2 \ (0 < r_2 < r_1, q_1 \ge 1), \quad r_1 = q_2r_2 + r_3 \ (0 < r_3 < r_2, q_2 \ge 1), \quad r_2 = q_3r_3 + r_4 \ (0 < r_4 < r_3, q_3 \ge 1)$ $r_{n-2} = q_{n-1}r_{n-1} + r_n \ (0 < r_n < r_{n-1}, q_{n-1} \ge 1), \quad r_{n-1} = q_n r_n \ (q_n \ge 2 \ \text{as} \ r_n < r_{n-1})$ Estimation of remainders are done as follows: $(F_n = n^{th} \text{ Fibonacci Number})$ $(r_n > 0) \Rightarrow r_n > 1 = F_2$ $(q_n \geq 2) \land (r_n \geq F_2) \Rightarrow r_{n-1} = q_n r_n \geq 2.1 = 2 = F_3$ $(q_{n-1} > 1) \land (r_{n-1} > F_3) \land (r_n > F_2) \implies r_{n-2} = q_{n-1}r_{n-1} + r_n > 1 \cdot r_{n-1} + r_n = F_3 + F_2 = F_4$ $(q_3 \ge 1) \land (r_3 \ge F_{n-1}) \land (r_4 \ge F_{n-2}) \implies r_2 = q_3r_3 + r_4 \ge 1.r_3 + r_4 = F_{n-1} + F_{n-2} = F_n$ $(q_2 > 1) \land (r_2 > F_n) \land (r_3 > F_{n-1}) \Rightarrow b = r_1 = q_2 r_2 + r_3 > 1.r_2 + r_3 = F_n + F_{n-1} = F_{n+1}$ Important Property of Fibonacci Numbers: $F_n > \alpha^{n-2}$ (for $n \ge 3$), where $\alpha = \frac{1+\sqrt{5}}{2}$ Let, GCD(a, b) uses *n* Divisions $(a \ge b \ge 2)$. So, $b \ge F_{n+1} > \alpha^{n-1} = (\frac{1+\sqrt{5}}{2})^{n-1}$. $\therefore b > \alpha^{n-1} \Rightarrow \log_{10} b > (n-1) \log_{10} \alpha > \frac{n-1}{5} \text{ (as } \log_{10} \alpha = \log_{10} \left(\frac{1+\sqrt{5}}{2}\right) \approx 0.209 > \frac{1}{5}\text{)}.$ If b is k-digit decimal number, $10^{k-1} \le b < 10^k \Rightarrow k > \log_{10} b > \frac{n-1}{5} \Rightarrow n < 5k+1$.

Lamé's Theorem: Number of divisions performed in Euclidean GCD computation GCD(a, b) $(a \ge b \ge 2, a, b \in \mathbb{Z}+)$ is at most 5 times the number of decimal digits in b.

Corollary: Number of divisions, $n < 1 + 5 \log_{10} b < 9 \log_{10} b \Rightarrow n = O(\log_{10} b)$ (as, $b \ge 2 \Rightarrow 4 \log_{10} b \ge \log_{10} 2^4 > 1$)

Aritra Hazra (CSE, IITKGP)

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\ne 0), C_1, C_2(\ne 0)$ and D_0, D_1 all are constants.

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\ne 0), C_1, C_2(\ne 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ $(c, x \neq 0)$, after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \implies C_0.x^2 + C_1.x + C_2 = 0$

(I) < (II) < (II) < (II) < (II) < (III) </p>

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

 $\begin{array}{ll} \mbox{General Form:} & C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} = 0 \ (n \geq 2) \ \text{and} \ t_0 = D_0, \ t_1 = D_1; \\ & C_0(\neq 0), \ C_1, \ C_2(\neq 0) \ \text{and} \ D_0, \ D_1 \ \text{all are constants.} \end{array} \\ \mbox{Characteristic Equation: Seeking a solution,} \ t_n = c.x^n \ (c, x \neq 0), \ \text{after substitution,} \\ & C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 & \Rightarrow C_0.x^2 + C_1.x + C_2 = 0 \end{array} \\ \mbox{Equation Roots: } & \box{Complex Conjugate Pair as Roots,} \ R_1 = x + iy, \ R_2 = x - iy \\ & OR, \ R_1 = r.(\cos \theta + i \sin \theta), \ R_2 = r.(\cos \theta - i \sin \theta) \\ & \text{where,} \ r = \sqrt{x^2 + y^2}, \ \theta = \tan^{-1}(\frac{y}{x}) & (i = \sqrt{-1}) \end{array} \\ \mbox{Exact Solution: } & t_n = A_1.R_1^n + A_2.R_2^n = A_1.(x + iy)^n + A_2.(\cos(n\theta) - i \sin(n\theta))] \\ & = (\sqrt{x^2 + y^2})^n [A_1.(\cos(n\theta) + i \sin(n\theta)) + A_2.(\cos(n\theta) - i \sin(n\theta))] \\ & = (\sqrt{x^2 + y^2})^n [B_1.\cos(n\theta) + B_2.\sin(n\theta)], \ where \\ & B_1 = (A_2 + A_2), \ B_2 = i(A_1 - A_2) \ (\text{Here, } A_1, A_2, B_1, B_2 \ \text{are arbitrary constants}) \end{array}$

・ロン ・雪と ・ヨン

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_0 t_n + C_1 t_{n-1} + C_2 t_{n-2} = 0$ (n > 2) and $t_0 = D_0, t_1 = D_1$; $C_0(\neq 0), C_1, C_2(\neq 0)$ and D_0, D_1 all are constants. Characteristic Equation: Seeking a solution, $t_n = c \cdot x^n$ ($c, x \neq 0$), after substitution, $C_{0,C,X}^{n} + C_{1,C,X}^{n-1} + C_{2,C,X}^{n-2} = 0 \implies C_{0,X}^{2} + C_{1,X} + C_{2} = 0$ Equation Roots: Complex Conjugate Pair as Roots, $R_1 = x + iy$, $R_2 = x - iy$ OR, $R_1 = r.(\cos \theta + i \sin \theta), R_2 = r.(\cos \theta - i \sin \theta)$ where, $r = \sqrt{x^2 + y^2}, \theta = \tan^{-1}(\frac{y}{x})$ $(i = \sqrt{-1})$ Exact Solution: $t_n = A_1 \cdot R_1^n + A_2 \cdot R_2^n = A_1 \cdot (x + iy)^n + A_2 \cdot (x - iy)^n$ $=(\sqrt{x^2+y^2})^n[A_{1.}(\cos(n\theta)+i\sin(n\theta))+A_{2.}(\cos(n\theta)-i\sin(n\theta))]$ $=(\sqrt{x^2+v^2})^n[B_1.\cos(n\theta)+B_2.\sin(n\theta)],$ where $B_1 = (A_2 + A_2), B_2 = i(A_1 - A_2)$ (Here, A_1, A_2, B_1, B_2 are arbitrary constants) Constant Determination: $t_0 = D_0 = B_1$ and $B_2 = \frac{D_1 - D_0 \cdot x}{v}$ because, $t_1 = D_1 = (\sqrt{x^2 + y^2}) \cdot (B_1 \cdot \cos \theta + B_2 \sin \theta) = (B_1 \cdot x + B_2 \cdot y)$.

Aritra Hazra (CSE, IITKGP)

・ロト ・四ト ・ヨト ・ヨ

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_0 t_n + C_1 t_{n-1} + C_2 t_{n-2} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1$; $C_0(\neq 0), C_1, C_2(\neq 0)$ and D_0, D_1 all are constants. Characteristic Equation: Seeking a solution, $t_n = c \cdot x^n$ ($c, x \neq 0$), after substitution, $C_{0,C,X}^{n} + C_{1,C,X}^{n-1} + C_{2,C,X}^{n-2} = 0 \implies C_{0,X}^{2} + C_{1,X} + C_{2} = 0$ Equation Roots: Complex Conjugate Pair as Roots, $R_1 = x + iy$, $R_2 = x - iy$ OR, $R_1 = r.(\cos \theta + i \sin \theta), R_2 = r.(\cos \theta - i \sin \theta)$ where, $r = \sqrt{x^2 + y^2}, \theta = \tan^{-1}(\frac{y}{x})$ $(i = \sqrt{-1})$ Exact Solution: $t_n = A_1 \cdot R_1^n + A_2 \cdot R_2^n = A_1 \cdot (x + iy)^n + A_2 \cdot (x - iy)^n$ $= (\sqrt{x^2 + y^2})^n [A_1.(\cos(n\theta) + i\sin(n\theta)) + A_2.(\cos(n\theta) - i\sin(n\theta))]$ $=(\sqrt{x^2+y^2})^n[B_1.\cos(n\theta)+B_2.\sin(n\theta)],$ where $B_1 = (A_2 + A_2), B_2 = i(A_1 - A_2)$ (Here, A_1, A_2, B_1, B_2 are arbitrary constants) Constant Determination: $t_0 = D_0 = B_1$ and $B_2 = \frac{D_1 - D_0 \cdot x}{x}$ because, $t_1 = D_1 = (\sqrt{x^2 + y^2}) \cdot (B_1 \cdot \cos \theta + B_2 \sin \theta) = (B_1 \cdot x + B_2 \cdot y)$. $t_n = \left(\sqrt{x^2 + y^2}\right)^n \left[D_0 \cdot \cos(n\theta) + \left(\frac{D_1 - D_0 \cdot x}{y}\right) \cdot \sin(n\theta) \right]$ Unique Solution:

Aritra Hazra (CSE, IITKGP)

・ロト ・四ト ・ヨト ・ヨ

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Example (Find	ing	Va	lue	of	n >	× n	Det	ern	nin	ant)	
For $b \in \mathbb{R}^+$, $D_n = \begin{bmatrix}$	For $b \in \mathbb{R}^+$, $D_n =$	b b 0 0 0 0 0 0	b b 0 0 0 0	0 b b 0 0 0 0	0 0 <i>b</i> 0 0 0 0	0 0 <i>b</i> 0 0 0	· · · · · · · · · · · · · · · ·	0 0 0 <i>b</i> 0 0	0 0 0 <i>b</i> 0 0	0 0 0 <i>b</i> <i>b</i> <i>b</i>	0 0 0 0 <i>b</i> <i>b</i>	0 0 0 0 0 0 0 b	, for $n \geq 1$.

Example (Finding Value of $n \times n$ Determinant) $D_1 = |b| = b, D_2 = \begin{vmatrix} b & b \\ b & b \end{vmatrix} = 0, D_3 = \begin{vmatrix} b & b & 0 \\ b & b & b \\ 0 & b & b \end{vmatrix} = -b^3$ and

Example (Finding Value of $n \times n$ Determinant) $D_1 = |b| = b, D_2 = \begin{vmatrix} b & b \\ b & b \end{vmatrix} = 0, D_3 = \begin{vmatrix} b & b & 0 \\ b & b & b \\ 0 & b & b \end{vmatrix} = -b^3$ and Recurrence Relation: $D_n = b.D_{n-1} - b.b.D_{n-2}$ ($n \ge 3$)

Aritra Hazra (CSE, IITKGP)

Example (Finding Value of $n \times n$ Determinant)

$$\begin{split} & \mathsf{For}\; b \in \mathbb{R}^+, \, D_n = \left| \begin{array}{c} b & b & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ b & b & b & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & b & b & b & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b & b & b & \cdots & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & b & b & b & b & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b & b & b \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b & b & b \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b & b & b \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b & b & b \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & b & b \\ \end{bmatrix} \\ & D_1 = |b| = b, D_2 = \left| \begin{array}{c} b & b \\ b & b \end{array} \right| = 0, D_3 = \left| \begin{array}{c} b & b & 0 \\ b & b & b \\ 0 & b & b \end{array} \right| = -b^3 \text{ and} \\ & \text{Recurrence Relation:} \quad D_n = b.D_{n-1} - b.b.D_{n-2} \; (n \geq 3) \\ & \text{Complex Conjugate Pair Roots:} \quad R_1 = b[\frac{1}{2} + i.\frac{\sqrt{3}}{2}], R_2 = b[\frac{1}{2} - i.\frac{\sqrt{3}}{2}] \\ & \text{Solution:} \quad D_n = b^n.[A_1.(\frac{1}{2} + i.\frac{\sqrt{3}}{2})^n + A_2.(\frac{1}{2} - i.\frac{\sqrt{3}}{2})^n] = b^n[B_1\cos(\frac{n\pi}{3}) + B_2\sin(\frac{n\pi}{3})] \\ & \text{Constants:} \quad b = D_1 = b.[B_1.(\frac{1}{2}) + B_2.(\frac{\sqrt{3}}{2})]; \quad 0 = D_2 = b^2.[B_1.(-\frac{1}{2}) + B_2.(\frac{\sqrt{3}}{2})] \end{split} \end{split}$$
Example (Finding Value of $n \times n$ Determinant)

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\neq 0), C_1(\neq 0), C_2(\neq 0)$ and D_0, D_1 all are constants.

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\neq 0), C_1(\neq 0), C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ $(c, x \neq 0)$, after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\neq 0), C_1(\neq 0), C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ $(c, x \neq 0)$, after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: **2 Equal Roots**, $R = R_1 = R_2 = -\frac{C_1}{2C_0}$ (here, $C_1^2 = 4C_0C_2$)

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\neq 0), C_1(\neq 0), C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ $(c, x \neq 0)$, after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \implies C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: **<u>2 Equal Roots</u>**, $R = R_1 = R_2 = -\frac{C_1}{2C_0}$ (here, $C_1^2 = 4C_0C_2$)

Exact Solution: Forming two linearly independent solutions using, $t_n = A_1 \cdot (-\frac{C_1}{2C_0})^n$ and $t_n = A_2 \cdot g(n) \cdot (-\frac{C_1}{2C_0})^n$

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\neq 0), C_1(\neq 0), C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ ($c, x \neq 0$), after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: **2 Equal Roots**, $R = R_1 = R_2 = -\frac{C_1}{2C_0}$ (here, $C_1^2 = 4C_0C_2$)

Exact Solution: Forming two linearly independent solutions using, $t_n = A_1.R^n = A_1.(-\frac{C_1}{2C_0})^n$ and $t_n = A_2.g(n).R^n = A_2.g(n).(-\frac{C_1}{2C_0})^n$ $\Rightarrow C_0.g(n).(-\frac{C_1}{2C_0})^n + C_1.g(n-1).(-\frac{C_1}{2C_0})^{n-1} + C_2.g(n-2).(-\frac{C_1}{2C_0})^{n-2} = 0$ $\Rightarrow g(n) - 2.g(n-1) + g(n-2) = 0$ (as, $C_1^2 = 4C_0C_2$ and $C_0, C_1, C_2 \neq 0$)

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\neq 0), C_1(\neq 0), C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ ($c, x \neq 0$), after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: **<u>2 Equal Roots</u>**, $R = R_1 = R_2 = -\frac{C_1}{2C_0}$ (here, $C_1^2 = 4C_0C_2$)

Exact Solution: Forming two linearly independent solutions using, $t_n = A_1.R^n = A_1.(-\frac{C_1}{2C_0})^n$ and $t_n = A_2.g(n).R^n = A_2.g(n).(-\frac{C_1}{2C_0})^n$ $\Rightarrow C_0.g(n).(-\frac{C_1}{2C_0})^n + C_1.g(n-1).(-\frac{C_1}{2C_0})^{n-1} + C_2.g(n-2).(-\frac{C_1}{2C_0})^{n-2} = 0$ $\Rightarrow g(n) - 2.g(n-1) + g(n-2) = 0$ (as, $C_1^2 = 4C_0C_2$ and $C_0, C_1, C_2 \neq 0$) is satisfied by, g(n) = an + b (constants $a(\neq 0)$, b, with simplest g(n) = n) $\therefore t_n = (A_1 + A_2.n).(-\frac{C_1}{2C_0})^n$

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\neq 0), C_1(\neq 0), C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ ($c, x \neq 0$), after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: **<u>2 Equal Roots</u>**, $R = R_1 = R_2 = -\frac{C_1}{2C_0}$ (here, $C_1^2 = 4C_0C_2$)

Exact Solution: Forming two linearly independent solutions using, $t_n = A_1.R^n = A_1.(-\frac{C_1}{2C_0})^n \text{ and } t_n = A_2.g(n).R^n = A_2.g(n).(-\frac{C_1}{2C_0})^n$ $\Rightarrow C_0.g(n).(-\frac{C_1}{2C_0})^n + C_1.g(n-1).(-\frac{C_1}{2C_0})^{n-1} + C_2.g(n-2).(-\frac{C_1}{2C_0})^{n-2} = 0$ $\Rightarrow g(n) - 2.g(n-1) + g(n-2) = 0 \text{ (as, } C_1^2 = 4C_0C_2 \text{ and } C_0, C_1, C_2 \neq 0)$ is satisfied by, g(n) = an + b (constants $a(\neq 0)$, b, with simplest g(n) = n) $\therefore t_n = (A_1 + A_2.n).(-\frac{C_1}{2C_0})^n$

Constant Determination: $t_0 = D_0 = A_1$ and $t_1 = D_1 = (A_1 + A_2) \cdot (-\frac{C_1}{2C_0}) \Rightarrow A_2 = -\frac{2C_0D_1 + C_1D_0}{C_1}$

- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} = 0$ (n > 2) and $t_0 = D_0, t_1 = D_1$; $C_0(\neq 0), C_1(\neq 0), C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c x^n$ ($c, x \neq 0$), after substitution, $C_{0,c,x^{n}} + C_{1,c,x^{n-1}} + C_{2,c,x^{n-2}} = 0 \implies C_{0,x^{2}} + C_{1,x} + C_{2} = 0$

Equation Roots: **2 Equal Roots**, $R = R_1 = R_2 = -\frac{C_1}{2C_2}$ (here, $C_1^2 = 4C_0C_2$)

Exact Solution: Forming two linearly independent solutions using, $t_n = A_1 \cdot R^n = A_1 \cdot (-\frac{C_1}{2C_2})^n$ and $t_n = A_2 \cdot g(n) \cdot R^n = A_2 \cdot g(n) \cdot (-\frac{C_1}{2C_2})^n$ $\Rightarrow C_0 g(n) (-\frac{C_1}{2C_1})^n + C_1 g(n-1) (-\frac{C_1}{2C_1})^{n-1} + C_2 g(n-2) (-\frac{C_1}{2C_1})^{n-2} = 0$ $\Rightarrow g(n) - 2.g(n-1) + g(n-2) = 0$ (as, $C_1^2 = 4C_0C_2$ and $C_0, C_1, C_2 \neq 0$) is satisfied by, g(n) = an + b (constants $a \neq 0$), b, with simplest g(n) = n) $\therefore t_n = (A_1 + A_2 \cdot n) \cdot (-\frac{C_1}{2C_1})^n$

Constant Determination: $t_0 = D_0 = A_1$ and $t_1 = D_1 = (A_1 + A_2) \cdot (-\frac{C_1}{2C_2}) \Rightarrow A_2 = -\frac{2C_0D_1 + C_1D_0}{C_2}$ $t_n = \left[D_0 - \left(\frac{2C_0 D_1 + C_1 D_0}{C_1} \right) \cdot n \right] \cdot \left(-\frac{C_1}{2C_2} \right)^n$

Unique Solution:

・ロト ・四ト ・ヨト ・ヨ

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} = 0$ $(n \ge 2)$ and $t_0 = D_0, t_1 = D_1;$ $C_0(\neq 0), C_1(\neq 0), C_2(\neq 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution, $t_n = c.x^n$ ($c, x \neq 0$), after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: **<u>2 Equal Roots</u>**, $R = R_1 = R_2 = -\frac{C_1}{2C_0}$ (here, $C_1^2 = 4C_0C_2$)

Exact Solution: Forming two linearly independent solutions using, $t_n = A_1.R^n = A_1.(-\frac{C_1}{2C_0})^n \text{ and } t_n = A_2.g(n).R^n = A_2.g(n).(-\frac{C_1}{2C_0})^n$ $\Rightarrow C_0.g(n).(-\frac{C_1}{2C_0})^n + C_1.g(n-1).(-\frac{C_1}{2C_0})^{n-1} + C_2.g(n-2).(-\frac{C_1}{2C_0})^{n-2} = 0$ $\Rightarrow g(n) - 2.g(n-1) + g(n-2) = 0 \text{ (as, } C_1^2 = 4C_0C_2 \text{ and } C_0, C_1, C_2 \neq 0)$ is satisfied by, g(n) = an + b (constants $a(\neq 0), b$, with simplest g(n) = n) $\therefore t_n = (A_1 + A_2.n).(-\frac{C_1}{2C_0})^n$

Constant Determination: $t_0 = D_0 = A_1$ and $t_1 = D_1 = (A_1 + A_2) \cdot (-\frac{C_1}{2C_0}) \Rightarrow A_2 = -\frac{2C_0D_1 + C_1D_0}{C_1}$

Unique Solution: $t_n = [D_0 - (\frac{2C_0D_1 + C_1D_0}{C_1}) \cdot n] \cdot (-\frac{C_1}{2C_0})^n$

Generic Solution: $t_n = (A_1 + A_2 \cdot n + A_2 \cdot n^2 + \cdots + A_{k-1} \cdot n^{k-1}) \cdot R^n$, for all k equal roots

Exan	nple	e (F	-in	din	gν	'alue	of	n	× r	ı D	ete	erminant)
$D_n =$	2 1 0 0 0 0 0 0 0	1 2 1 0 0 0 0 0	0 1 2 1 0 0 0 0	0 0 1 2 0 0 0 0	0 0 1 0 0 0 0	···· ···· ···· ····	0 0 0 1 0 0	0 0 0 2 1 0 0	0 0 0 1 2 1 0	0 0 0 0 1 2 1	0 0 0 0 0 1 2	, for $n \ge 1$.

Aritra Hazra (CSE, IITKGP)

Autumn 2020 20 / 36

Example (Finding Value of $n \times n$ Determinant)												
$D_n =$	2 1 0 0 0 0 0 0	1 2 1 0 0 0 0 0 0	0 1 2 1 0 0 0 0	0 0 1 2 0 0 0 0 0	0 0 1 0 0 0 0	···· ···· ···· ····	0 0 0 1 0 0 0	0 0 0 2 1 0 0	0 0 0 1 2 1 0	0 0 0 0 1 2 1	0 0 0 0 0 1 2	, for $n \ge 1$.
$D_1 =$	2 =	= 2,	D ₂	=	2 1	1 =	= 3,	D ₃	=	2 1 0	1 2 1	$\begin{vmatrix} 0\\1\\2 \end{vmatrix} = 4$ and

Aritra Hazra (CSE, IITKGP)

Example (Finding Value of $n \times n$ Determinant)															
	2	1	0	0	0		0	0	0	0	0				
	1	2	1	0	0		0	0	0	0	0				
	0	1	2	1	0		0	0	0	0	0				
	0	0	1	2	1		0	0	0	0	0				
$D_n =$								1	1.1			, for $n \geq 1$.			
	0	0	0	0	0		1	2	1	0	0				
	0	0	0	0	0		0	1	2	1	0				
	0	0	0	0	0		0	0	1	2	1				
	0	0	0	0	0		0	0	0	1	2				
											1	0			
$D_1 =$	$D_1 = 2 = 2, D_2 = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3, D_3 = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix}$							D_3	=	1	2	1 = 4 and			
										0	1	2			
Recurrence Relation: $D_n = 2D_{n-1} - D_{n-2} (n \ge 3)^{\prime}$															

Example (Finding Value of $n \times n$ Determinant) $D_1 = |2| = 2, D_2 = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3, D_3 = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 4$ and Recurrence Relation: $D_n = 2D_{n-1} - D_{n-2}$ (n > 3)Equal Real Roots: R = 1Solution: $D_n = (A_1 + A_2.n) \cdot 1^n = (A_1 + A_2.n)$ Constants: $2 = D_1 = A_1 + A_2$; $3 = D_2 = A_1 + 2A_2 \implies A_1 = A_2 = 1$

Aritra Hazra (CSE, IITKGP)

Example (Finding Value of $n \times n$ Determinant) $D_1 = |2| = 2, D_2 = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3, D_3 = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 4$ and Recurrence Relation: $D_n = 2D_{n-1} - D_{n-2}$ (n > 3)Equal Real Roots: R = 1Solution: $D_n = (A_1 + A_2.n) \cdot 1^n = (A_1 + A_2.n)$ Constants: $2 = D_1 = A_1 + A_2$; $3 = D_2 = A_1 + 2A_2 \implies A_1 = A_2 = 1$

Therefore, $D_n = 1 + n$, $n \ge 1$

Aritra Hazra (CSE, IITKGP)

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} + \dots + C_k.t_{n-k} = f(n) = 0$, for $n \ge k$ where the order $k \in \mathbb{Z}^+$, $C_0(\ne 0)$, $C_1, C_2, \dots, C_k(\ne 0)$ are real constants, and t_n $(n \ge 0)$ be a discrete function. $(f(n) \ne 0$ for non-homogeneous)

Boundary Condition: $t_j = D_j$, for each $0 \le j \le k - 1$ and every D_j is a constant

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} + \dots + C_{k.t_{n-k}} = f(n) = 0$, for $n \ge k$ where the order $k \in \mathbb{Z}^+$, $C_0(\ne 0)$, C_1 , C_2 , ..., $C_k(\ne 0)$ are real constants, and t_n $(n \ge 0)$ be a discrete function. $(f(n) \ne 0$ for non-homogeneous) Boundary Condition: $t_j = D_j$, for each $0 \le j \le k - 1$ and every D_j is a constant Characteristic Equation: Seeking a solution as, $t_n = c.x^n$ $(c, x \ne 0)$ After substitution, $C_0.c.x^n + C_{1.c.x^{n-1}} + \dots + C_{k.c.x^{n-k}} = 0$ Since $c, x \ne 0$, so $C_0.x^k + C_{1.x}x^{k-1} + \dots + C_{k-1.x} + C_k = 0$

General Form: $C_{0.t_n} + C_{1.t_{n-1}} + C_{2.t_{n-2}} + \dots + C_{k.t_{n-k}} = f(n) = 0$, for $n \ge k$ where the order $k \in \mathbb{Z}^+$, $C_0(\ne 0)$, C_1 , C_2 , ..., $C_k(\ne 0)$ are real constants, and t_n $(n \ge 0)$ be a discrete function. $(f(n) \ne 0$ for non-homogeneous) Boundary Condition: $t_j = D_j$, for each $0 \le j \le k - 1$ and every D_j is a constant Characteristic Equation: Seeking a solution as, $t_n = c.x^n$ $(c, x \ne 0)$ After substitution, $C_0.c.x^n + C_1.c.x^{n-1} + \dots + C_k.c.x^{n-k} = 0$ Since $c, x \ne 0$, so $C_0.x^k + C_1.x^{k-1} + \dots + C_{k-1}.x + C_k = 0$ Characteristic Roots: k roots as, R_1, R_2, \dots, R_k , such that

 $C_0.R_i^k + C_1.R_i^{k-1} + \dots + C_{k-1}.R_i + C_k = 0$, where $1 \le i \le k$

General Form: $C_{0}.t_{n} + C_{1}.t_{n-1} + C_{2}.t_{n-2} + \dots + C_{k}.t_{n-k} = f(n) = 0$, for $n \ge k$ where the order $k \in \mathbb{Z}^{+}$, $C_{0}(\ne 0)$, $C_{1}, C_{2}, \dots, C_{k}(\ne 0)$ are real constants, and t_{n} $(n \ge 0)$ be a discrete function. $(f(n) \ne 0$ for non-homogeneous) Boundary Condition: $t_{j} = D_{j}$, for each $0 \le j \le k - 1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n} = c.x^{n}$ $(c, x \ne 0)$ After substitution, $C_{0}.c.x^{n} + C_{1}.c.x^{n-1} + \dots + C_{k}.c.x^{n-k} = 0$ Since $c, x \ne 0$, so $C_{0}.x^{k} + C_{1}.x^{k-1} + \dots + C_{k-1}.x + C_{k} = 0$ Characteristic Roots: k roots as, $R_{1}, R_{2}, \dots, R_{k}$, such that $C_{0}.R_{i}^{k} + C_{1}.R_{i}^{k-1} + \dots + C_{k-1}.R_{i} + C_{k} = 0$, where $1 \le i \le k$

Classification of Roots: $(u + 2v + w = k \text{ and } 1 \le \alpha_i, \beta_i, \beta_i', \gamma_i \le k)$

General Form: $C_{0}.t_{n} + C_{1}.t_{n-1} + C_{2}.t_{n-2} + \dots + C_{k}.t_{n-k} = f(n) = 0$, for $n \ge k$ where the order $k \in \mathbb{Z}^{+}$, $C_{0}(\ne 0)$, C_{1} , C_{2} , ..., $C_{k}(\ne 0)$ are real constants, and t_{n} $(n \ge 0)$ be a discrete function. $(f(n) \ne 0$ for non-homogeneous) Boundary Condition: $t_{j} = D_{j}$, for each $0 \le j \le k - 1$ and every D_{j} is a constant Characteristic Equation: Seeking a solution as, $t_{n} = c.x^{n}$ $(c, x \ne 0)$ After substitution, $C_{0}.c.x^{n} + C_{1}.c.x^{n-1} + \dots + C_{k}.c.x^{n-k} = 0$ Since $c, x \ne 0$, so $C_{0}.x^{k} + C_{1}.x^{k-1} + \dots + C_{k-1}.x + C_{k} = 0$ Characteristic Roots: k roots as, $R_{1}, R_{2}, \dots, R_{k}$, such that $C_{0}.R_{i}^{k} + C_{1}.R_{i}^{k-1} + \dots + C_{k-1}.R_{i} + C_{k} = 0$, where $1 \le i \le k$ Classification of Roots: $(u + 2v + w = k \text{ and } 1 \le \alpha_{i}, \beta_{i}, \beta'_{i}, \gamma_{i} \le k)$ **a** Real Distinct Roots: u such roots, $R_{\alpha_{1}}, R_{\alpha_{2}}, \dots, R_{\alpha_{N}}$

General Form: $C_{0} \cdot t_{n} + C_{1} \cdot t_{n-1} + C_{2} \cdot t_{n-2} + \cdots + C_{k} \cdot t_{n-k} = f(n) = 0$, for n > kwhere the order $k \in \mathbb{Z}^+$, $C_0 \neq 0$, $C_1, C_2, \ldots, C_k \neq 0$ are real constants, and t_n ($n \ge 0$) be a discrete function. ($f(n) \ne 0$ for non-homogeneous) Boundary Condition: $t_i = D_i$, for each $0 \le j \le k - 1$ and every D_i is a constant Characteristic Equation: Seeking a solution as, $t_n = c.x^n$ ($c, x \neq 0$) After substitution, $C_0.c.x^n + C_1.c.x^{n-1} + \cdots + C_k.c.x^{n-k} = 0$ Since $c, x \neq 0$, so $C_{0,x}^{k} + C_{1,x}^{k-1} + \dots + C_{k-1,x} + C_{k} = 0$ Characteristic Roots: k roots as, R_1, R_2, \ldots, R_k , such that $C_0.R_i^k + C_1.R_i^{k-1} + \dots + C_{k-1}.R_i + C_k = 0$, where $1 \le i \le k$ Classification of Roots: $(u + 2v + w = k \text{ and } 1 < \alpha_i, \beta_i, \beta'_i, \gamma_i < k)$ 1 Real Distinct Roots: u such roots, $R_{\alpha_1}, R_{\alpha_2}, \ldots, R_{\alpha_m}$ Complex Conjugate Pair Roots: v such root pairs, $\langle R_{\beta_1}, R_{\beta'_1} \rangle, \langle R_{\beta_2}, R_{\beta'_2} \rangle, \dots, \langle R_{\beta_v}, R_{\beta'_v} \rangle$ having the form, $\langle R_{\beta_l}, R_{\beta_l'} \rangle = x_l \pm iy_l = r_l(\cos\theta_l \pm i\sin\theta_l)$, where $r_l = \sqrt{x_l^2 + y_l^2}$, $\theta_l = \tan^{-1}(\frac{y_l}{x_l})$

General Form: $C_{0} \cdot t_{n} + C_{1} \cdot t_{n-1} + C_{2} \cdot t_{n-2} + \cdots + C_{k} \cdot t_{n-k} = f(n) = 0$, for n > kwhere the order $k \in \mathbb{Z}^+$, $C_0 \neq 0$, $C_1, C_2, \ldots, C_k \neq 0$ are real constants, and t_n ($n \ge 0$) be a discrete function. ($f(n) \ne 0$ for non-homogeneous) Boundary Condition: $t_i = D_i$, for each $0 \le j \le k - 1$ and every D_i is a constant Characteristic Equation: Seeking a solution as, $t_n = c.x^n$ ($c, x \neq 0$) After substitution, $C_0.c.x^n + C_1.c.x^{n-1} + \cdots + C_k.c.x^{n-k} = 0$ Since $c, x \neq 0$, so $C_{0,x}^{k} + C_{1,x}^{k-1} + \dots + C_{k-1,x} + C_{k} = 0$ Characteristic Roots: k roots as, R_1, R_2, \ldots, R_k , such that $C_0.R_i^k + C_1.R_i^{k-1} + \dots + C_{k-1}.R_i + C_k = 0$, where $1 \le i \le k$ Classification of Roots: $(u + 2v + w = k \text{ and } 1 < \alpha_i, \beta_i, \beta'_i, \gamma_i < k)$ 1 Real Distinct Roots: u such roots, $R_{\alpha_1}, R_{\alpha_2}, \ldots, R_{\alpha_n}$ Complex Conjugate Pair Roots: v such root pairs, $\langle R_{\beta_1}, R_{\beta'_1} \rangle, \langle R_{\beta_2}, R_{\beta'_2} \rangle, \dots, \langle R_{\beta_v}, R_{\beta'_v} \rangle$ having the form, $\langle R_{\beta_l}, R_{\beta'_l} \rangle = x_l \pm iy_l = r_l (\cos \theta_l \pm i \sin \theta_l)$, where $r_l = \sqrt{x_l^2 + y_l^2}$, $\theta_l = \tan^{-1}(\frac{y_l}{x_l})$ So Real Equal Roots: w such roots, $R_{\gamma} = R_{\gamma_1} = R_{\gamma_2} = \cdots = R_{\gamma_w}$

General Form: $C_{0} \cdot t_{n} + C_{1} \cdot t_{n-1} + C_{2} \cdot t_{n-2} + \cdots + C_{k} \cdot t_{n-k} = f(n) = 0$, for n > kwhere the order $k \in \mathbb{Z}^+$, $C_0 \neq 0$, $C_1, C_2, \ldots, C_k \neq 0$ are real constants, and t_n ($n \ge 0$) be a discrete function. ($f(n) \ne 0$ for non-homogeneous) Boundary Condition: $t_i = D_i$, for each $0 \le j \le k - 1$ and every D_i is a constant Characteristic Equation: Seeking a solution as, $t_n = c.x^n$ ($c, x \neq 0$) After substitution, $C_0.c.x^n + C_1.c.x^{n-1} + \cdots + C_k.c.x^{n-k} = 0$ Since $c, x \neq 0$, so $C_{0,x}^{k} + C_{1,x}^{k-1} + \dots + C_{k-1,x} + C_{k} = 0$ Characteristic Roots: k roots as, R_1, R_2, \ldots, R_k , such that $C_0.R_i^k + C_1.R_i^{k-1} + \dots + C_{k-1}.R_i + C_k = 0$, where $1 \le i \le k$ Classification of Roots: $(u + 2v + w = k \text{ and } 1 \le \alpha_i, \beta_i, \beta'_i, \gamma_i \le k)$ 1 Real Distinct Roots: u such roots, $R_{\alpha_1}, R_{\alpha_2}, \ldots, R_{\alpha_n}$ Complex Conjugate Pair Roots: v such root pairs, $\langle R_{\beta_1}, R_{\beta'_1} \rangle, \langle R_{\beta_2}, R_{\beta'_2} \rangle, \dots, \langle R_{\beta_v}, R_{\beta'_v} \rangle$ having the form, $\langle R_{\beta_l}, R_{\beta_l'} \rangle = x_l \pm iy_l = r_l(\cos\theta_l \pm i\sin\theta_l)$, where $r_l = \sqrt{x_l^2 + y_l^2}$, $\theta_l = \tan^{-1}(\frac{y_l}{x_l})$ So Real Equal Roots: w such roots, $R_{\gamma} = R_{\gamma_1} = R_{\gamma_2} = \cdots = R_{\gamma_w}$ Generic Solution: $t_n = \sum_{l=1}^{n} A_{\alpha_l} \cdot R_{\alpha_l}^n + \sum_{l=1}^{n} (A_{\beta_l} \cdot R_{\beta_l}^n + A_{\beta_l'} \cdot R_{\beta_l'}^n) + R_{\gamma}^n \cdot \sum_{l=1}^{w} A_{\gamma_l} \cdot n^{l-1}$

Aritra Hazra (CSE, IITKGP)

General Form: $C_{0} \cdot t_{n} + C_{1} \cdot t_{n-1} + C_{2} \cdot t_{n-2} + \cdots + C_{k} \cdot t_{n-k} = f(n) = 0$, for n > kwhere the order $k \in \mathbb{Z}^+$, $C_0 \neq 0$, $C_1, C_2, \ldots, C_k \neq 0$ are real constants, and t_n ($n \ge 0$) be a discrete function. ($f(n) \ne 0$ for non-homogeneous) Boundary Condition: $t_i = D_i$, for each $0 \le j \le k - 1$ and every D_i is a constant Characteristic Equation: Seeking a solution as, $t_n = c.x^n$ ($c, x \neq 0$) After substitution, $C_0.c.x^n + C_1.c.x^{n-1} + \cdots + C_k.c.x^{n-k} = 0$ Since $c, x \neq 0$, so $C_{0,x}^{k} + C_{1,x}^{k-1} + \dots + C_{k-1,x} + C_{k} = 0$ Characteristic Roots: k roots as, R_1, R_2, \ldots, R_k , such that $C_0.R_i^k + C_1.R_i^{k-1} + \dots + C_{k-1}.R_i + C_k = 0$, where $1 \le i \le k$ Classification of Roots: $(u + 2v + w = k \text{ and } 1 < \alpha_i, \beta_i, \beta'_i, \gamma_i < k)$ 1 Real Distinct Roots: u such roots, $R_{\alpha_1}, R_{\alpha_2}, \ldots, R_{\alpha_n}$ Complex Conjugate Pair Roots: v such root pairs, $\langle R_{\beta_1}, R_{\beta'_1} \rangle, \langle R_{\beta_2}, R_{\beta'_2} \rangle, \dots, \langle R_{\beta_v}, R_{\beta'_v} \rangle$ having the form, $\langle \mathbf{R}_{\beta_l}, \mathbf{R}_{\beta'_l} \rangle = x_l \pm i y_l = r_l (\cos \theta_l \pm i \sin \theta_l)$, where $r_l = \sqrt{x_l^2 + y_l^2}$, $\theta_l = \tan^{-1}(\frac{y_l}{x_l})$ So Real Equal Roots: w such roots, $R_{\gamma} = R_{\gamma_1} = R_{\gamma_2} = \cdots = R_{\gamma_w}$ Generic Solution: $t_n = \sum_{l=1}^{n} A_{\alpha_l} \cdot R_{\alpha_l}^n + \sum_{l=1}^{n} \left(A_{\beta_l} \cdot R_{\beta_l}^n + A_{\beta_l'} \cdot R_{\beta_l'}^n \right) + R_{\gamma}^n \cdot \sum_{l=1}^{n} A_{\gamma_l} \cdot n^{l-1}$ $=\sum_{l=1}^{n}A_{\alpha_{l}}R_{\alpha_{l}}^{n}+\sum_{l=1}^{n}r_{l}^{n}\left(B_{\beta_{l}}\cos n\theta_{l}+B_{\beta_{l}^{\prime}}\sin n\theta_{l}\right)+R_{\gamma}^{n}\sum_{l=1}^{n}A_{\gamma_{l}}n^{l-1}$

- ロ ト - (同 ト - - 三 ト - - 三 ト

General Form: $C_{0} \cdot t_{n} + C_{1} \cdot t_{n-1} + C_{2} \cdot t_{n-2} + \cdots + C_{k} \cdot t_{n-k} = f(n) = 0$, for n > kwhere the order $k \in \mathbb{Z}^+$, $C_0 \neq 0$, $C_1, C_2, \ldots, C_k \neq 0$ are real constants, and t_n ($n \ge 0$) be a discrete function. ($f(n) \ne 0$ for non-homogeneous) Boundary Condition: $t_i = D_i$, for each $0 \le j \le k - 1$ and every D_i is a constant Characteristic Equation: Seeking a solution as, $t_n = c.x^n$ ($c, x \neq 0$) After substitution, $C_0.c.x^n + C_1.c.x^{n-1} + \cdots + C_k.c.x^{n-k} = 0$ Since $c, x \neq 0$, so $C_{0,x}^{k} + C_{1,x}^{k-1} + \dots + C_{k-1,x} + C_{k} = 0$ Characteristic Roots: k roots as, R_1, R_2, \ldots, R_k , such that $C_0.R_i^k + C_1.R_i^{k-1} + \dots + C_{k-1}.R_i + C_k = 0$, where $1 \le i \le k$ Classification of Roots: $(u + 2v + w = k \text{ and } 1 < \alpha_i, \beta_i, \beta'_i, \gamma_i < k)$ 1 Real Distinct Roots: u such roots, $R_{\alpha_1}, R_{\alpha_2}, \ldots, R_{\alpha_n}$ Complex Conjugate Pair Roots: v such root pairs, $\langle R_{\beta_1}, R_{\beta'_1} \rangle, \langle R_{\beta_2}, R_{\beta'_2} \rangle, \dots, \langle R_{\beta_v}, R_{\beta'_v} \rangle$ having the form, $\langle \mathbf{R}_{\beta_l}, \mathbf{R}_{\beta'_l} \rangle = \mathbf{x}_l \pm i\mathbf{y}_l = r_l(\cos\theta_l \pm i\sin\theta_l)$, where $r_l = \sqrt{\mathbf{x}_l^2 + \mathbf{y}_l^2}, \theta_l = \tan^{-1}(\frac{y_l}{\mathbf{x}_l})$ So Real Equal Roots: w such roots, $R_{\gamma} = R_{\gamma_1} = R_{\gamma_2} = \cdots = R_{\gamma_w}$ Generic Solution: $t_n = \sum_{l=1}^{n} A_{\alpha_l} \cdot R_{\alpha_l}^n + \sum_{l=1}^{n} \left(A_{\beta_l} \cdot R_{\beta_l}^n + A_{\beta_l'} \cdot R_{\beta_l'}^n \right) + R_{\gamma}^n \cdot \sum_{l=1}^{n} A_{\gamma_l} \cdot n^{l-1}$ $=\sum_{l=1}^{n}A_{\alpha_{l}}R_{\alpha_{l}}^{n}+\sum_{l=1}^{n}r_{l}^{n}\left(B_{\beta_{l}}\cos n\theta_{l}+B_{\beta_{l}'}\sin n\theta_{l}\right)+R_{\gamma}^{n}\sum_{l=1}^{n}A_{\gamma_{l}}n^{l-1}$ $(A_{\alpha_l}, A_{\beta_l}, A_{\beta_l}, A_{\gamma_l}, B_{\beta_l}, B_{\beta_l})$ are constants and $B_{\beta_l} = A_{\beta_l} + A_{\beta_l}, B_{\beta_l} = i(A_{\beta_l} - A_{\beta_k}), i = \sqrt{-1}$ Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 21/36

Example (Tiling Problem)

Let, t_n = number of ways to tile $2 \times n$ ($n \in \mathbb{Z}^+$) chessboard Tile Types: one *L*-shaped and one 1×1

Example (Tiling Problem)

Let, t_n = number of ways to tile $2 \times n$ ($n \in \mathbb{Z}^+$) chessboard Tile Types: one *L*-shaped and one 1×1

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020 22 / 36

Example (Tiling Problem)

Let, t_n = number of ways to tile $2 \times n$ ($n \in \mathbb{Z}^+$) chessboard Tile Types: one *L*-shaped and one 1×1

Recurrence Relation: $t_n = t_{n-1} + 4t_{n-2} + 2t_{n-3}$ $(n \ge 4)$ and $t_1 = 1, t_2 = 5, t_3 = 11$

Example (Tiling Problem)

Let, t_n = number of ways to tile $2 \times n$ ($n \in \mathbb{Z}^+$) chessboard Tile Types: one *L*-shaped and one 1×1

Aritra Hazra (CSE, IITKGP)

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C.t_{n-1} = K.B^n$ $(n \ge 1)$ and $t_0 = D$ (Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants)

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C.t_{n-1} = K.B^n$ $(n \ge 1)$ and $t_0 = D$ (Here, $B(\ne 0), C(\ne 0), D, K$ are all arbitrary constants)

Homogeneous Solution Part: $t_n^{(h)} = A.(-C)^n$ (A is an arbitrary constant)

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C.t_{n-1} = K.B^n \ (n \ge 1)$ and $t_0 = D$ (Here, $B(\ne 0), C(\ne 0), D, K$ are all arbitrary constants) Homogeneous Solution Part: $t_n^{(h)} = A.(-C)^n$ (A is an arbitrary constant) Particular Solution Part: $t_n^{(p)} = \begin{cases} A_1.B^n, & \text{if } B^n \ne (-C)^n \\ A_2.n.B^n, & \text{if } B^n = (-C)^n \end{cases}$ (A₁, A₂ are constants)

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C.t_{n-1} = K.B^n$ $(n \ge 1)$ and $t_0 = D$ (Here, $B(\ne 0), C(\ne 0), D, K$ are all arbitrary constants) Homogeneous Solution Part: $t_n^{(h)} = A.(-C)^n$ (A is an arbitrary constant) Particular Solution Part: $t_n^{(p)} = \begin{cases} A_{1.B^n}, & \text{if } B^n \ne (-C)^n \\ A_{2.n.B^n}, & \text{if } B^n = (-C)^n \end{cases}$ (A₁, A₂ are constants) Exact Solution: $t_n = t_n^{(h)} + t_n^{(p)} = \begin{cases} A.(-C)^n + A_{1.B^n}, & \text{if } B^n \ne (-C)^n \\ (A + A_{2.n}).B^n, & \text{if } B^n = (-C)^n \end{cases}$

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C.t_{n-1} = K.B^n$ $(n \ge 1)$ and $t_0 = D$ (Here, $B(\ne 0), C(\ne 0), D, K$ are all arbitrary constants) Homogeneous Solution Part: $t_n^{(n)} = A.(-C)^n$ (A is an arbitrary constant) Particular Solution Part: $t_n^{(p)} = \begin{cases} A_1.B^n, & \text{if } B^n \ne (-C)^n \\ A_2.n.B^n, & \text{if } B^n = (-C)^n \end{cases}$ (A₁, A₂ are constants) Exact Solution: $t_n = t_n^{(h)} + t_n^{(p)} = \begin{cases} A.(-C)^n + A_1.B^n, & \text{if } B^n \ne (-C)^n \\ (A + A_2.n).B^n, & \text{if } B^n = (-C)^n \end{cases}$ Constant Determination: $A_1.B^n + C.A_1.B^{n-1} = K.B^n \Rightarrow A_1 = \frac{K.B}{B+C}$ $A_2.n.B^n + C.A_2.(n-1).B^{n-1} = K.B^n \Rightarrow A_2 = K$

< □ > < □ > < □ > < □ > < □ > < □ >

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C \cdot t_{n-1} = K \cdot B^n$ $(n \ge 1)$ and $t_0 = D$ (Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants) Homogeneous Solution Part: $t_n^{(h)} = A \cdot (-C)^n$ (A is an arbitrary constant) Particular Solution Part: $t_n^{(p)} = \begin{cases} A_1.B^n, & \text{if } B^n \neq (-C)^n \\ A_2.n.B^n, & \text{if } B^n = (-C)^n \end{cases}$ (A₁, A₂ are constants) Exact Solution: $t_n = t_n^{(h)} + t_n^{(p)} = \begin{cases} A.(-C)^n + A_1.B^n, & \text{if } B^n \neq (-C)^n \\ (A + A_2, n).B^n, & \text{if } B^n = (-C)^n \end{cases}$ Constant Determination: $A_1.B^n + C.A_1.B^{n-1} = K.B^n \Rightarrow A_1 = \frac{K.B}{B+C}$ $A_2.n.B^n + C.A_2.(n-1).B^{n-1} = K.B^n \Rightarrow A_2 = K$ Finally, $t_0 = D = \begin{cases} A + A_1 \Rightarrow A = \frac{DB + DC - KB}{B + C} \\ A \Rightarrow A = D \end{cases}$

Aritra Hazra (CSE, IITKGP)

イロト イヨト イヨト

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C \cdot t_{n-1} = K \cdot B^n$ $(n \ge 1)$ and $t_0 = D$ (Here, $B(\neq 0), C(\neq 0), D, K$ are all arbitrary constants) Homogeneous Solution Part: $t_n^{(h)} = A \cdot (-C)^n$ (A is an arbitrary constant) Particular Solution Part: $t_n^{(p)} = \begin{cases} A_1.B^n, & \text{if } B^n \neq (-C)^n \\ A_2.n.B^n, & \text{if } B^n = (-C)^n \end{cases}$ (A₁, A₂ are constants) Exact Solution: $t_n = t_n^{(h)} + t_n^{(p)} = \begin{cases} A.(-C)^n + A_1.B^n, & \text{if } B^n \neq (-C)^n \\ (A + A_2.n).B^n, & \text{if } B^n = (-C)^n \end{cases}$ Constant Determination: $A_1.B^n + C.A_1.B^{n-1} = K.B^n \Rightarrow A_1 = \frac{K.B}{B+C}$ $A_2.n.B^n + C.A_2.(n-1).B^{n-1} = K.B^n \Rightarrow A_2 = K$ Finally, $t_0 = D = \begin{cases} A + A_1 \Rightarrow A = \frac{DB + DC - KB}{B + C} \\ A \Rightarrow A = D \end{cases}$ Unique Solution: $t_n = \begin{cases} \left(\frac{DB+DC-KB}{B+C}\right) \cdot (-C)^n + \left(\frac{KB}{B+C}\right)B^n \\ (D+K,n), B^n = (D+K,n), (-C)^n \end{cases}$ $n \ge 1$
Strategy for T_n : Moving *n* disks with 3 pegs requires – (i) twice the movement of (n-1) disks, and (ii) once the movement of the largest disk. Recurrence Relation: $T_n = 2T_{n-1} + 1$ $(n \ge 1)$ and $T_0 = 0$

Strategy for T_n : Moving *n* disks with 3 pegs requires – (i) twice the movement of (n-1) disks, and (ii) once the movement of the largest disk. Recurrence Relation: $T_n = 2T_{n-1} + 1$ $(n \ge 1)$ and $T_0 = 0$ Homogeneous Solution: $T_n^{(h)} = A \cdot 2^n$

Strategy for T_n : Moving *n* disks with 3 pegs requires – (i) twice the movement of (n-1) disks, and (ii) once the movement of the largest disk. Recurrence Relation: $T_n = 2T_{n-1} + 1$ $(n \ge 1)$ and $T_0 = 0$ Homogeneous Solution: $T_n^{(h)} = A.2^n$ Particular Solution: $T_n^{(p)} = A_1.1^n = A_1$, hence $A_1 = 2A_1 + 1 \Rightarrow A_1 = -1$

Strategy for T_n : Moving *n* disks with 3 pegs requires – (i) twice the movement of (n-1) disks, and (ii) once the movement of the largest disk. Recurrence Relation: $T_n = 2T_{n-1} + 1$ $(n \ge 1)$ and $T_0 = 0$ Homogeneous Solution: $T_n^{(h)} = A.2^n$ Particular Solution: $T_n^{(p)} = A_1.1^n = A_1$, hence $A_1 = 2A_1 + 1 \Rightarrow A_1 = -1$ Final Solution: $T_n = A.2^n - 1$, with $T_0 = 0 = A.2^0 - 1 \Rightarrow A = 1$, implying $T_n = 2^n - 1$, $n \ge 0$.

Strategy for T_n : Moving *n* disks with 3 pegs requires – (i) twice the movement of (n-1) disks, and (ii) once the movement of the largest disk. Recurrence Relation: $T_n = 2T_{n-1} + 1$ $(n \ge 1)$ and $T_0 = 0$ Homogeneous Solution: $T_n^{(h)} = A \cdot 2^n$ Particular Solution: $T_n^{(p)} = A_1 \cdot 1^n = A_1$, hence $A_1 = 2A_1 + 1 \Rightarrow A_1 = -1$ Final Solution: $T_n = A \cdot 2^n - 1$, with $T_0 = 0 = A \cdot 2^0 - 1 \Rightarrow A = 1$, implying $T_n = 2^n - 1$, $n \ge 0$.

Example (Comparisons to find Min-Max from 2^n Element Set)

Strategy for M_n : Divide 2^n -element set into two. Find Min-Max from both sets + two comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set. Recurrence Relation: $M_n = 2M_{n-1} + 2$ ($n \ge 2$) and $M_1 = 1$

Strategy for T_n : Moving *n* disks with 3 pegs requires – (i) twice the movement of (n-1) disks, and (ii) once the movement of the largest disk. Recurrence Relation: $T_n = 2T_{n-1} + 1$ $(n \ge 1)$ and $T_0 = 0$ Homogeneous Solution: $T_n^{(h)} = A \cdot 2^n$ Particular Solution: $T_n^{(p)} = A_1 \cdot 1^n = A_1$, hence $A_1 = 2A_1 + 1 \Rightarrow A_1 = -1$ Final Solution: $T_n = A \cdot 2^n - 1$, with $T_0 = 0 = A \cdot 2^0 - 1 \Rightarrow A = 1$, implying $T_n = 2^n - 1$, $n \ge 0$.

Example (Comparisons to find Min-Max from 2^n Element Set)

Strategy for M_n : Divide 2ⁿ-element set into two. Find Min-Max from both sets + two comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set. Recurrence Relation: $M_n = 2M_{n-1} + 2$ ($n \ge 2$) and $M_1 = 1$ Homogeneous Solution: $M_n^{(h)} = A \cdot 2^n$

Strategy for T_n : Moving *n* disks with 3 pegs requires – (i) twice the movement of (n-1) disks, and (ii) once the movement of the largest disk. Recurrence Relation: $T_n = 2T_{n-1} + 1$ $(n \ge 1)$ and $T_0 = 0$ Homogeneous Solution: $T_n^{(h)} = A.2^n$ Particular Solution: $T_n^{(p)} = A_1.1^n = A_1$, hence $A_1 = 2A_1 + 1 \Rightarrow A_1 = -1$ Final Solution: $T_n = A.2^n - 1$, with $T_0 = 0 = A.2^0 - 1 \Rightarrow A = 1$, implying $T_n = 2^n - 1$, $n \ge 0$.

Example (Comparisons to find Min-Max from 2^n Element Set)

Strategy for M_n : Divide 2^n -element set into two. Find Min-Max from both sets + two comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set. Recurrence Relation: $M_n = 2M_{n-1} + 2$ ($n \ge 2$) and $M_1 = 1$ Homogeneous Solution: $M_n^{(h)} = A.2^n$ Particular Solution: $M_n^{(p)} = A_1.1^n = A_1$, hence $A_1 = 2A_1 + 2 \Rightarrow A_1 = -2$

Strategy for T_n : Moving *n* disks with 3 pegs requires – (i) twice the movement of (n-1) disks, and (ii) once the movement of the largest disk. Recurrence Relation: $T_n = 2T_{n-1} + 1$ $(n \ge 1)$ and $T_0 = 0$ Homogeneous Solution: $T_n^{(h)} = A \cdot 2^n$ Particular Solution: $T_n^{(p)} = A_1 \cdot 1^n = A_1$, hence $A_1 = 2A_1 + 1 \Rightarrow A_1 = -1$ Final Solution: $T_n = A \cdot 2^n - 1$, with $T_0 = 0 = A \cdot 2^0 - 1 \Rightarrow A = 1$, implying $T_n = 2^n - 1$, $n \ge 0$.

Example (Comparisons to find Min-Max from 2^n Element Set)

Strategy for M_n : Divide 2ⁿ-element set into two. Find Min-Max from both sets + two comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set. Recurrence Relation: $M_n = 2M_{n-1} + 2$ $(n \ge 2)$ and $M_1 = 1$ Homogeneous Solution: $M_n^{(h)} = A.2^n$ Particular Solution: $M_n^{(p)} = A_1.1^n = A_1$, hence $A_1 = 2A_1 + 2 \Rightarrow A_1 = -2$ Final Solution: $M_n = A.2^n - 2$, with $M_1 = 1 = A.2^1 - 2 \Rightarrow A = \frac{3}{2}$, implying $M_n = (\frac{3}{2}).2^n - 2$, $n \ge 1$.

Example (Strings with Digits containing Even Number of 1s)

 S_n = number of *n*-length strings constructed using $\Sigma = \{0, 1, 2, ..., 9\}$ having even 1s. Two ways to contribute to S_n :

- n^{th} symbol is not 1: S_{n-1} ways for each 9 such cases.
- n^{th} symbol is 1: Odd number of 1s in (n-1)-length part = $(10^{n-1} S_{n-1})$

Example (Strings with Digits containing Even Number of 1s)

 S_n = number of *n*-length strings constructed using $\Sigma = \{0, 1, 2, ..., 9\}$ having even 1s. Two ways to contribute to S_n :

- n^{th} symbol is not 1: S_{n-1} ways for each 9 such cases.
- n^{th} symbol is 1: Odd number of 1s in (n-1)-length part = $(10^{n-1} S_{n-1})$

Recurrence Relation: $S_n = 9S_{n-1} + (10^{n-1} - S_{n-1}) = 8S_{n-1} + 10^{n-1} (n \ge 2)$ and $S_1 = 9$ (all digits except 1)

Example (Strings with Digits containing Even Number of 1s)

 S_n = number of *n*-length strings constructed using $\Sigma = \{0, 1, 2, ..., 9\}$ having even 1s. Two ways to contribute to S_n :

• n^{th} symbol is not 1: S_{n-1} ways for each 9 such cases.

• n^{th} symbol is 1: Odd number of 1s in (n-1)-length part = $(10^{n-1} - S_{n-1})$

Recurrence Relation: $S_n = 9S_{n-1} + (10^{n-1} - S_{n-1}) = 8S_{n-1} + 10^{n-1} (n \ge 2)$ and

 $S_1 = 9$ (all digits except 1)

Homogeneous Solution: $S_n^{(h)} = A.8^n$

Example (Strings with Digits containing Even Number of 1s)

 S_n = number of *n*-length strings constructed using $\Sigma = \{0, 1, 2, ..., 9\}$ having even 1s. Two ways to contribute to S_n :

• n^{th} symbol is not 1: S_{n-1} ways for each 9 such cases.

• n^{th} symbol is 1: Odd number of 1s in (n-1)-length part = $(10^{n-1} - S_{n-1})$

Recurrence Relation: $S_n = 9S_{n-1} + (10^{n-1} - S_{n-1}) = 8S_{n-1} + 10^{n-1} (n \ge 2)$ and $S_1 = 9$ (all digits except 1)

Homogeneous Solution: $S_n^{(h)} = A.8^n$ Particular Solution: $S_n^{(p)} = A_1.10^{n-1}$, hence $10A_1 = 8A_1 + 10 \Rightarrow A_1 = 5$

Example (Strings with Digits containing Even Number of 1s)

 S_n = number of *n*-length strings constructed using $\Sigma = \{0, 1, 2, ..., 9\}$ having even 1s. Two ways to contribute to S_n :

• n^{th} symbol is not 1: S_{n-1} ways for each 9 such cases.

• n^{th} symbol is 1: Odd number of 1s in (n-1)-length part = $(10^{n-1} - S_{n-1})$ Recurrence Relation: $S_n = 9S_{n-1} + (10^{n-1} - S_{n-1}) = 8S_{n-1} + 10^{n-1} (n \ge 2)$ and $S_1 = 9$ (all digits except 1)

 Homogeneous Solution:
 $S_n^{(h)} = A.8^n$

 Particular Solution:
 $S_n^{(p)} = A_1.10^{n-1}$, hence $10A_1 = 8A_1 + 10 \Rightarrow A_1 = 5$

 Final Solution:
 $S_n = A.8^n + 5.10^{n-1}$, with $S_1 = 9 = 8A + 5 \Rightarrow A = \frac{1}{2}$, implying

 $S_n = (\frac{1}{2}).8^n + 5.10^{n-1}$, $n \ge 1$.

Example (Strings with Digits containing Even Number of 1s)

 S_n = number of *n*-length strings constructed using $\Sigma = \{0, 1, 2, ..., 9\}$ having even 1s. Two ways to contribute to S_n :

• n^{th} symbol is not 1: S_{n-1} ways for each 9 such cases.

• n^{th} symbol is 1: Odd number of 1s in (n-1)-length part = $(10^{n-1} - S_{n-1})$ Recurrence Relation: $S_n = 9S_{n-1} + (10^{n-1} - S_{n-1}) = 8S_{n-1} + 10^{n-1} (n \ge 2)$ and $S_1 = 9$ (all digits except 1)

Homogeneous Solution: $S_n^{(n)} = A.8^n$ Particular Solution: $S_n^{(p)} = A_1.10^{n-1}$, hence $10A_1 = 8A_1 + 10 \Rightarrow A_1 = 5$ Final Solution: $S_n = A.8^n + 5.10^{n-1}$, with $S_1 = 9 = 8A + 5 \Rightarrow A = \frac{1}{2}$, implying $S_n = (\frac{1}{2}).8^n + 5.10^{n-1}$, $n \ge 1$.

Example (Edges in Hasse Diagram)

 $\mathcal{P}(\mathcal{S}) = \text{Power Set of } n\text{-element set } S \text{ forming Poset } (\mathcal{P}(\mathcal{S}), \subseteq).$ $E_n = \text{number of edges in Hasse Diagram in poset } (\mathcal{P}(\mathcal{S}), \subseteq)$

Example (Strings with Digits containing Even Number of 1s)

 S_n = number of *n*-length strings constructed using $\Sigma = \{0, 1, 2, ..., 9\}$ having even 1s. Two ways to contribute to S_n :

• n^{th} symbol is not 1: S_{n-1} ways for each 9 such cases.

• n^{th} symbol is 1: Odd number of 1s in (n-1)-length part = $(10^{n-1} - S_{n-1})$ Recurrence Relation: $S_n = 9S_{n-1} + (10^{n-1} - S_{n-1}) = 8S_{n-1} + 10^{n-1} (n \ge 2)$ and $S_1 = 9$ (all digits except 1)

Homogeneous Solution: $S_n^{(n)} = A.8^n$ Particular Solution: $S_n^{(p)} = A_1.10^{n-1}$, hence $10A_1 = 8A_1 + 10 \Rightarrow A_1 = 5$ Final Solution: $S_n = A.8^n + 5.10^{n-1}$, with $S_1 = 9 = 8A + 5 \Rightarrow A = \frac{1}{2}$, implying $S_n = (\frac{1}{2}).8^n + 5.10^{n-1}$, $n \ge 1$.

Example (Edges in Hasse Diagram)

 $\mathcal{P}(\mathcal{S}) = \text{Power Set of } n\text{-element set } S \text{ forming Poset } (\mathcal{P}(\mathcal{S}), \subseteq).$ $E_n = \text{number of edges in Hasse Diagram in poset } (\mathcal{P}(\mathcal{S}), \subseteq)$ Recurrence Relation: $E_{n+1} = 2E_n + 2^n \ (n \ge 1) \text{ and } E_1 = 1$

Example (Strings with Digits containing Even Number of 1s)

 S_n = number of *n*-length strings constructed using $\Sigma = \{0, 1, 2, ..., 9\}$ having even 1s. Two ways to contribute to S_n :

• n^{th} symbol is not 1: S_{n-1} ways for each 9 such cases.

• n^{th} symbol is 1: Odd number of 1s in (n-1)-length part = $(10^{n-1} - S_{n-1})$ Recurrence Relation: $S_n = 9S_{n-1} + (10^{n-1} - S_{n-1}) = 8S_{n-1} + 10^{n-1} (n \ge 2)$ and $S_1 = 9$ (all digits except 1)

Homogeneous Solution: $S_n^{(n)} = A.8^n$ Particular Solution: $S_n^{(p)} = A_1.10^{n-1}$, hence $10A_1 = 8A_1 + 10 \Rightarrow A_1 = 5$ Final Solution: $S_n = A.8^n + 5.10^{n-1}$, with $S_1 = 9 = 8A + 5 \Rightarrow A = \frac{1}{2}$, implying $S_n = (\frac{1}{2}).8^n + 5.10^{n-1}$, $n \ge 1$.

Example (Edges in Hasse Diagram)

 $\begin{array}{l} \mathcal{P}(\mathcal{S}) = \text{Power Set of } n\text{-element set } \mathcal{S} \text{ forming Poset } (\mathcal{P}(\mathcal{S}), \subseteq). \\ E_n = \text{number of edges in Hasse Diagram in poset } (\mathcal{P}(\mathcal{S}), \subseteq) \\ \text{Recurrence Relation:} \quad E_{n+1} = 2E_n + 2^n \ (n \ge 1) \text{ and } E_1 = 1 \\ \text{Solution:} \quad E_n = E_n^{(h)} + E_n^{(p)} = A \cdot 2^n + A_1 \cdot n \cdot 2^n \text{ with } A = 0, A_1 = \frac{1}{2} \\ \text{ implies } E_n = n \cdot 2^{n-1}, \quad n \ge 1 \end{array}$

Example (Area under a Snowflake – Concept of Fractals)

 a_n = area of 3-sided regular polygon after *n* transforms

Example (Area under a Snowflake – Concept of Fractals)

 a_n = area of 3-sided regular polygon after *n* transforms Formulating the Recurrence Relation: $a_0 = \frac{\sqrt{3}}{4}$ (3-s

(3-sided),

Example (Area under a Snowflake – Concept of Fractals)

 a_n = area of 3-sided regular polygon after n transforms Formulating the Recurrence Relation:

$$a_{0} = \frac{\sqrt{3}}{4}$$
(3-sided)
$$a_{1} = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{3}]^{2} = \frac{\sqrt{3}}{3}$$
(4 × 3 = 12-sided)

Example (Area under a Snowflake – Concept of Fractals)

 $\begin{array}{l} a_n = \text{ area of 3-sided regular polygon after } n \text{ transforms} \\ \hline \text{Formulating the Recurrence Relation:} \\ a_0 = \frac{\sqrt{3}}{4} & (3\text{-sided}), \\ a_1 = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{3}]^2 = \frac{\sqrt{3}}{3} & (4 \times 3 = 12\text{-sided}), \\ a_2 = \frac{\sqrt{3}}{3} + 4^1.3.(\frac{\sqrt{3}}{4}).[\frac{1}{32}]^2 = \frac{10\sqrt{3}}{27} & (4^2 \times 3 = 48\text{-sided}) \end{array}$

(Koch's Snowflake, 1904)

Example (Area under a Snowflake – Concept of Fractals)

$$\begin{array}{l} a_n = \text{ area of 3-sided regular polygon after } n \text{ transforms} \\ \hline \text{Formulating the Recurrence Relation:} \\ a_0 = \frac{\sqrt{3}}{4} & (3\text{-sided}), \\ a_1 = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{3}]^2 = \frac{\sqrt{3}}{3} & (4 \times 3 = 12\text{-sided}), \\ a_2 = \frac{\sqrt{3}}{3} + 4^1.3.(\frac{\sqrt{3}}{4}).[\frac{1}{3^2}]^2 = \frac{10\sqrt{3}}{27} & (4^2 \times 3 = 48\text{-sided}) \\ a_3 = \frac{10\sqrt{3}}{27} + 4^2.3.(\frac{\sqrt{3}}{4}).[\frac{1}{3^3}]^2 & (4^3 \times 3 = 192\text{-sided}) \end{array}$$

(Koch's Snowflake, 1904)

Example (Area under a Snowflake – Concept of Fractals)

 $\begin{array}{l} a_n = \text{ area of 3-sided regular polygon after } n \text{ transforms} \\ \hline \text{Formulating the Recurrence Relation:} \\ a_0 = \frac{\sqrt{3}}{4} & (3\text{-sided}), \\ a_1 = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{3}]^2 = \frac{\sqrt{3}}{3} & (4 \times 3 = 12\text{-sided}), \\ a_2 = \frac{\sqrt{3}}{3} + 4^1.3.(\frac{\sqrt{3}}{4}).[\frac{1}{32}]^2 = \frac{10\sqrt{3}}{27} & (4^2 \times 3 = 48\text{-sided}) \\ a_3 = \frac{10\sqrt{3}}{27} + 4^2.3.(\frac{\sqrt{3}}{4}).[\frac{1}{33}]^2 & (4^3 \times 3 = 192\text{-sided}) \\ \hline \text{Recurrence Relation:} \\ a_{n+1} = a_n + 4^n.3.(\frac{\sqrt{3}}{4}).[\frac{1}{3^{n+1}}]^2 = a_n + (\frac{1}{4\sqrt{3}}).(\frac{4}{9})^n & (n \ge 0) \end{array}$

(Koch's Snowflake, 1904)

Example (Area under a Snowflake – Concept of Fractals)

 $\begin{array}{l} a_n = \text{ area of 3-sided regular polygon after } n \text{ transforms} \\ \hline \text{Formulating the Recurrence Relation:} \\ a_0 = \frac{\sqrt{3}}{4} & (3\text{-sided}), \\ a_1 = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{3}]^2 = \frac{\sqrt{3}}{3} & (4 \times 3 = 12\text{-sided}), \\ a_2 = \frac{\sqrt{3}}{3} + 4^1.3.(\frac{\sqrt{3}}{4}).[\frac{1}{32}]^2 = \frac{10\sqrt{3}}{27} & (4^2 \times 3 = 48\text{-sided}) \\ a_3 = \frac{10\sqrt{3}}{27} + 4^2.3.(\frac{\sqrt{3}}{4}).[\frac{1}{33}]^2 & (4^3 \times 3 = 192\text{-sided}) \\ \hline \text{Recurrence Relation:} \\ a_{n+1} = a_n + 4^n.3.(\frac{\sqrt{3}}{4}).[\frac{1}{3^{n+1}}]^2 = a_n + (\frac{1}{4\sqrt{3}}).(\frac{4}{9})^n & (n \ge 0) \\ \hline \text{Solution:} a_n = a_n^{(h)} + a_n^{(p)} = A.1^n + B.(\frac{4}{9})^n = A + B.(\frac{4}{9})^n \end{array}$

(Koch's Snowflake, 1904)

Example (Area under a Snowflake – Concept of Fractals)

 $\begin{array}{l} a_{n} = \text{ area of 3-sided regular polygon after } n \text{ transforms} \\ \hline \text{Formulating the Recurrence Relation:} \\ a_{0} = \frac{\sqrt{3}}{4} & (3-\text{sided}), \\ a_{1} = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{3}]^{2} = \frac{\sqrt{3}}{3} & (4 \times 3 = 12-\text{sided}), \\ a_{2} = \frac{\sqrt{3}}{3} + 4^{1}.3.(\frac{\sqrt{3}}{4}).[\frac{1}{32}]^{2} = \frac{10\sqrt{3}}{27} & (4^{2} \times 3 = 48-\text{sided}) \\ a_{3} = \frac{10\sqrt{3}}{27} + 4^{2}.3.(\frac{\sqrt{3}}{4}).[\frac{1}{33}]^{2} & (4^{3} \times 3 = 192-\text{sided}) \\ \text{Recurrence Relation:} \\ a_{n+1} = a_{n} + 4^{n}.3.(\frac{\sqrt{3}}{4}).[\frac{1}{3^{n+1}}]^{2} = a_{n} + (\frac{1}{4\sqrt{3}}).(\frac{4}{9})^{n} & (n \ge 0) \\ \text{Solution:} a_{n} = a_{n}^{(h)} + a_{n}^{(p)} = A.1^{n} + B.(\frac{4}{9})^{n} = A + B.(\frac{4}{9})^{n} \\ \text{So, } B = (-\frac{9}{5})(\frac{1}{4\sqrt{3}}) & \text{and} \quad a_{n} = A + (-\frac{9}{5})(\frac{1}{4\sqrt{3}})(\frac{4}{9})^{n} = A - (\frac{1}{5\sqrt{3}})(\frac{4}{9})^{n-1} \end{array}$

Example (Area under a Snowflake – Concept of Fractals)

(Koch's Snowflake, 1904) a_n = area of 3-sided regular polygon after *n* transforms Formulating the Recurrence Relation: $a_0 = \frac{\sqrt{3}}{4}$ (3-sided), $a_1 = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{2}]^2 = \frac{\sqrt{3}}{2}$ $(4 \times 3 = 12 \text{-sided}),$ $a_2 = \frac{\sqrt{3}}{2} + 4^1 \cdot 3 \cdot (\frac{\sqrt{3}}{4}) \cdot [\frac{1}{2^2}]^2 = \frac{10\sqrt{3}}{27}$ (4² × 3 = 48-sided) $a_3 = \frac{10\sqrt{3}}{27} + 4^2 \cdot 3 \cdot (\frac{\sqrt{3}}{4}) \cdot [\frac{1}{2^3}]^2$ $(4^3 \times 3 = 192$ -sided) Recurrence Relation: $a_{n+1} = a_n + 4^n \cdot 3 \cdot \left(\frac{\sqrt{3}}{4}\right) \cdot \left[\frac{1}{3^{n+1}}\right]^2 = a_n + \left(\frac{1}{4\sqrt{2}}\right) \cdot \left(\frac{4}{9}\right)^n \quad (n \ge 0)$ Solution: $a_n = a_n^{(h)} + a_n^{(p)} = A \cdot 1^n + B \cdot (\frac{4}{9})^n = A + B \cdot (\frac{4}{9})^n$ So, $B = \left(-\frac{9}{5}\right)\left(\frac{1}{4\sqrt{3}}\right)$ and $a_n = A + \left(-\frac{9}{5}\right)\left(\frac{1}{4\sqrt{3}}\right)\left(\frac{4}{9}\right)^n = A - \left(\frac{1}{5\sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}$ Now, $a_0 = \frac{\sqrt{3}}{4} = A - (\frac{1}{5\sqrt{3}}) \cdot (\frac{4}{9})^{-1} \Rightarrow A = \frac{6}{5\sqrt{3}}$

Example (Area under a Snowflake – Concept of Fractals)

(Koch's Snowflake, 1904) a_n = area of 3-sided regular polygon after *n* transforms Formulating the Recurrence Relation: $a_0 = \frac{\sqrt{3}}{4}$ (3-sided), $a_1 = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{2}]^2 = \frac{\sqrt{3}}{2}$ $(4 \times 3 = 12 \text{-sided}),$ $a_2 = \frac{\sqrt{3}}{2} + 4^1 \cdot 3 \cdot (\frac{\sqrt{3}}{4}) \cdot [\frac{1}{2^2}]^2 = \frac{10\sqrt{3}}{27}$ (4² × 3 = 48-sided) $a_3 = \frac{10\sqrt{3}}{27} + 4^2 \cdot 3 \cdot (\frac{\sqrt{3}}{4}) \cdot [\frac{1}{2^3}]^2$ $(4^3 \times 3 = 192$ -sided) Recurrence Relation: $a_{n+1} = a_n + 4^n \cdot 3 \cdot \left(\frac{\sqrt{3}}{4}\right) \cdot \left[\frac{1}{3^{n+1}}\right]^2 = a_n + \left(\frac{1}{4\sqrt{2}}\right) \cdot \left(\frac{4}{9}\right)^n \quad (n \ge 0)$ Solution: $a_n = a_n^{(h)} + a_n^{(p)} = A \cdot 1^n + B \cdot (\frac{4}{9})^n = A + B \cdot (\frac{4}{9})^n$ So, $B = \left(-\frac{9}{5}\right)\left(\frac{1}{4\sqrt{3}}\right)$ and $a_n = A + \left(-\frac{9}{5}\right)\left(\frac{1}{4\sqrt{3}}\right)\left(\frac{4}{9}\right)^n = A - \left(\frac{1}{5\sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}$ Now, $a_0 = \frac{\sqrt{3}}{4} = A - (\frac{1}{5\sqrt{3}}) \cdot (\frac{4}{9})^{-1} \Rightarrow A = \frac{6}{5\sqrt{3}}$ Finally, $a_n = \frac{6}{5\sqrt{2}} - (\frac{1}{5\sqrt{2}})(\frac{4}{9})^{n-1} = (\frac{1}{5\sqrt{2}})[6 - (\frac{4}{9})^{n-1}], n \ge 0$

Example (Area under a Snowflake – Concept of Fractals)

(Koch's Snowflake, 1904) a_n = area of 3-sided regular polygon after *n* transforms Formulating the Recurrence Relation: $a_0 = \frac{\sqrt{3}}{4}$ (3-sided), $a_1 = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{2}]^2 = \frac{\sqrt{3}}{2}$ $(4 \times 3 = 12 \text{-sided}),$ $a_2 = \frac{\sqrt{3}}{2} + 4^1 \cdot 3 \cdot (\frac{\sqrt{3}}{4}) \cdot [\frac{1}{2^2}]^2 = \frac{10\sqrt{3}}{27}$ $(4^2 \times 3 = 48$ -sided) $a_3 = \frac{10\sqrt{3}}{27} + 4^2 \cdot 3 \cdot (\frac{\sqrt{3}}{4}) \cdot [\frac{1}{2^3}]^2$ $(4^3 \times 3 = 192$ -sided) Recurrence Relation: $a_{n+1} = a_n + 4^n \cdot 3 \cdot \left(\frac{\sqrt{3}}{4}\right) \cdot \left[\frac{1}{3^{n+1}}\right]^2 = a_n + \left(\frac{1}{4\sqrt{2}}\right) \cdot \left(\frac{4}{9}\right)^n \quad (n \ge 0)$ Solution: $a_n = a_n^{(h)} + a_n^{(p)} = A \cdot 1^n + B \cdot (\frac{4}{9})^n = A + B \cdot (\frac{4}{9})^n$ So, $B = \left(-\frac{9}{5}\right)\left(\frac{1}{4\sqrt{3}}\right)$ and $a_n = A + \left(-\frac{9}{5}\right)\left(\frac{1}{4\sqrt{3}}\right)\left(\frac{4}{9}\right)^n = A - \left(\frac{1}{5\sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}$ Now, $a_0 = \frac{\sqrt{3}}{4} = A - (\frac{1}{5\sqrt{3}}) \cdot (\frac{4}{9})^{-1} \Rightarrow A = \frac{6}{5\sqrt{3}}$ Finally, $a_n = \frac{6}{5\sqrt{2}} - (\frac{1}{5\sqrt{2}})(\frac{4}{9})^{n-1} = (\frac{1}{5\sqrt{2}})[6 - (\frac{4}{9})^{n-1}], n \ge 0$

Generalized Recurrence Relations for Area under Regular Polygon Fractals

For 4-sided (unit-length) Regular Polygon:

$$a_{n+1} = a_n + 5^n . 4 . 1 . [\frac{1}{3^{n+1}}]^2 = a_n + (\frac{4}{9}) . (\frac{5}{9})^n$$

Example (Area under a Snowflake – Concept of Fractals)

(Koch's Snowflake, 1904) a_n = area of 3-sided regular polygon after *n* transforms Formulating the Recurrence Relation: $a_0 = \frac{\sqrt{3}}{4}$ (3-sided), $a_1 = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{2}]^2 = \frac{\sqrt{3}}{2}$ $(4 \times 3 = 12$ -sided), $a_2 = \frac{\sqrt{3}}{2} + 4^1 \cdot 3 \cdot (\frac{\sqrt{3}}{4}) \cdot [\frac{1}{2^2}]^2 = \frac{10\sqrt{3}}{27}$ $(4^2 \times 3 = 48 \text{-sided})$ $a_3 = \frac{10\sqrt{3}}{27} + 4^2 \cdot 3 \cdot (\frac{\sqrt{3}}{4}) \cdot [\frac{1}{2^3}]^2$ $(4^3 \times 3 = 192$ -sided) Recurrence Relation: $a_{n+1} = a_n + 4^n \cdot 3 \cdot \left(\frac{\sqrt{3}}{4}\right) \cdot \left[\frac{1}{3^{n+1}}\right]^2 = a_n + \left(\frac{1}{4\sqrt{2}}\right) \cdot \left(\frac{4}{9}\right)^n \quad (n \ge 0)$ Solution: $a_n = a_n^{(h)} + a_n^{(p)} = A \cdot 1^n + B \cdot (\frac{4}{9})^n = A + B \cdot (\frac{4}{9})^n$ So, $B = \left(-\frac{9}{5}\right)\left(\frac{1}{4\sqrt{3}}\right)$ and $a_n = A + \left(-\frac{9}{5}\right)\left(\frac{1}{4\sqrt{3}}\right)\left(\frac{4}{9}\right)^n = A - \left(\frac{1}{5\sqrt{3}}\right)\left(\frac{4}{9}\right)^{n-1}$ Now, $a_0 = \frac{\sqrt{3}}{4} = A - (\frac{1}{5\sqrt{3}}) \cdot (\frac{4}{9})^{-1} \Rightarrow A = \frac{6}{5\sqrt{3}}$ Finally, $a_n = \frac{6}{5\sqrt{2}} - (\frac{1}{5\sqrt{2}})(\frac{4}{9})^{n-1} = (\frac{1}{5\sqrt{2}})[6 - (\frac{4}{9})^{n-1}], n \ge 0$ Generalized Recurrence Relations for Area under Regular Polygon Fractals $a_{n+1} = a_n + 5^n \cdot 4 \cdot 1 \cdot \left[\frac{1}{2n+1}\right]^2 = a_n + \left(\frac{4}{2}\right) \cdot \left(\frac{5}{2}\right)^n$ For 4-sided (unit-length) Regular Polygon:

For k-sided (m-length) Regular Polygon:

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

 $a_{n+1} = a_n + (k+1)^n k \cdot \left[\frac{m^2 \cdot k}{4 \tan(\frac{180^2}{2})}\right] \cdot \left[\frac{1}{3^{n+1}}\right]^2$

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C_1 \cdot t_{n-1} + C_2 \cdot t_{n-2} = K \cdot B^n$ $(n \ge 1)$ and $t_0 = D_0, t_1 = D_1$ (Here, $B(\neq 0), C_1, C_2(\neq 0), D_0, D_1, K$ are all arbitrary constants)

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C_1 \cdot t_{n-1} + C_2 \cdot t_{n-2} = K \cdot B^n$ $(n \ge 1)$ and $t_0 = D_0, t_1 = D_1$ (Here, $B(\neq 0), C_1, C_2(\neq 0), D_0, D_1, K$ are all arbitrary constants)

Homogeneous Solution Part: $(A_1, A_2 \text{ are constants})$

 $t_n^{(h)} = \begin{cases} A_1.R_1^n + A_2.R_2^n, & \text{for distinct roots} \\ (A_1 + A_2.n).R^n, & \text{for equal roots} \end{cases}$

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C_1 \cdot t_{n-1} + C_2 \cdot t_{n-2} = K \cdot B^n$ $(n \ge 1)$ and $t_0 = D_0$, $t_1 = D_1$ (Here, $B(\neq 0), C_1, C_2(\neq 0), D_0, D_1, K$ are all arbitrary constants)

Homogeneous Solution Part: $(A_1, A_2 \text{ are constants})$

 $t_n^{(h)} = \begin{cases} A_1.R_1^n + A_2.R_2^n, & \text{for distinct roots} \\ (A_1 + A_2.n).R^n, & \text{for equal roots} \end{cases}$

Particular Solution Part: (A', A'', A''') are constants)

 $t_n^{(p)} = \begin{cases} A'.B^n, & \text{for distinct roots when } R_1 \neq B \neq R_2 \\ A''.n.B^n, & \text{for distinct roots when } R = R_1 \text{ or } R = R_2 \\ A'.B^n, & \text{for equal roots when } B \neq R \\ A'''.n^2.B^n, & \text{for equal roots when } B = R \end{cases}$

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C_1 \cdot t_{n-1} + C_2 \cdot t_{n-2} = K \cdot B^n$ $(n \ge 1)$ and $t_0 = D_0, t_1 = D_1$ (Here, $B(\ne 0), C_1, C_2(\ne 0), D_0, D_1, K$ are all arbitrary constants)

Homogeneous Solution Part: $(A_1, A_2 \text{ are constants})$

 $t_n^{(h)} = \begin{cases} A_1.R_1^n + A_2.R_2^n, & \text{for distinct roots} \\ (A_1 + A_2.n).R^n, & \text{for equal roots} \end{cases}$

Particular Solution Part: (A', A'', A''') are constants)

$$t_n^{(p)} = \begin{cases} A'.B^n, & \text{for distinct roots when } R_1 \neq B \neq R_2 \\ A''.n.B^n, & \text{for distinct roots when } R = R_1 \text{ or } R = R_2 \\ A'.B^n, & \text{for equal roots when } B \neq R \\ A'''.n^2.B^n, & \text{for equal roots when } B = R \end{cases}$$

Exact Solution:
$$t_n = t_n^{(h)} + t_n^{(p)} = \begin{cases} (A_1.R_1^n + A_2.R_2^n) + A'.B^n, & \text{for distinct roots when } R_1 \neq B \neq R_2 \\ (A_1.R_1^n + A_2.R_2^n) + A''.n.B^n, & \text{for distinct roots when } R = R_1 \text{ or } R = R_2 \\ (A_1 + A_2.n).R^n + A'.B^n, & \text{for equal roots when } B \neq R \\ (A_1 + A_2.n).R^n + A'''.n^2.B^n, & \text{for equal roots when } B = R \end{cases}$$

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C_1 \cdot t_{n-1} + C_2 \cdot t_{n-2} = K \cdot B^n$ $(n \ge 1)$ and $t_0 = D_0, t_1 = D_1$ (Here, $B(\neq 0), C_1, C_2(\neq 0), D_0, D_1, K$ are all arbitrary constants)

Homogeneous Solution Part: $(A_1, A_2 \text{ are constants})$

 $t_n^{(h)} = \begin{cases} A_1.R_1^n + A_2.R_2^n, & \text{for distinct roots} \\ (A_1 + A_2.n).R^n, & \text{for equal roots} \end{cases}$

Particular Solution Part: (A', A'', A''') are constants)

$$t_n^{(\rho)} = \begin{cases} A'.B^n, & \text{for distinct roots when } R_1 \neq B \neq R_2 \\ A''.n.B^n, & \text{for distinct roots when } R = R_1 \text{ or } R = R_2 \\ A'.B^n, & \text{for equal roots when } B \neq R \\ A'''.n^2.B^n, & \text{for equal roots when } B = R \end{cases}$$

Exact Solution:
$$t_n = t_n^{(h)} + t_n^{(p)} = \begin{cases} (A_1.R_1^n + A_2.R_2^n) + A'.B^n, & \text{for distinct roots when } R_1 \neq B \neq R_2 \\ (A_1.R_1^n + A_2.R_2^n) + A''.n.B^n, & \text{for distinct roots when } R = R_1 \text{ or } R = R_2 \\ (A_1 + A_2.n).R^n + A'.B^n, & \text{for equal roots when } B \neq R \\ (A_1 + A_2.n).R^n + A'''.n^2.B^n, & \text{for equal roots when } B = R \end{cases}$$

Constant Determination: Unique Solution:

Left For You as an Exercise! Left For You as an Exercise!

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_n + C_1 \cdot t_{n-1} + C_2 \cdot t_{n-2} = K \cdot B^n$ $(n \ge 1)$ and $t_0 = D_0, t_1 = D_1$ (Here, $B(\neq 0), C_1, C_2(\neq 0), D_0, D_1, K$ are all arbitrary constants)

Homogeneous Solution Part: $(A_1, A_2 \text{ are constants})$

 $t_n^{(h)} = \begin{cases} A_1.R_1^n + A_2.R_2^n, & \text{for distinct roots} \\ (A_1 + A_2.n).R^n, & \text{for equal roots} \end{cases}$

Particular Solution Part: (A', A'', A''') are constants)

$$t_n^{(p)} = \begin{cases} A'.B^n, & \text{for distinct roots when } R_1 \neq B \neq R_2 \\ A''.n.B^n, & \text{for distinct roots when } R = R_1 \text{ or } R = R_2 \\ A'.B^n, & \text{for equal roots when } B \neq R \\ A'''.n^2.B^n, & \text{for equal roots when } B = R \end{cases}$$

Exact Solution:
$$t_n = t_n^{(h)} + t_n^{(p)} = \begin{cases} (A_1.R_1^n + A_2.R_2^n) + A'.B^n, & \text{for distinct roots when } R_1 \neq B \neq R_2 \\ (A_1.R_1^n + A_2.R_2^n) + A''.n.B^n, & \text{for distinct roots when } R = R_1 \text{ or } R = R_2 \\ (A_1 + A_2.n).R^n + A'.B^n, & \text{for equal roots when } B \neq R \\ (A_1 + A_2.n).R^n + A'''.n^2.B^n, & \text{for equal roots when } B = R \end{cases}$$

Constant Determination:	Left For You as an Exercise!
Unique Solution:	Left For You as an Exercise!
Homework:	What happens for Complex Conjugate Pair Roots ?

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$
Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$ Homogeneous Solution: $t_n^{(h)} = A_1.3^n + A_2.1^n = A_1.3^n + A_2$

Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$ Homogeneous Solution: $t_n^{(h)} = A_1.3^n + A_2.1^n = A_1.3^n + A_2$ Particular Solution: $t_n^{(p)} = A.n.1^n = A.n$ Hence, $(n + 2)A - 4(n + 1)A + 3nA = -200 \Rightarrow A = 100$

Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$ Homogeneous Solution: $t_n^{(h)} = A_1.3^n + A_2.1^n = A_1.3^n + A_2$ Particular Solution: $t_n^{(p)} = A.n.1^n = A.n$ Hence, $(n + 2)A - 4(n + 1)A + 3nA = -200 \Rightarrow A = 100$ Final Solution: $t_n = A_1.3^n + A_2 + 100n = 100.3^n + 2900 + 100n, n \ge 0$ (as $t_0 = 3000 = A_1 + A_2, t_1 = 3300 = 3.A_1 + A_2 + 100$ produces $A_1 = 100, A_2 = 2900$)

Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$ Homogeneous Solution: $t_n^{(h)} = A_1.3^n + A_2.1^n = A_1.3^n + A_2$ Particular Solution: $t_n^{(p)} = A.n.1^n = A.n$ Hence, $(n + 2)A - 4(n + 1)A + 3nA = -200 \Rightarrow A = 100$ Final Solution: $t_n = A_1.3^n + A_2 + 100n = 100.3^n + 2900 + 100n, n \ge 0$ (as $t_0 = 3000 = A_1 + A_2, t_1 = 3300 = 3.A_1 + A_2 + 100$ produces $A_1 = 100, A_2 = 2900$)

Example (Total Additions to Compute Fibonacci Number)

 a_n = total number of additions to compute n^{th} Fibonacci number

• □ > • □ > • □ > •

Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$ Homogeneous Solution: $t_n^{(h)} = A_1.3^n + A_2.1^n = A_1.3^n + A_2$ Particular Solution: $t_n^{(p)} = A.n.1^n = A.n$ Hence, $(n + 2)A - 4(n + 1)A + 3nA = -200 \Rightarrow A = 100$ Final Solution: $t_n = A_1.3^n + A_2 + 100n = 100.3^n + 2900 + 100n, n \ge 0$ (as $t_0 = 3000 = A_1 + A_2, t_1 = 3300 = 3.A_1 + A_2 + 100$ produces $A_1 = 100, A_2 = 2900$)

Example (Total Additions to Compute Fibonacci Number)

 $a_n =$ total number of additions to compute n^{th} Fibonacci number Recurrence Relation: $a_n = a_{n-1} + a_{n-2} + 1$ $(n \ge 2)$ and $a_0 = a_1 = 0$ (initial cases)

Image: A image: A

Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$ Homogeneous Solution: $t_n^{(h)} = A_1.3^n + A_2.1^n = A_1.3^n + A_2$ Particular Solution: $t_n^{(p)} = A.n.1^n = A.n$ Hence, $(n + 2)A - 4(n + 1)A + 3nA = -200 \Rightarrow A = 100$ Final Solution: $t_n = A_1.3^n + A_2 + 100n = 100.3^n + 2900 + 100n, n \ge 0$ (as $t_0 = 3000 = A_1 + A_2, t_1 = 3300 = 3.A_1 + A_2 + 100$ produces $A_1 = 100, A_2 = 2900$)

Example (Total Additions to Compute Fibonacci Number)

 $a_n = \text{total number of additions to compute } n^{th}$ Fibonacci number Recurrence Relation: $a_n = a_{n-1} + a_{n-2} + 1$ $(n \ge 2)$ and $a_0 = a_1 = 0$ (initial cases) Homogeneous Solution: $a_n^{(h)} = A_1 \cdot (\frac{1+\sqrt{5}}{2})^n + A_2 \cdot (\frac{1-\sqrt{5}}{2})^n$

< □ > < □ > < □ > < □ > < □ >

Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$ Homogeneous Solution: $t_n^{(h)} = A_1.3^n + A_2.1^n = A_1.3^n + A_2$ Particular Solution: $t_n^{(p)} = A.n.1^n = A.n$ Hence, $(n + 2)A - 4(n + 1)A + 3nA = -200 \Rightarrow A = 100$ Final Solution: $t_n = A_1.3^n + A_2 + 100n = 100.3^n + 2900 + 100n, n \ge 0$ (as $t_0 = 3000 = A_1 + A_2, t_1 = 3300 = 3.A_1 + A_2 + 100$ produces $A_1 = 100, A_2 = 2900$)

Example (Total Additions to Compute Fibonacci Number)

 $\begin{array}{l} a_n = \text{total number of additions to compute } n^{th} \text{ Fibonacci number} \\ \text{Recurrence Relation:} \quad a_n = a_{n-1} + a_{n-2} + 1 \ (n \geq 2) \ \text{and} \ a_0 = a_1 = 0 \ (\text{initial cases}) \\ \text{Homogeneous Solution:} \quad a_n^{(h)} = A_1.(\frac{1+\sqrt{5}}{2})^n + A_2.(\frac{1-\sqrt{5}}{2})^n \\ \text{Particular Solution:} \quad a_n^{(p)} = A.1^n = A, \quad \text{hence } A = A + A + 1 \Rightarrow A = -1 \end{array}$

・ロト ・四ト ・ヨト

Example (Solve: $t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$ Homogeneous Solution: $t_n^{(h)} = A_1.3^n + A_2.1^n = A_1.3^n + A_2$ Particular Solution: $t_n^{(p)} = A.n.1^n = A.n$ Hence, $(n + 2)A - 4(n + 1)A + 3nA = -200 \Rightarrow A = 100$ Final Solution: $t_n = A_1.3^n + A_2 + 100n = 100.3^n + 2900 + 100n, n \ge 0$ (as $t_0 = 3000 = A_1 + A_2, t_1 = 3300 = 3.A_1 + A_2 + 100$ produces $A_1 = 100, A_2 = 2900$)

Example (Total Additions to Compute Fibonacci Number)

 $\begin{array}{l} a_{n} = \text{total number of additions to compute } n^{th} \text{ Fibonacci number} \\ \text{Recurrence Relation:} & a_{n} = a_{n-1} + a_{n-2} + 1 \ (n \geq 2) \text{ and } a_{0} = a_{1} = 0 \ (\text{initial cases}) \\ \text{Homogeneous Solution:} & a_{n}^{(h)} = A_{1}.(\frac{1+\sqrt{5}}{2})^{n} + A_{2}.(\frac{1-\sqrt{5}}{2})^{n} \\ \text{Particular Solution:} & a_{n}^{(p)} = A.1^{n} = A, \quad \text{hence } A = A + A + 1 \Rightarrow A = -1 \\ \text{Final Solution:} & a_{n} = A_{1}.(\frac{1+\sqrt{5}}{2})^{n} + A_{2}.(\frac{1-\sqrt{5}}{2})^{n} - 1, \quad \text{with } A_{1} = \frac{1+\sqrt{5}}{2\sqrt{5}}, A_{2} = -\frac{1-\sqrt{5}}{2\sqrt{5}}, \\ \Rightarrow a_{n} = (\frac{1+\sqrt{5}}{2\sqrt{5}}).(\frac{1+\sqrt{5}}{2})^{n} - (\frac{1-\sqrt{5}}{2\sqrt{5}}).(\frac{1-\sqrt{5}}{2})^{n} - 1 = \frac{1}{\sqrt{5}}.(\frac{1+\sqrt{5}}{2})^{n+1} - \frac{1}{\sqrt{5}}.(\frac{1-\sqrt{5}}{2})^{n+1} - 1, \quad n \geq 0 \end{array}$

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} + \dots + C_k.t_{n-k} = f(n) \neq 0$, for $n \ge k$ where the order $k \in \mathbb{Z}^+$, $C_0(\neq 0)$, $C_1, C_2, \dots, C_k(\neq 0)$ are real constants.

Boundary Condition: $t_j = D_j$, for each $0 \le j \le k - 1$ and every D_j is a constant

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} + \dots + C_k.t_{n-k} = f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^+$, $C_0(\neq 0), C_1, C_2, \dots, C_k(\neq 0)$ are real constants. Boundary Condition: $t_j = D_j$, for each $0 \leq j \leq k - 1$ and every D_j is a constant Homogeneous Solution: $t_n^{(h)}$ (computed assuming f(n) = 0 as earlier)

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} + \dots + C_k.t_{n-k} = f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^+$, $C_0(\neq 0)$, C_1 , C_2 , ..., $C_k(\neq 0)$ are real constants. Boundary Condition: $t_j = D_j$, for each $0 \leq j \leq k - 1$ and every D_j is a constant Homogeneous Solution: $t_n^{(h)}$ (computed assuming f(n) = 0 as earlier) Particular Solution: Three cases to consider while constructing $t_n^{(p)}$:

General Form: $C_{0}.t_{n} + C_{1}.t_{n-1} + C_{2}.t_{n-2} + \cdots + C_{k}.t_{n-k} = f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^{+}$, $C_{0}(\neq 0)$, $C_{1}, C_{2}, \ldots, C_{k}(\neq 0)$ are real constants. Boundary Condition: $t_{j} = D_{j}$, for each $0 \leq j \leq k - 1$ and every D_{j} is a constant Homogeneous Solution: $t_{n}^{(h)}$ (computed assuming f(n) = 0 as earlier) Particular Solution: Three cases to consider while constructing $t_{n}^{(p)}$:

Format of f(n) is a constant multiple of following table (middle column) and is NOT associated with form of t_n^(h):

Types	Format of $f(n)$	Format for $t_n^{(p)}$
Type-1	$n^m.R^n \ (m \in \mathbb{N}, R \in \mathbb{R})$	$R^n.\left(\sum_{i=0}^m A_i.n^i\right)$
Type-2	$R^n . \sin(n\theta)$ or $R^n . \cos(n\theta)$	$R^n.(A_1.\sin(n\theta) + A_2.\cos(n\theta))$

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} + \dots + C_k.t_{n-k} = f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^+$, $C_0(\neq 0), C_1, C_2, \dots, C_k(\neq 0)$ are real constants. Boundary Condition: $t_j = D_j$, for each $0 \leq j \leq k - 1$ and every D_j is a constant Homogeneous Solution: $t_n^{(h)}$ (computed assuming f(n) = 0 as earlier) Particular Solution: Three cases to consider while constructing $t_n^{(p)}$:

Format of f(n) is a constant multiple of following table (middle column) and is NOT associated with form of t_n^(h):

Types	Format of $f(n)$	Format for $t_n^{(p)}$
Type-1	$n^m.R^n \ (m \in \mathbb{N}, R \in \mathbb{R})$	$R^n.\left(\sum_{i=0}^m A_i.n^i\right)$
Type-2	$R^n . sin(n\theta)$ or $R^n . cos(n\theta)$	$R^n.(A_1.\sin(n\theta) + A_2.\cos(n\theta))$

Format of f(n) is the sum of constant multiples of above table (middle column) and is NOT associated with form of t_n^(h): Take t_n^(p) as the sum of above table entries (right columns)

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} + \dots + C_k.t_{n-k} = f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^+$, $C_0(\neq 0), C_1, C_2, \dots, C_k(\neq 0)$ are real constants. Boundary Condition: $t_j = D_j$, for each $0 \leq j \leq k - 1$ and every D_j is a constant Homogeneous Solution: $t_n^{(h)}$ (computed assuming f(n) = 0 as earlier) Particular Solution: Three cases to consider while constructing $t_n^{(p)}$:

Format of f(n) is a constant multiple of following table (middle column) and is NOT associated with form of t_n^(h):

Types	Format of $f(n)$	Format for $t_n^{(p)}$
Type-1	$n^m.R^n \ (m \in \mathbb{N}, R \in \mathbb{R})$	$R^n.\left(\sum_{i=0}^m A_i.n^i\right)$
Type-2	$R^n . sin(n\theta)$ or $R^n . cos(n\theta)$	$R^n.(A_1.\sin(n\theta) + A_2.\cos(n\theta))$

- Format of f(n) is the sum of constant multiples of above table (middle column) and is NOT associated with form of t_n^(h): Take t_n^(p) as the sum of above table entries (right columns)
- S A summand f'(n) from f(n) is an associated solution in $t_n^{(h)}$:
 - Format of fⁱ(n) is of Type-1 from above table: t^(p)_n ← n^s.t^(p)_n, i.e. multiply with smallest s so that no summand of n^s.fⁱ(n) is associated with t^(h)_n.
 - Format of f'(n) is of Type-2 from above table: Left as Exercisel < .

Example (Distinct Handshakes with *n* Persons)

 H_n = number of total distinct pairwise handshakes among *n* persons.

Example (Distinct Handshakes with *n* Persons)

 H_n = number of total distinct pairwise handshakes among *n* persons. Recurrence Relation: $H_{n+1} = H_n + n (n \ge 2)$ and $H_1 = 0$ (no handshakes with oneself)

Example (Distinct Handshakes with *n* Persons)

 H_n = number of total distinct pairwise handshakes among *n* persons. Recurrence Relation: $H_{n+1} = H_n + n \ (n \ge 2)$ and $H_1 = 0$ (no handshakes with oneself) Homogeneous Solution: $H_n^{(h)} = A \cdot 1^n = A$

Example (Distinct Handshakes with *n* Persons)

 H_n = number of total distinct pairwise handshakes among *n* persons. Recurrence Relation: $H_{n+1} = H_n + n \ (n \ge 2)$ and $H_1 = 0$ (no handshakes with oneself) Homogeneous Solution: $H_n^{(h)} = A \cdot 1^n = A$ Particular Solution: $H_n^{(p)} = n^1 \cdot (A_1 \cdot n + A_0)$ (with A (const.) in $H_n^{(h)}$, $H_n^{(p)} \leftarrow n^1 \cdot H_n^{(p)}$)

Example (Distinct Handshakes with *n* Persons)

 $\begin{array}{l} H_n = \text{number of total distinct pairwise handshakes among } n \text{ persons.} \\ \text{Recurrence Relation:} \quad H_{n+1} = H_n + n \ (n \geq 2) \ \text{and} \ H_1 = 0 \ (\text{no handshakes with oneself}) \\ \text{Homogeneous Solution:} \quad H_n^{(h)} = A.1^n = A \\ \text{Particular Solution:} \quad H_n^{(p)} = n^1.(A_1.n + A_0) \ (\text{with } A \ (\text{const.}) \ \text{in} \ H_n^{(h)}, \ H_n^{(p)} \leftarrow n^1.H_n^{(p)}) \\ \text{Hence,} \ (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + n \quad \Rightarrow A_1 = \frac{1}{2}, A_0 = -\frac{1}{2} \end{array}$

Example (Distinct Handshakes with *n* Persons)

 $\begin{array}{ll} H_n = \text{ number of total distinct pairwise handshakes among } n \text{ persons.} \\ \hline \textbf{Recurrence Relation:} & H_{n+1} = H_n + n \ (n \geq 2) \ \text{and} \ H_1 = 0 \ (\text{no handshakes with oneself}) \\ \hline \textbf{Homogeneous Solution:} & H_n^{(h)} = A.1^n = A \\ \hline \textbf{Particular Solution:} & H_n^{(p)} = n^1.(A_1.n + A_0) \ (\text{with } A \ (\text{const.}) \ \text{in } H_n^{(h)}, \ H_n^{(p)} \leftarrow n^1.H_n^{(p)}) \\ \hline \textbf{Hence,} \ (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + n \ \Rightarrow A_1 = \frac{1}{2}, A_0 = -\frac{1}{2} \\ \hline \textbf{Final Solution:} & H_n = A + \frac{1}{2}.n^2 - \frac{1}{2}.n \ \text{with} \ H_1 = 0 = A, \\ & \text{implying,} \quad H_n = \frac{1}{2}.n^2 - \frac{1}{2}.n = \frac{n(n-1)}{2} = \binom{n}{2}, \quad n \geq 1. \end{array}$

Example (Distinct Handshakes with *n* Persons)

 $\begin{array}{ll} H_n = \text{ number of total distinct pairwise handshakes among } n \text{ persons.} \\ \text{Recurrence Relation:} & H_{n+1} = H_n + n \ (n \geq 2) \text{ and } H_1 = 0 \ (\text{no handshakes with oneself}) \\ \text{Homogeneous Solution:} & H_n^{(h)} = A.1^n = A \\ \text{Particular Solution:} & H_n^{(p)} = n^1.(A_1.n + A_0) \ (\text{with } A \ (\text{const.}) \ \text{in } H_n^{(h)}, \ H_n^{(p)} \leftarrow n^1.H_n^{(p)}) \\ \text{Hence, } (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + n \quad \Rightarrow A_1 = \frac{1}{2}, A_0 = -\frac{1}{2} \\ \text{Final Solution:} & H_n = A + \frac{1}{2}.n^2 - \frac{1}{2}.n, \ \text{with } H_1 = 0 = A, \\ & \text{implying,} \quad H_n = \frac{1}{2}.n^2 - \frac{1}{2}.n = \frac{n(n-1)}{2} = \binom{n}{2}, \quad n \geq 1. \end{array}$

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

 L_n = number of regions formed by *n* non-parallel and non-colinear straight lines.

Example (Distinct Handshakes with *n* Persons)

 $\begin{array}{ll} H_n = \text{ number of total distinct pairwise handshakes among } n \text{ persons.} \\ \text{Recurrence Relation:} & H_{n+1} = H_n + n \ (n \geq 2) \text{ and } H_1 = 0 \ (\text{no handshakes with oneself}) \\ \text{Homogeneous Solution:} & H_n^{(h)} = A.1^n = A \\ \text{Particular Solution:} & H_n^{(p)} = n^1.(A_1.n + A_0) \ (\text{with } A \ (\text{const.}) \ \text{in } H_n^{(h)}, \ H_n^{(p)} \leftarrow n^1.H_n^{(p)}) \\ \text{Hence, } (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + n \quad \Rightarrow A_1 = \frac{1}{2}, A_0 = -\frac{1}{2} \\ \text{Final Solution:} & H_n = A + \frac{1}{2}.n^2 - \frac{1}{2}.n, \ \text{with } H_1 = 0 = A, \\ & \text{implying,} \quad H_n = \frac{1}{2}.n^2 - \frac{1}{2}.n = \frac{n(n-1)}{2} = \binom{n}{2}, \quad n \geq 1. \end{array}$

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

 L_n = number of regions formed by *n* non-parallel and non-colinear straight lines. Recurrence Relation: $L_{n+1} = L_n + (n+1)$ ($n \ge 1$) and $L_0 = 1$ (whole 2-D plane)

Example (Distinct Handshakes with *n* Persons)

 $\begin{array}{ll} H_n = \text{ number of total distinct pairwise handshakes among } n \text{ persons.} \\ \text{Recurrence Relation:} & H_{n+1} = H_n + n \ (n \geq 2) \text{ and } H_1 = 0 \ (\text{no handshakes with oneself}) \\ \text{Homogeneous Solution:} & H_n^{(h)} = A.1^n = A \\ \text{Particular Solution:} & H_n^{(p)} = n^1.(A_1.n + A_0) \ (\text{with } A \ (\text{const.}) \ \text{in } H_n^{(h)}, \ H_n^{(p)} \leftarrow n^1.H_n^{(p)}) \\ \text{Hence, } (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + n \quad \Rightarrow A_1 = \frac{1}{2}, A_0 = -\frac{1}{2} \\ \text{Final Solution:} & H_n = A + \frac{1}{2}.n^2 - \frac{1}{2}.n, \ \text{with } H_1 = 0 = A, \\ & \text{implying,} \quad H_n = \frac{1}{2}.n^2 - \frac{1}{2}.n = \frac{n(n-1)}{2} = \binom{n}{2}, \quad n \geq 1. \end{array}$

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

 L_n = number of regions formed by n non-parallel and non-colinear straight lines. Recurrence Relation: $L_{n+1} = L_n + (n+1)$ $(n \ge 1)$ and $L_0 = 1$ (whole 2-D plane) Homogeneous Solution: $L_n^{(h)} = A \cdot 1^n = A$

Example (Distinct Handshakes with *n* Persons)

 $\begin{array}{ll} H_n = \text{ number of total distinct pairwise handshakes among } n \text{ persons.} \\ \text{Recurrence Relation:} & H_{n+1} = H_n + n \ (n \geq 2) \text{ and } H_1 = 0 \ (\text{no handshakes with oneself}) \\ \text{Homogeneous Solution:} & H_n^{(h)} = A.1^n = A \\ \text{Particular Solution:} & H_n^{(p)} = n^1.(A_1.n + A_0) \ (\text{with } A \ (\text{const.}) \ \text{in } H_n^{(h)}, \ H_n^{(p)} \leftarrow n^1.H_n^{(p)}) \\ \text{Hence, } (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + n \quad \Rightarrow A_1 = \frac{1}{2}, A_0 = -\frac{1}{2} \\ \text{Final Solution:} & H_n = A + \frac{1}{2}.n^2 - \frac{1}{2}.n, \ \text{with } H_1 = 0 = A, \\ & \text{implying,} \quad H_n = \frac{1}{2}.n^2 - \frac{1}{2}.n = \frac{n(n-1)}{2} = \binom{n}{2}, \quad n \geq 1. \end{array}$

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

 L_n = number of regions formed by n non-parallel and non-colinear straight lines. Recurrence Relation: $L_{n+1} = L_n + (n+1)$ $(n \ge 1)$ and $L_0 = 1$ (whole 2-D plane) Homogeneous Solution: $L_n^{(h)} = A \cdot 1^n = A$ Particular Solution: $L_n^{(p)} = n^1 \cdot (A_1 \cdot n + A_0)$ (with A (const.) in $L_n^{(h)}$, $L_n^{(p)} \leftarrow n^1 \cdot L_n^{(p)}$)

Example (Distinct Handshakes with *n* Persons)

 $\begin{array}{ll} H_n = \text{ number of total distinct pairwise handshakes among } n \text{ persons.} \\ \text{Recurrence Relation:} & H_{n+1} = H_n + n \ (n \geq 2) \text{ and } H_1 = 0 \ (\text{no handshakes with oneself}) \\ \text{Homogeneous Solution:} & H_n^{(h)} = A.1^n = A \\ \text{Particular Solution:} & H_n^{(p)} = n^1.(A_1.n + A_0) \ (\text{with } A \ (\text{const.}) \ \text{in } H_n^{(h)}, \ H_n^{(p)} \leftarrow n^1.H_n^{(p)}) \\ \text{Hence, } (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + n \quad \Rightarrow A_1 = \frac{1}{2}, A_0 = -\frac{1}{2} \\ \text{Final Solution:} & H_n = A + \frac{1}{2}.n^2 - \frac{1}{2}.n, \ \text{with } H_1 = 0 = A, \\ & \text{implying,} \quad H_n = \frac{1}{2}.n^2 - \frac{1}{2}.n = \frac{n(n-1)}{2} = \binom{n}{2}, \quad n \geq 1. \end{array}$

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

 $\begin{array}{ll} L_n = \text{ number of regions formed by } n \text{ non-parallel and non-colinear straight lines.} \\ \text{Recurrence Relation:} & L_{n+1} = L_n + (n+1) \ (n \geq 1) \text{ and } L_0 = 1 \ (\text{whole 2-D plane}) \\ \text{Homogeneous Solution:} & L_n^{(h)} = A.1^n = A \\ \text{Particular Solution:} & L_n^{(p)} = n^1.(A_1.n + A_0) \quad (\text{with } A \ (\text{const.}) \ \text{in } L_n^{(h)}, \ L_n^{(p)} \leftarrow n^1.L_n^{(p)}) \\ \text{Hence, } (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + (n+1) \quad \Rightarrow A_1 = \frac{1}{2} = A_0 \end{array}$

Example (Distinct Handshakes with *n* Persons)

 $\begin{array}{ll} H_n = \text{ number of total distinct pairwise handshakes among } n \text{ persons.} \\ \text{Recurrence Relation:} & H_{n+1} = H_n + n \ (n \geq 2) \text{ and } H_1 = 0 \ (\text{no handshakes with oneself}) \\ \text{Homogeneous Solution:} & H_n^{(h)} = A.1^n = A \\ \text{Particular Solution:} & H_n^{(p)} = n^1.(A_1.n + A_0) \ (\text{with } A \ (\text{const.}) \ \text{in } H_n^{(h)}, \ H_n^{(p)} \leftarrow n^1.H_n^{(p)}) \\ \text{Hence, } (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + n \quad \Rightarrow A_1 = \frac{1}{2}, A_0 = -\frac{1}{2} \\ \text{Final Solution:} & H_n = A + \frac{1}{2}.n^2 - \frac{1}{2}.n, \ \text{with } H_1 = 0 = A, \\ & \text{implying,} \quad H_n = \frac{1}{2}.n^2 - \frac{1}{2}.n = \frac{n(n-1)}{2} = \binom{n}{2}, \quad n \geq 1. \end{array}$

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

 $\begin{array}{ll} L_n = \text{ number of regions formed by } n \text{ non-parallel and non-colinear straight lines.} \\ \text{Recurrence Relation:} \quad L_{n+1} = L_n + (n+1) \ (n \geq 1) \text{ and } L_0 = 1 \ (\text{whole 2-D plane}) \\ \text{Homogeneous Solution:} \quad L_n^{(h)} = A.1^n = A \\ \text{Particular Solution:} \quad L_n^{(p)} = n^1.(A_1.n + A_0) \quad (\text{with } A \ (\text{const.}) \ \text{in } L_n^{(h)}, \ L_n^{(p)} \leftarrow n^1.L_n^{(p)}) \\ \text{Hence, } (n+1)^2.A_1 + (n+1).A_0 = n^2.A_1 + n.A_0 + (n+1) \quad \Rightarrow A_1 = \frac{1}{2} = A_0 \\ \text{Final Solution:} \quad L_n = A + \frac{1}{2}.n^2 + \frac{1}{2}.n \quad \text{with } L_1 = 1 = A, \\ & \text{implying,} \quad H_n = 1 + \frac{1}{2}.n^2 + \frac{1}{2}.n = \frac{n(n+1)}{2} + 1, \quad n \geq 0. \end{array}$

Example (Deriving Formula for
$$S_n = \sum_{i=0}^n i^2$$
)

Recurrence Relation: $S_{n+1} = S_n + (n+1)^2 (n \ge 0)$ and $S_0 = 0$

Example (Deriving Formula for
$$S_n = \sum_{i=0}^n i^2$$
)

 $\begin{array}{ll} \mbox{Recurrence Relation:} & S_{n+1}=S_n+(n+1)^2 \ (n\geq 0) \ \mbox{and} \ S_0=0 \\ \mbox{Homogeneous Solution:} & S_n^{(h)}=A.1^n=A \end{array}$

Example (Deriving Formula for
$$S_n = \sum_{i=0}^n i^2$$
)

Recurrence Relation: $S_{n+1} = S_n + (n+1)^2 \ (n \ge 0)$ and $S_0 = 0$ Homogeneous Solution: $S_n^{(h)} = A \cdot 1^n = A$ Particular Solution: $S_n^{(p)} = n \cdot (A_0 + A_1 \cdot n + A_2 \cdot n^2) = (A_0 \cdot n + A_1 \cdot n^2 + A_2 \cdot n^3)$

Example (Deriving Formula for $S_n = \sum_{i=0}^n i^2$)

Example (Deriving Formula for $S_n = \sum_{i=0}^n i^2$)

 $\begin{array}{ll} \mbox{Recurrence Relation:} & S_{n+1} = S_n + (n+1)^2 \ (n \geq 0) \ \mbox{and} \ S_0 = 0 \\ \mbox{Homogeneous Solution:} & S_n^{(h)} = A.1^n = A \\ \mbox{Particular Solution:} & S_n^{(p)} = n.(A_0 + A_{1.n} + A_{2.n}^2) = (A_{0.n} + A_{1.n}^2 + A_{2.n}^3) \\ \mbox{Hence,} \ (n+1).A_0 + (n+1)^2.A_1 + (n+1)^3.A_2 = (n.A_0 + n^2.A_1 + n^3.A_2) + (n^2 + 2n + 1) \\ \mbox{implies,} \ 3A_2 + A_1 = A_1 + 1 \quad \Rightarrow A_2 = \frac{1}{3} \qquad (\mbox{comparing coefficients of} \ n^2) \\ \mbox{3A}_2 + 2A_1 + A_0 = A_0 + 2 \quad \Rightarrow A_1 = \frac{1}{2} \ \ (\mbox{comparing coefficients of} \ n) \\ \mbox{A}_2 + A_1 + A_0 = 1 \quad \Rightarrow A_0 = \frac{1}{6} \qquad (\mbox{comparing costant coefficients}) \\ \mbox{Final Solution:} \quad S_n = A + \frac{1}{6}.n + \frac{1}{3}.n^2 + \frac{1}{2}.n^3, \quad \mbox{with} \ S_0 = 0 = A, \\ \mbox{implying,} \quad H_n = \frac{1}{6}.n + \frac{1}{2}.n^2 + \frac{1}{3}.n^3 = \frac{n(n+1)(2n+1)}{6}, \quad n \geq 0. \end{array}$

Example (Deriving Formula for $S_n = \sum_{i=0}^n i^2$)

 $\begin{array}{ll} \mbox{Recurrence Relation:} & S_{n+1} = S_n + (n+1)^2 \ (n \geq 0) \ \mbox{and} \ S_0 = 0 \\ \mbox{Homogeneous Solution:} & S_n^{(h)} = A.1^n = A \\ \mbox{Particular Solution:} & S_n^{(p)} = n.(A_0 + A_{1.n} + A_{2.n}^2) = (A_{0.n} + A_{1.n}^2 + A_{2.n}^3) \\ \mbox{Hence,} \ (n+1).A_0 + (n+1)^2.A_1 + (n+1)^3.A_2 = (n.A_0 + n^2.A_1 + n^3.A_2) + (n^2 + 2n + 1) \\ \mbox{implies,} \ 3A_2 + A_1 = A_1 + 1 \quad \Rightarrow A_2 = \frac{1}{3} \qquad (\mbox{comparing coefficients of} \ n^2) \\ \ 3A_2 + 2A_1 + A_0 = A_0 + 2 \quad \Rightarrow A_1 = \frac{1}{2} \ (\mbox{comparing coefficients of} \ n) \\ \ A_2 + A_1 + A_0 = 1 \quad \Rightarrow A_0 = \frac{1}{6} \qquad (\mbox{comparing constant coefficients}) \\ \mbox{Final Solution:} \quad S_n = A + \frac{1}{6}.n + \frac{1}{3}.n^2 + \frac{1}{2}.n^3, \quad \mbox{with} \ S_0 = 0 = A, \\ \mbox{implying,} \quad H_n = \frac{1}{6}.n + \frac{1}{2}.n^2 + \frac{1}{3}.n^3 = \frac{n(n+1)(2n+1)}{2}, \quad n \geq 0. \\ \end{array}$

Example (Deriving Other Summation Formulas: Try Yourself!)

(1)
$$\sum_{i=0}^{n} i = L_n = L_{n-1} + n$$
 (2) $\sum_{i=0}^{n} i^3 = C_n = C_{n-1} + n^3$
(3) $\sum_{i=0}^{n} i^4 = Q_n = Q_{n-1} + n^4$ (4) $\sum_{i=0}^{n} i^k = G_n = G_{n-1} + n^k$ ($k \in \mathbb{Z}^+$)
(Here, $n \ge 1$ and $L_0 = C_0 = Q_0 = G_0 = 0$)

Aritra Hazra (CSE, IITKGP)

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects

- **(1)** A particular object is never selected: r objects chosen from (n 1) objects
- 2 A particular object is at least once selected: (r-1) objects chosen from n objects

Example (Select r Objects from n Distinct Objects with Repetition)

a(n,r) = number of ways to select r objects (repetition allowed) from n distinct objects

- A particular object is never selected: r objects chosen from (n-1) objects
- A particular object is at least once selected: (r-1) objects chosen from n objects (2)

Recurrence Relation: $a(n,r) = a(n-1,r) + a(n,r-1), (n \ge r \text{ and } n, r \in \mathbb{N})$ and a(n,0) = 1 for n > 0, a(0,r) = 0 for r > 0

Example (Select r Objects from n Distinct Objects with Repetition)

a(n,r) = number of ways to select r objects (repetition allowed) from n distinct objects

- A particular object is never selected: r objects chosen from (n-1) objects
- A particular object is at least once selected: (r-1) objects chosen from n objects (2)

Recurrence Relation: $a(n,r) = a(n-1,r) + a(n,r-1), (n \ge r \text{ and } n, r \in \mathbb{N})$ and a(n,0) = 1 for n > 0, a(0,r) = 0 for r > 0

Generating Function: Let, $f_n(x) = \sum_{n=1}^{\infty} a(n, r)x^r$ generates sequence $a(n, 0), a(n, 1), \ldots$
Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects

- A particular object is never selected: r objects chosen from (n-1) objects
- 2 A particular object is at least once selected: (r-1) objects chosen from n objects

Recurrence Relation:

$$a(n,r) = a(n-1,r) + a(n,r-1), (n \ge r \text{ and } n, r \in \mathbb{N})$$

and $a(n,0) = 1$ for $n \ge 0, a(0,r) = 0$ for $r > 0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n,r)x^r$ generates sequence $a(n,0), a(n,1), \ldots$

Derivation:
$$a(n, r) = a(n - 1, r) + a(n, r - 1)$$
 $(n, r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n, r) x^r = \sum_{r=1}^{\infty} a(n - 1, r) x^r + \sum_{r=1}^{\infty} a(n, r - 1) x^r$

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects

- A particular object is never selected: r objects chosen from (n-1) objects
 - A particular object is at least once selected: (r 1) objects chosen from n objects

Recurrence Relation:

$$a(n,r) = a(n-1,r) + a(n,r-1), \quad (n \ge r \text{ and } n,r \in \mathbb{N})$$

and $a(n,0) = 1$ for $n \ge 0, \quad a(0,r) = 0$ for $r > 0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n,r)x^r$ generates sequence $a(n,0), a(n,1), \ldots$

Derivation:
$$a(n, r) = a(n - 1, r) + a(n, r - 1)$$
 $(n, r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n, r)x^r = \sum_{r=1}^{\infty} a(n - 1, r)x^r + \sum_{r=1}^{\infty} a(n, r - 1)x^r$
 $\Rightarrow f_n(x) - a(n, 0) = f_{n-1}(x) - a(n - 1, 0) + x. \sum_{r=1}^{\infty} a(n, r - 1)x^{r-1}$
 $\Rightarrow f_n(x) - 1 = f_{n-1}(x) - 1 + x.f_n(x) \Rightarrow f_n(x) = \frac{f_{n-1}(x)}{1 - x} = \frac{f_0(x)}{(1 - x)^n}$

Aritra Hazra (CSE, IITKGP)

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects

- A particular object is never selected: r objects chosen from (n-1) objects
- 2 A particular object is at least once selected: (r-1) objects chosen from n objects

Recurrence Relation:

$$a(n,r) = a(n-1,r) + a(n,r-1), \quad (n \ge r \text{ and } n,r \in \mathbb{N})$$

and $a(n,0) = 1$ for $n \ge 0, \quad a(0,r) = 0$ for $r > 0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n,r)x^r$ generates sequence $a(n,0), a(n,1), \ldots$

Derivation:
$$a(n,r) = a(n-1,r) + a(n,r-1)$$
 $(n,r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n,r)x^r = \sum_{r=1}^{\infty} a(n-1,r)x^r + \sum_{r=1}^{\infty} a(n,r-1)x^r$
 $\Rightarrow f_n(x) - a(n,0) = f_{n-1}(x) - a(n-1,0) + x. \sum_{r=1}^{\infty} a(n,r-1)x^{r-1}$
 $\Rightarrow f_n(x) - 1 = f_{n-1}(x) - 1 + x.f_n(x) \Rightarrow f_n(x) = \frac{f_{n-1}(x)}{1-x} = \frac{f_0(x)}{(1-x)^n}$
So, $a(n,r)$ is the coefficient of x^r in $f_n(x) = \frac{f_0(x)}{(1-x)^n} = (1-x)^{-n}$

Example (Select r Objects from n Distinct Objects with Repetition)

a(n, r) = number of ways to select r objects (repetition allowed) from n distinct objects

- A particular object is never selected: r objects chosen from (n-1) objects
- 2 A particular object is at least once selected: (r-1) objects chosen from n objects

Recurrence Relation:

$$a(n,r) = a(n-1,r) + a(n,r-1), \quad (n \ge r \text{ and } n,r \in \mathbb{N})$$

and $a(n,0) = 1$ for $n \ge 0$, $a(0,r) = 0$ for $r > 0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n,r)x^r$ generates sequence $a(n,0), a(n,1), \ldots$

Derivation:
$$a(n,r) = a(n-1,r) + a(n,r-1)$$
 $(n,r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n,r)x^r = \sum_{r=1}^{\infty} a(n-1,r)x^r + \sum_{r=1}^{\infty} a(n,r-1)x^r$
 $\Rightarrow f_n(x) - a(n,0) = f_{n-1}(x) - a(n-1,0) + x. \sum_{r=1}^{\infty} a(n,r-1)x^{r-1}$
 $\Rightarrow f_n(x) - 1 = f_{n-1}(x) - 1 + x.f_n(x) \Rightarrow f_n(x) = \frac{f_{n-1}(x)}{1-x} = \frac{f_0(x)}{(1-x)^n}$
So, $a(n,r)$ is the coefficient of x^r in $f_n(x) = \frac{f_0(x)}{(1-x)^n} = \frac{1}{(1-x)^n} = (1-x)^{-n}$
 $\Rightarrow a(n,r) = (-1)^r. {n \choose r} = {n+r-1 \choose r}$

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects

- **(**) A particular object is never selected: r objects chosen from (n-1) objects
- 2 A particular object is once selected: (r-1) objects chosen from (n-1) objects

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n,r) = number of ways to select r objects (w/o repetition) from n distinct objects

- A particular object is never selected: r objects chosen from (n-1) objects
- A particular object is once selected: (r-1) objects chosen from (n-1) objects (2)

Recurrence Relation: $a(n,r) = a(n-1,r) + a(n-1,r-1), (n > r \text{ and } n, r \in \mathbb{N})$ and a(n,0) = 1 for n > 0, a(0,r) = 0 for r > 0

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n,r) = number of ways to select r objects (w/o repetition) from n distinct objects

- A particular object is never selected: r objects chosen from (n-1) objects
- A particular object is once selected: (r-1) objects chosen from (n-1) objects 2

Recurrence Relation: $a(n,r) = a(n-1,r) + a(n-1,r-1), (n > r \text{ and } n, r \in \mathbb{N})$ and a(n,0) = 1 for n > 0, a(0,r) = 0 for r > 0

Generating Function: Let, $f_n(x) = \sum_{n=1}^{\infty} a(n, r)x^r$ generates sequence $a(n, 0), a(n, 1), \ldots$

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects

- **(1)** A particular object is never selected: r objects chosen from (n 1) objects
- **2** A particular object is once selected: (r 1) objects chosen from (n 1) objects

Recurrence Relation:

$$a(n,r) = a(n-1,r) + a(n-1,r-1), \quad (n \ge r \text{ and } n,r \in \mathbb{N})$$

and $a(n,0) = 1$ for $n \ge 0$, $a(0,r) = 0$ for $r > 0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n,r)x^r$ generates sequence $a(n,0), a(n,1), \ldots$

Derivation:
$$a(n,r) = a(n-1,r) + a(n-1,r-1)$$
 $(n,r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n,r)x^r = \sum_{r=1}^{\infty} a(n-1,r)x^r + \sum_{r=1}^{\infty} a(n-1,r-1)x^r$

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects

- **(1)** A particular object is never selected: r objects chosen from (n 1) objects
- 2 A particular object is once selected: (r-1) objects chosen from (n-1) objects

Recurrence Relation:

$$a(n,r) = a(n-1,r) + a(n-1,r-1), \quad (n \ge r \text{ and } n,r \in \mathbb{N})$$

and $a(n,0) = 1$ for $n \ge 0, \quad a(0,r) = 0$ for $r > 0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n,r)x^r$ generates sequence $a(n,0), a(n,1), \ldots$

Derivation:
$$a(n, r) = a(n - 1, r) + a(n - 1, r - 1)$$
 $(n, r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n, r)x^r = \sum_{r=1}^{\infty} a(n - 1, r)x^r + \sum_{r=1}^{\infty} a(n - 1, r - 1)x^r$
 $\Rightarrow f_n(x) - a(n, 0) = f_{n-1}(x) - a(n - 1, 0) + x. \sum_{r=1}^{\infty} a(n - 1, r - 1)x^{r-1}$
 $\Rightarrow f_n(x) - 1 = f_{n-1}(x) - 1 + x.f_{n-1}(x)$
 $\Rightarrow f_n(x) = (1 + x).f_{n-1}(x) = (1 + x)^n.f_0(x)$

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects

- A particular object is never selected: r objects chosen from (n-1) objects
- 2 A particular object is once selected: (r 1) objects chosen from (n 1) objects

Recurrence Relation:

$$a(n,r) = a(n-1,r) + a(n-1,r-1), \quad (n \ge r \text{ and } n,r \in \mathbb{N})$$

and $a(n,0) = 1$ for $n \ge 0$, $a(0,r) = 0$ for $r > 0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n, r) x^r$ generates sequence $a(n, 0), a(n, 1), \ldots$

Derivation:
$$a(n, r) = a(n - 1, r) + a(n - 1, r - 1)$$
 $(n, r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n, r)x^r = \sum_{r=1}^{\infty} a(n - 1, r)x^r + \sum_{r=1}^{\infty} a(n - 1, r - 1)x^r$
 $\Rightarrow f_n(x) - a(n, 0) = f_{n-1}(x) - a(n - 1, 0) + x. \sum_{r=1}^{\infty} a(n - 1, r - 1)x^{r-1}$
 $\Rightarrow f_n(x) - 1 = f_{n-1}(x) - 1 + x.f_{n-1}(x)$
 $\Rightarrow f_n(x) = (1 + x).f_{n-1}(x) = (1 + x)^n.f_0(x)$
So, $a(n, r)$ is the coefficient of x^r in $f_n(x) = (1 + x)^n.f_0(x) = (1 + x)^n$

Example (Select r Objects from n Distinct Objects w/o Repetition)

a(n, r) = number of ways to select r objects (w/o repetition) from n distinct objects

- **(1)** A particular object is never selected: r objects chosen from (n 1) objects
- 2 A particular object is once selected: (r 1) objects chosen from (n 1) objects

Recurrence Relation:

$$a(n,r) = a(n-1,r) + a(n-1,r-1), \quad (n \ge r \text{ and } n,r \in \mathbb{N})$$

and $a(n,0) = 1$ for $n \ge 0$, $a(0,r) = 0$ for $r > 0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n, r) x^r$ generates sequence $a(n, 0), a(n, 1), \ldots$

Derivation:
$$a(n,r) = a(n-1,r) + a(n-1,r-1)$$
 $(n,r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n,r)x^r = \sum_{r=1}^{\infty} a(n-1,r)x^r + \sum_{r=1}^{\infty} a(n-1,r-1)x^r$
 $\Rightarrow f_n(x) - a(n,0) = f_{n-1}(x) - a(n-1,0) + x. \sum_{r=1}^{\infty} a(n-1,r-1)x^{r-1}$
 $\Rightarrow f_n(x) - 1 = f_{n-1}(x) - 1 + x.f_{n-1}(x)$
 $\Rightarrow f_n(x) = (1+x).f_{n-1}(x) = (1+x)^n.f_0(x)$
So, $a(n,r)$ is the coefficient of x^r in $f_n(x) = (1+x)^n.f_0(x) = (1+x)^n$
 $\Rightarrow a(n,r) = \binom{n}{r}$

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:

A high-energy neutron releases two high-energy and one low-energy neutrons.

A low-energy neutron releases one high-energy and one low-energy neutron.

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:

A high-energy neutron releases two high-energy and one low-energy neutrons.

A low-energy neutron releases *one* high-energy and *one* low-energy neutron.

After $n \ge 0$ interactions, let a_n = number of high-energy neutrons, and b_n = number of low-energy neutrons. Assume, at beginning, $a_0 = 1$, $b_0 = 0$.

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:

A high-energy neutron releases *two* high-energy and *one* low-energy neutrons.

A low-energy neutron releases *one* high-energy and *one* low-energy neutron.

After $n \ge 0$ interactions, let a_n = number of high-energy neutrons, and b_n = number of low-energy neutrons. Assume, at beginning, $a_0 = 1$, $b_0 = 0$.

Recurrence Relation: $a_{n+1} = 2a_n + b_n$, $b_{n+1} = a_n + b_n$ $(n \ge 0)$

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen: A high-energy neutron releases *two* high-energy and *one* low-energy neutrons.

A low-energy neutron releases one high-energy and one low-energy neutron.

After $n \ge 0$ interactions, let a_n = number of high-energy neutrons, and b_n = number of low-energy neutrons. Assume, at beginning, $a_0 = 1$, $b_0 = 0$.

Recurrence Relation: $a_{n+1} = 2a_n + b_n$, $b_{n+1} = a_n + b_n$ $(n \ge 0)$

Generating Function:
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, $g(x) = \sum_{n=0}^{\infty} b_n x^n$ generates $\{a_n\}$, $\{b_n\}$ $(n \ge 0)$

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen: A high-energy neutron releases *two* high-energy and *one* low-energy neutrons.

A low-energy neutron releases *one* high-energy and *one* low-energy neutron.

After $n \ge 0$ interactions, let a_n = number of high-energy neutrons, and b_n = number of low-energy neutrons. Assume, at beginning, $a_0 = 1$, $b_0 = 0$.

Recurrence Relation: $a_{n+1} = 2a_n + b_n$, $b_{n+1} = a_n + b_n$ $(n \ge 0)$

Generating Function: $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $g(x) = \sum_{n=0}^{\infty} b_n x^n$ generates $\{a_n\}, \{b_n\}$ $(n \ge 0)$

Derivation:
$$\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1} = 2x \sum_{n=0}^{\infty} a_n \cdot x^n + x \sum_{n=0}^{\infty} b_n \cdot x^n \quad \Rightarrow \quad f(x) - a_0 = 2xf(x) + xg(x)$$
$$\sum_{n=0}^{\infty} b_{n+1} \cdot x^{n+1} = x \sum_{n=0}^{\infty} a_n \cdot x^n + x \sum_{n=0}^{\infty} b_n \cdot x^n \quad \Rightarrow \quad g(x) - b_0 = xf(x) + xg(x)$$

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen: A high-energy neutron releases *two* high-energy and *one* low-energy neutrons.

A low-energy neutron releases *one* high-energy and *one* low-energy neutron.

After $n \ge 0$ interactions, let a_n = number of high-energy neutrons, and b_n = number of low-energy neutrons. Assume, at beginning, $a_0 = 1$, $b_0 = 0$.

Recurrence Relation: $a_{n+1} = 2a_n + b_n$, $b_{n+1} = a_n + b_n$ $(n \ge 0)$

Generating Function: $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $g(x) = \sum_{n=0}^{\infty} b_n x^n$ generates $\{a_n\}, \{b_n\}$ $(n \ge 0)$

Derivation: $\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1} = 2x \sum_{n=0}^{\infty} a_n \cdot x^n + x \sum_{n=0}^{\infty} b_n \cdot x^n \quad \Rightarrow \quad f(x) - a_0 = 2xf(x) + xg(x)$ $\sum_{n=0}^{\infty} b_{n+1} \cdot x^{n+1} = x \sum_{n=0}^{\infty} a_n \cdot x^n + x \sum_{n=0}^{\infty} b_n \cdot x^n \quad \Rightarrow \quad g(x) - b_0 = xf(x) + xg(x)$

Solving these system of recurrence equations and using generating functions,

$$f(x) = \frac{1-x}{x^2 - 3x + 1} = \left(\frac{5 + \sqrt{5}}{10}\right) \left(\frac{1}{\frac{3 + \sqrt{5}}{2} - x}\right) + \left(\frac{5 - \sqrt{5}}{10}\right) \left(\frac{1}{\frac{3 - \sqrt{5}}{2} - x}\right) \quad \text{and}$$
$$g(x) = \frac{x}{x^2 - 3x + 1} = \left(\frac{-5 - 3\sqrt{5}}{10}\right) \left(\frac{1}{\frac{3 + \sqrt{5}}{2} - x}\right) + \left(\frac{-5 + 3\sqrt{5}}{10}\right) \left(\frac{1}{\frac{3 - \sqrt{5}}{2} - x}\right)$$

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen: A high-energy neutron releases *two* high-energy and *one* low-energy neutrons.

A low-energy neutron releases one high-energy and one low-energy neutron.

After $n \ge 0$ interactions, let a_n = number of high-energy neutrons, and b_n = number of low-energy neutrons. Assume, at beginning, $a_0 = 1$, $b_0 = 0$.

Recurrence Relation: $a_{n+1} = 2a_n + b_n$, $b_{n+1} = a_n + b_n$ $(n \ge 0)$

Generating Function:
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, $g(x) = \sum_{n=0}^{\infty} b_n x^n$ generates $\{a_n\}, \{b_n\}$ $(n \ge 0)$

Derivation: $\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1} = 2x \sum_{n=0}^{\infty} a_n \cdot x^n + x \sum_{n=0}^{\infty} b_n \cdot x^n \quad \Rightarrow \quad f(x) - a_0 = 2xf(x) + xg(x)$ $\sum_{n=0}^{\infty} b_{n+1} \cdot x^{n+1} = x \sum_{n=0}^{\infty} a_n \cdot x^n + x \sum_{n=0}^{\infty} b_n \cdot x^n \quad \Rightarrow \quad g(x) - b_0 = xf(x) + xg(x)$

Solving these system of recurrence equations and using generating functions,

$$f(x) = \frac{1-x}{x^2 - 3x + 1} = \left(\frac{5+\sqrt{5}}{10}\right) \left(\frac{1}{\frac{3+\sqrt{5}}{2} - x}\right) + \left(\frac{5-\sqrt{5}}{10}\right) \left(\frac{1}{\frac{3-\sqrt{5}}{2} - x}\right) \quad \text{and}$$

$$g(x) = \frac{x}{x^2 - 3x + 1} = \left(\frac{-5-3\sqrt{5}}{10}\right) \left(\frac{1}{\frac{3+\sqrt{5}}{2} - x}\right) + \left(\frac{-5+3\sqrt{5}}{10}\right) \left(\frac{1}{\frac{3-\sqrt{5}}{2} - x}\right)$$

$$a_n = \left(\frac{5+\sqrt{5}}{10}\right) \left(\frac{3-\sqrt{5}}{2}\right)^{n+1} + \left(\frac{5-\sqrt{5}}{10}\right) \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} \quad \text{and}$$

$$b_n = \left(\frac{-5-3\sqrt{5}}{10}\right) \left(\frac{3-\sqrt{5}}{2}\right)^{n+1} + \left(\frac{-5+3\sqrt{5}}{10}\right) \left(\frac{3+\sqrt{5}}{2}\right)^{n+1}, \quad n \ge 0$$

Example (Solving Non-linear Recurrences using Generating Functions)

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

• Number of ways to parenthesize an *n* length expressions

Example (Solving Non-linear Recurrences using Generating Functions)

- Number of ways to parenthesize an *n* length expressions
- Number of different ordered unlabelled rooted *n*-node binary trees

Example (Solving Non-linear Recurrences using Generating Functions)

- Number of ways to parenthesize an *n* length expressions
- Number of different ordered unlabelled rooted *n*-node binary trees
- Number of non-overlapping handshakes among *n* persons seated in round table

Example (Solving Non-linear Recurrences using Generating Functions)

- Number of ways to parenthesize an *n* length expressions
- Number of different ordered unlabelled rooted *n*-node binary trees
- Number of non-overlapping handshakes among *n* persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter

Example (Solving Non-linear Recurrences using Generating Functions)

- Number of ways to parenthesize an *n* length expressions
- Number of different ordered unlabelled rooted *n*-node binary trees
- Number of non-overlapping handshakes among *n* persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal

Example (Solving Non-linear Recurrences using Generating Functions)

- Number of ways to parenthesize an *n* length expressions
- Number of different ordered unlabelled rooted *n*-node binary trees
- Number of non-overlapping handshakes among *n* persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an *n*-sided regular polygon

Example (Solving Non-linear Recurrences using Generating Functions)

- Number of ways to parenthesize an *n* length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among *n* persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of Stacky Sequences [For n ∈ Z⁺, Push 1, 2, ..., n in order into stack, but Pop (from top) + Print anytime in between from unempty stack. All stack-realizable permutations of 1, 2, 3, ..., n are 'stacky sequences'.]

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among *n* persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an *n*-sided regular polygon
- Number of Stacky Sequences [For $n \in \mathbb{Z}^+$, Push 1, 2, ..., n in order into stack, but Pop (from top) + Print

anytime in between from unempty stack. All stack-realizable permutations of $1, 2, 3, \ldots, n$ are 'stacky sequences'.]

Catalan Numbers solving Non-linear Recurrences

Number of ways to parenthesize (n + 1)-length string or construct (n + 1)-node binary trees, $a_{n+1} = a_0a_n + a_1a_{n-1} + \dots + a_{n-1}a_1 + a_na_0 = \sum_{i=0}^n a_ia_{n-i}$, $(n \ge 0)$ and $a_0 = 1$

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among n persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of *Stacky Sequences* [For $n \in \mathbb{Z}^+$, Push 1, 2, ..., *n* in order into stack, but Pop (from top) + Print

anytime in between from unempty stack. All stack-realizable permutations of $1, 2, 3, \ldots, n$ are 'stacky sequences'.]

Catalan Numbers solving Non-linear Recurrences

Number of ways to parenthesize (n + 1)-length string or construct (n + 1)-node binary trees, $a_{n+1} = a_0a_n + a_1a_{n-1} + \dots + a_{n-1}a_1 + a_na_0 = \sum_{i=0}^n a_ia_{n-i}, (n \ge 0)$ and $a_0 = 1$ Applying generating function, $f(x) = \sum_{n=0}^{\infty} a_n x^n$ (to generate sequence $\{a_n\}$), we get $-\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1} = \sum_{n=0}^{\infty} (\sum_{i=0}^n a_ia_{n-i}) \cdot x^{n+1} \Rightarrow [f(x) - a_0] = x[f(x)]^2 \Rightarrow f(x) = \frac{1\pm\sqrt{1-4x}}{2x}$

Aritra Hazra (CSE, IITKGP)

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among *n* persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of *Stacky Sequences* [For $n \in \mathbb{Z}^+$, Push 1, 2, ..., *n* in order into stack, but Pop (from top) + Print

anytime in between from unempty stack. All stack-realizable permutations of $1, 2, 3, \ldots, n$ are 'stacky sequences'.]

Catalan Numbers solving Non-linear Recurrences

Number of ways to parenthesize (n + 1)-length string or construct (n + 1)-node binary trees, $a_{n+1} = a_0a_n + a_1a_{n-1} + \dots + a_{n-1}a_1 + a_na_0 = \sum_{i=0}^n a_ia_{n-i}, (n \ge 0)$ and $a_0 = 1$ Applying generating function, $f(x) = \sum_{n=0}^{\infty} a_n x^n$ (to generate sequence $\{a_n\}$), we get $-\sum_{n=0}^{\infty} a_{n+1} x^{n+1} = \sum_{n=0}^{\infty} (\sum_{i=0}^n a_ia_{n-i}) x^{n+1} \Rightarrow [f(x) - a_0] = x[f(x)]^2 \Rightarrow f(x) = \frac{1\pm\sqrt{1-4x}}{2x}$ Now, $\sqrt{1-4x} = (1-4x)^{\frac{1}{2}} = (\frac{1}{2}) + (\frac{1}{2})(-4x) + (\frac{1}{2})(-4x)^2 + \dots$, so the coefficient of x^{n+1} is: $(\frac{1}{2})(-4)^{n+1} = \frac{(\frac{1}{2})(\frac{1}{2}-1)(\frac{1}{2}-2)\cdots(\frac{1}{2}-(n+1)+1)}{(n+1)!}(-4)^{n+1} = [\frac{-1}{2(n+1)-1}] \cdot \binom{2(n+1)}{n+1}$

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted n-node binary trees
- Number of non-overlapping handshakes among *n* persons seated in round table
- Number of non-intersecting chords of circle with n points located in perimeter
- Number of paths in $a \times b$ grid from bottom-left \rightarrow top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of *Stacky Sequences* [For $n \in \mathbb{Z}^+$, Push 1, 2, ..., *n* in order into stack, but Pop (from top) + Print

anytime in between from unempty stack. All stack-realizable permutations of $1, 2, 3, \ldots, n$ are 'stacky sequences'.]

Catalan Numbers solving Non-linear Recurrences

Number of ways to parenthesize (n + 1)-length string or construct (n + 1)-node binary trees, $a_{n+1} = a_0a_n + a_1a_{n-1} + \dots + a_{n-1}a_1 + a_na_0 = \sum_{i=0}^n a_ia_{n-i}, (n \ge 0)$ and $a_0 = 1$ Applying generating function, $f(x) = \sum_{n=0}^{\infty} a_n x^n$ (to generate sequence $\{a_n\}$), we get $-\sum_{n=0}^{\infty} a_{n+1} x^{n+1} = \sum_{n=0}^{\infty} (\sum_{i=0}^n a_ia_{n-i}) x^{n+1} \Rightarrow [f(x) - a_0] = x[f(x)]^2 \Rightarrow f(x) = \frac{1 \pm \sqrt{1-4x}}{2x}$ Now, $\sqrt{1-4x} = (1-4x)^{\frac{1}{2}} = (\frac{1}{2}) + (\frac{1}{2})(-4x) + (\frac{1}{2})(-4x)^2 + \dots$, so the coefficient of x^{n+1} is: $(\frac{1}{2})(-4)^{n+1} = \frac{(\frac{1}{2})(\frac{1}{2}-1)(\frac{1}{2}-2)\cdots(\frac{1}{2}-(n+1)+1)}{(n+1)!}(-4)^{n+1} = [\frac{-1}{2(n+1)-1}] \cdot \binom{2(n+1)}{n+1}$ As $f(x) = \frac{1-\sqrt{1-4x}}{2x}$ (taking -ve sign to get $a_n \ge 0$), so $a_n = \frac{1}{2}[\frac{-1}{2(n+1)-1}] \cdot \binom{2(n+1)}{n+1} = \frac{1}{(n+1)} \binom{2n}{n}$

Thank You!

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020 36 / 36