
Predicate Logic

Aritra Hazra

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur,

Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 1 / 18

From Propositional Logic to Predicate Logic

Example

1 Wherever Ankush goes, so does the pet dog. Ankush goes to school. So,
the dog goes to school.

2 No contractors are dependable. Some engineers are contractors. Therefore,
some engineers are not dependable.

3 All actresses are graceful. Anushka is a dancer. Anushka is an actress.
Therefore, some dancers are graceful.

4 Every passenger either travels in first class or second class. Each passenger
is in second class if and only if he or she is not wealthy. Some passengers are
wealthy. Not all passengers are wealthy. Therefore, some passengers travel
in second class.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2 / 18

From Propositional Logic to Predicate Logic

Example

1 Wherever Ankush goes, so does the pet dog. Ankush goes to school. So,
the dog goes to school.

2 No contractors are dependable. Some engineers are contractors. Therefore,
some engineers are not dependable.

3 All actresses are graceful. Anushka is a dancer. Anushka is an actress.
Therefore, some dancers are graceful.

4 Every passenger either travels in first class or second class. Each passenger
is in second class if and only if he or she is not wealthy. Some passengers are
wealthy. Not all passengers are wealthy. Therefore, some passengers travel
in second class.

Propositional Logic Insufficiency

Quantifications: ‘some’, ‘none’, ‘all’, ‘every’, ‘wherever’ etc.

Associations: ‘x goes to some place y’, ‘z travels in first class’ etc.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2 / 18

Predicate Logic Argument Formulation

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3 / 18

Predicate Logic Argument Formulation

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Formal Constructs and Fundamentals

Following are the representational extensions made in First-Order Logic
(Predicate Logic) over Propositional Logic constructs:

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3 / 18

Predicate Logic Argument Formulation

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Formal Constructs and Fundamentals

Following are the representational extensions made in First-Order Logic
(Predicate Logic) over Propositional Logic constructs:

New Additions: Variables (for e.g., x, y) and Constants (for e.g., Ankush, Dog)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3 / 18

Predicate Logic Argument Formulation

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Formal Constructs and Fundamentals

Following are the representational extensions made in First-Order Logic
(Predicate Logic) over Propositional Logic constructs:

New Additions: Variables (for e.g., x, y) and Constants (for e.g., Ankush, Dog)

Functional Symbols: Functional constructs returning Non-Boolean values
(for e.g., Age(x) indicates ‘the age of x’)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3 / 18

Predicate Logic Argument Formulation

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Formal Constructs and Fundamentals

Following are the representational extensions made in First-Order Logic
(Predicate Logic) over Propositional Logic constructs:

New Additions: Variables (for e.g., x, y) and Constants (for e.g., Ankush, Dog)

Functional Symbols: Functional constructs returning Non-Boolean values
(for e.g., Age(x) indicates ‘the age of x’)

Predicate Symbols: Constructs indicating associations having Boolean outcomes
(for e.g., goes(x, y) indicates ‘x goes to the place y’)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3 / 18

Predicate Logic Argument Formulation

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Formal Constructs and Fundamentals

Following are the representational extensions made in First-Order Logic
(Predicate Logic) over Propositional Logic constructs:

New Additions: Variables (for e.g., x, y) and Constants (for e.g., Ankush, Dog)

Functional Symbols: Functional constructs returning Non-Boolean values
(for e.g., Age(x) indicates ‘the age of x’)

Predicate Symbols: Constructs indicating associations having Boolean outcomes
(for e.g., goes(x, y) indicates ‘x goes to the place y’)

Connectors: Well-defined connectors, such as, ¬ (negation), ∧ (conjunction), ∨
(disjunction), → (implication), ↔ (if and only if) etc.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3 / 18

Predicate Logic Argument Formulation

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Formal Constructs and Fundamentals

Following are the representational extensions made in First-Order Logic
(Predicate Logic) over Propositional Logic constructs:

New Additions: Variables (for e.g., x, y) and Constants (for e.g., Ankush, Dog)

Functional Symbols: Functional constructs returning Non-Boolean values
(for e.g., Age(x) indicates ‘the age of x’)

Predicate Symbols: Constructs indicating associations having Boolean outcomes
(for e.g., goes(x, y) indicates ‘x goes to the place y’)

Connectors: Well-defined connectors, such as, ¬ (negation), ∧ (conjunction), ∨
(disjunction), → (implication), ↔ (if and only if) etc.

Quantifiers: Existantial (∃, i.e. there exists) and Universal (∀, i.e. for all)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3 / 18

Predicate Logic Argument Formulation: Example-1

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 4 / 18

Predicate Logic Argument Formulation: Example-1

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Logical Formulation

Variables: x and y

Constants: Ankush, Dog and School

Predicate: goes(x, y): x goes to y

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 4 / 18

Predicate Logic Argument Formulation: Example-1

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Logical Formulation

Variables: x and y

Constants: Ankush, Dog and School

Predicate: goes(x, y): x goes to y

Formula:
F1 : ∀x (goes(Ankush, x)→ goes(Dog, x))
F2 : goes(Ankush, School)
G : goes(Dog, School)

Requirement: To prove whether (F1 ∧ F2) → G is valid

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 4 / 18

Predicate Logic Argument Formulation: Example-2

Example

No contractors are dependable. Some engineers are contractors. Therefore, some
engineers are not dependable.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 5 / 18

Predicate Logic Argument Formulation: Example-2

Example

No contractors are dependable. Some engineers are contractors. Therefore, some
engineers are not dependable.

Logical Formulation

Predicates: Assuming the variable as x.

contractor(x) : x is a contractor
dependable(x) : x is dependable

engineer(x) : x is an engineer

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 5 / 18

Predicate Logic Argument Formulation: Example-2

Example

No contractors are dependable. Some engineers are contractors. Therefore, some
engineers are not dependable.

Logical Formulation

Predicates: Assuming the variable as x.

contractor(x) : x is a contractor
dependable(x) : x is dependable

engineer(x) : x is an engineer

Formula:

F1 : ∀x (contractor(x) → ¬dependable(x))
(Alt.) : ¬∃x (contractor(x) ∧ dependable(x))

F2 : ∃x (engineer(x) ∧ contractor(x))
(Alt.) : ∃x (engineer(x) → contractor(x)) ∧ ∃x engineer(x)

G : ∃x (engineer(x) ∧ ¬dependable(x))

Requirement: To prove whether (F1 ∧ F2) → G is valid
Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 5 / 18

Predicate Logic Argument Formulation: Example-3

Example

All actresses are graceful. Anushka is a dancer. Anushka is an actress. Therefore,
some dancers are graceful.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6 / 18

Predicate Logic Argument Formulation: Example-3

Example

All actresses are graceful. Anushka is a dancer. Anushka is an actress. Therefore,
some dancers are graceful.

Logical Formulation

Predicates: Assuming the variable as x.

actress(x) : x is an actress
graceful(x) : x is graceful

dancer(x) : x is a dancer

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6 / 18

Predicate Logic Argument Formulation: Example-3

Example

All actresses are graceful. Anushka is a dancer. Anushka is an actress. Therefore,
some dancers are graceful.

Logical Formulation

Predicates: Assuming the variable as x.

actress(x) : x is an actress
graceful(x) : x is graceful

dancer(x) : x is a dancer

Formula:
F1 : ∀x (actress(x) → graceful(x))
F2 : dacncer(Anushka)
F3 : actress(Anushka)
G : ∃x (dancer(x) ∧ graceful(x))

Requirement: To prove whether (F1 ∧ F2 ∧ F3) → G is valid

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6 / 18

Predicate Logic Argument Formulation: Example-4

Example

Every passenger either travels in first class or second class. Each passenger is in second
class if and only if he or she is not wealthy. Some passengers are wealthy. Not all
passengers are wealthy. Therefore, some passengers travel in second class.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 7 / 18

Predicate Logic Argument Formulation: Example-4

Example

Every passenger either travels in first class or second class. Each passenger is in second
class if and only if he or she is not wealthy. Some passengers are wealthy. Not all
passengers are wealthy. Therefore, some passengers travel in second class.

Logical Formulation

Predicates: Assuming the variable as x.

pass(x) : x is a passenger
frst(x) : x travels in first class
scnd(x) : x travels in second class
wlty(x) : x is wealthy

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 7 / 18

Predicate Logic Argument Formulation: Example-4

Example

Every passenger either travels in first class or second class. Each passenger is in second
class if and only if he or she is not wealthy. Some passengers are wealthy. Not all
passengers are wealthy. Therefore, some passengers travel in second class.

Logical Formulation

Predicates: Assuming the variable as x.

pass(x) : x is a passenger
frst(x) : x travels in first class
scnd(x) : x travels in second class
wlty(x) : x is wealthy

Formula: To prove whether (F1 ∧ F2 ∧ F3 ∧ F4) → G is valid.

F1 : ∀x [pass(x) → (frst(x) ∨ scnd(x))]
F1 : ∀x [pass(x) →

(

(frst(x) ∧ ¬scnd(x)) ∨ (¬frst(x) ∧ scnd(x))
)

]
F2 : ∀x [pass(x) →

(

(scnd(x) → ¬wlty(x)) ∧ (¬wlty(x) → scnd(x))
)

]
F3 : ∃x [pass(x) ∧ wlty(x)] F4 : ¬∀x [pass(x) → wlty(x)]
G : ∃x [pass(x) ∧ scnd(x)] (Alt.) ∃x [pass(x) ∧ ¬wlty(x)]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 7 / 18

Predicate Logic Constructs: Use of Quantifiers

Example

A Everyone likes everyone. ∀x ∀y likes(x, y)

B Someone likes someone. ∃x ∃y likes(x, y)

C Everyone likes someone. ∀x
(

∃y likes(x, y)
)

D Someone likes everyone. ∃x
(

∀y likes(x, y)
)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 8 / 18

Predicate Logic Constructs: Use of Quantifiers

Example

A Everyone likes everyone. ∀x ∀y likes(x, y)

B Someone likes someone. ∃x ∃y likes(x, y)

C Everyone likes someone. ∀x
(

∃y likes(x, y)
)

D Someone likes everyone. ∃x
(

∀y likes(x, y)
)

Example

I Everyone is liked by everyone. ∀y
(

∀x likes(x, y)
)

II Someone is liked by someone. ∃y
(

∃x likes(x, y)
)

III Someone is liked by everyone. ∃y
(

∀x likes(x, y)
)

IV Everyone is liked by someone. ∀y
(

∃x likes(x, y)
)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 8 / 18

Predicate Logic Constructs: Use of Quantifiers

Example

A Everyone likes everyone. ∀x ∀y likes(x, y)

B Someone likes someone. ∃x ∃y likes(x, y)

C Everyone likes someone. ∀x
(

∃y likes(x, y)
)

D Someone likes everyone. ∃x
(

∀y likes(x, y)
)

Example

I Everyone is liked by everyone. ∀y
(

∀x likes(x, y)
)

II Someone is liked by someone. ∃y
(

∃x likes(x, y)
)

III Someone is liked by everyone. ∃y
(

∀x likes(x, y)
)

IV Everyone is liked by someone. ∀y
(

∃x likes(x, y)
)

Note: Active and Passive Voice statements in English are NOT logically similar!

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 8 / 18

Predicate Logic Constructs: Use of Quantifiers

Example

1 If everyone likes everyone, then someone likes everyone.
(

∀x (∀y likes(x, y))
)

→
(

∃x (∀y likes(x, y))
)

2 If some person is liked by everyone, then that person likes himself/herself.
∃y

(

(∀x likes(x, y)) → likes(y, y)
)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 9 / 18

Predicate Logic Constructs: Use of Quantifiers

Example

1 If everyone likes everyone, then someone likes everyone.
(

∀x (∀y likes(x, y))
)

→
(

∃x (∀y likes(x, y))
)

2 If some person is liked by everyone, then that person likes himself/herself.
∃y

(

(∀x likes(x, y)) → likes(y, y)
)

Some Notions over Quantifiers

Contrapositive of ∀x
(

p(x) → q(x)
)

: ∀x
(

¬q(x) → ¬p(x)
)

Converse of ∀x
(

p(x) → q(x)
)

: ∀x
(

q(x) → p(x)
)

Inverse of ∀x
(

p(x) → q(x)
)

: ∀x
(

¬p(x) → ¬q(x)
)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 9 / 18

Predicate Logic Constructs: Use of Quantifiers

Example

1 If everyone likes everyone, then someone likes everyone.
(

∀x (∀y likes(x, y))
)

→
(

∃x (∀y likes(x, y))
)

2 If some person is liked by everyone, then that person likes himself/herself.
∃y

(

(∀x likes(x, y)) → likes(y, y)
)

Some Notions over Quantifiers

Contrapositive of ∀x
(

p(x) → q(x)
)

: ∀x
(

¬q(x) → ¬p(x)
)

Converse of ∀x
(

p(x) → q(x)
)

: ∀x
(

q(x) → p(x)
)

Inverse of ∀x
(

p(x) → q(x)
)

: ∀x
(

¬p(x) → ¬q(x)
)

Negation Law : (DeMorgan’s Principle)

¬∀x p(x) ≡ ∃x ¬p(x) [also written as, ¬∀x p(x) ⇔ ∃x ¬p(x)]
¬∃x p(x) ≡ ∀x ¬p(x) [also written as, ¬∃x p(x) ⇔ ∀x ¬p(x)]

(Intuitively, ∀x indicates ∧∞

i=0xi and ∃x indicates ∨∞

i=0xi)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 9 / 18

Predicate Logic Constructs: Use of Function Symbols

Example

1 If x is greater than y and y is greater than z, then x is greater than z.

Predicate: gt(x, y) denotes ‘x is greater than y’

Formula: ∀x ∀y ∀z
(

gt(x, y) ∧ gt(y, z) → gt(x, z)
)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 10 / 18

Predicate Logic Constructs: Use of Function Symbols

Example

1 If x is greater than y and y is greater than z, then x is greater than z.

Predicate: gt(x, y) denotes ‘x is greater than y’

Formula: ∀x ∀y ∀z
(

gt(x, y) ∧ gt(y, z) → gt(x, z)
)

2 The age of a person is greater than the age of his/her child.

Function Symbol: Age(x) denotes ‘age of the person x’

Predicate: child(x, y) denotes ‘x is a child of y’

Formula: ∀x ∀y
(

child(x, y) → gt(Age(y), Age(x))
)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 10 / 18

Predicate Logic Constructs: Use of Function Symbols

Example

1 If x is greater than y and y is greater than z, then x is greater than z.

Predicate: gt(x, y) denotes ‘x is greater than y’

Formula: ∀x ∀y ∀z
(

gt(x, y) ∧ gt(y, z) → gt(x, z)
)

2 The age of a person is greater than the age of his/her child.

Function Symbol: Age(x) denotes ‘age of the person x’

Predicate: child(x, y) denotes ‘x is a child of y’

Formula: ∀x ∀y
(

child(x, y) → gt(Age(y), Age(x))
)

3 The age of a person is greater than the age of his/her grandchild.

Formula: ∀x ∀y ∀z
(

(child(x, y) ∧ child(y, z)) → gt(Age(z), Age(x))
)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 10 / 18

Predicate Logic Constructs: Use of Function Symbols

Example

1 If x is greater than y and y is greater than z, then x is greater than z.

Predicate: gt(x, y) denotes ‘x is greater than y’

Formula: ∀x ∀y ∀z
(

gt(x, y) ∧ gt(y, z) → gt(x, z)
)

2 The age of a person is greater than the age of his/her child.

Function Symbol: Age(x) denotes ‘age of the person x’

Predicate: child(x, y) denotes ‘x is a child of y’

Formula: ∀x ∀y
(

child(x, y) → gt(Age(y), Age(x))
)

3 The age of a person is greater than the age of his/her grandchild.

Formula: ∀x ∀y ∀z
(

(child(x, y) ∧ child(y, z)) → gt(Age(z), Age(x))
)

4 The sum of ages of two children are never more than or equal to the sum of ages
of their parents.

Function Symbol: sum(x, y) denotes ‘sum of x and y, i.e. (x+y)’

Formula: ∀w ∀x ∀y ∀z
(

(child(w, y) ∧ child(w, z) ∧ child(x, y) ∧ child(x, z))
→ (gt(sum(Age(y), Age(z)), sum(Age(w), Age(x))))

)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 10 / 18

Predicate Logic Constructs: Equivalence and Implications

Definitions

Logical Equivalence: Two predicates, p(x) and q(x) are said to be logically equivalent

when for each x = A in the universe, (p(A) ↔ q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇔ q(x)).

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 11 / 18

Predicate Logic Constructs: Equivalence and Implications

Definitions

Logical Equivalence: Two predicates, p(x) and q(x) are said to be logically equivalent

when for each x = A in the universe, (p(A) ↔ q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇔ q(x)).

Logical Implication: A predicate, p(x) is said to logically imply another predicate q(x)
when for each x = A in the universe, (p(A) → q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇒ q(x)).

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 11 / 18

Predicate Logic Constructs: Equivalence and Implications

Definitions

Logical Equivalence: Two predicates, p(x) and q(x) are said to be logically equivalent

when for each x = A in the universe, (p(A) ↔ q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇔ q(x)).

Logical Implication: A predicate, p(x) is said to logically imply another predicate q(x)
when for each x = A in the universe, (p(A) → q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇒ q(x)).

Some Logical Rules

∃x
(

p(x) ∧ q(x)
)

⇒
(

∃x p(x) ∧ ∃x q(x)
)

(

∃x p(x) ∧ ∃x q(x)
)

6⇒ ∃x
(

p(x) ∧ q(x)
)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 11 / 18

Predicate Logic Constructs: Equivalence and Implications

Definitions

Logical Equivalence: Two predicates, p(x) and q(x) are said to be logically equivalent

when for each x = A in the universe, (p(A) ↔ q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇔ q(x)).

Logical Implication: A predicate, p(x) is said to logically imply another predicate q(x)
when for each x = A in the universe, (p(A) → q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇒ q(x)).

Some Logical Rules

∃x
(

p(x) ∧ q(x)
)

⇒
(

∃x p(x) ∧ ∃x q(x)
)

(

∃x p(x) ∧ ∃x q(x)
)

6⇒ ∃x
(

p(x) ∧ q(x)
)

∃x
(

p(x) ∨ q(x)
)

⇔
(

∃x p(x) ∨ ∃x q(x)
)

[distributed property of ∃ over ∨]

∀x
(

p(x) ∧ q(x)
)

⇔
(

∀x p(x) ∧ ∀x q(x)
)

[distributed property of ∀ over ∧]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 11 / 18

Predicate Logic Constructs: Equivalence and Implications

Definitions

Logical Equivalence: Two predicates, p(x) and q(x) are said to be logically equivalent

when for each x = A in the universe, (p(A) ↔ q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇔ q(x)).

Logical Implication: A predicate, p(x) is said to logically imply another predicate q(x)
when for each x = A in the universe, (p(A) → q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇒ q(x)).

Some Logical Rules

∃x
(

p(x) ∧ q(x)
)

⇒
(

∃x p(x) ∧ ∃x q(x)
)

(

∃x p(x) ∧ ∃x q(x)
)

6⇒ ∃x
(

p(x) ∧ q(x)
)

∃x
(

p(x) ∨ q(x)
)

⇔
(

∃x p(x) ∨ ∃x q(x)
)

[distributed property of ∃ over ∨]

∀x
(

p(x) ∧ q(x)
)

⇔
(

∀x p(x) ∧ ∀x q(x)
)

[distributed property of ∀ over ∧]
(

∀x p(x) ∨ ∀x q(x)
)

⇒ ∀x
(

p(x) ∨ q(x)
)

∀x
(

p(x) ∨ q(x)
)

6⇒
(

∀x p(x) ∨ ∀x q(x)
)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 11 / 18

Predicate Logic Constructs: Syntax and Semantics

Variables – Free / Bound (Scopes)

Variables are bounded under the scope of its immediately nested quantifier.

∀x pred(x, y) : x is a bound variable and y is a free variable.

∀x
(

p(x, y) ∧ ∃z q(x, y, z, w)
)

: x and z are bounded by ∀x and ∃z, respectively,
whereas y and w in q(x, y, z, w) are free variables.

∀x
(

p(x, y) ∧ ∃y ∃z q(x, y, z, w)
)

: x is bounded by ∀x, whereas y in p(x, y) is free. But,
both y and z in q(x, y, z, w) is bounded by ∃y and ∃z, respectively,
whereas w in q(x, y, z, w) is a free variable.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 / 18

Predicate Logic Constructs: Syntax and Semantics

Variables – Free / Bound (Scopes)

Variables are bounded under the scope of its immediately nested quantifier.

∀x pred(x, y) : x is a bound variable and y is a free variable.

∀x
(

p(x, y) ∧ ∃z q(x, y, z, w)
)

: x and z are bounded by ∀x and ∃z, respectively,
whereas y and w in q(x, y, z, w) are free variables.

∀x
(

p(x, y) ∧ ∃y ∃z q(x, y, z, w)
)

: x is bounded by ∀x, whereas y in p(x, y) is free. But,
both y and z in q(x, y, z, w) is bounded by ∃y and ∃z, respectively,
whereas w in q(x, y, z, w) is a free variable.

Symbols – Functions / Predicates

Propositional Symbols 7−→ Predicate Symbols (Boolean outcomes)

Constant Symbols 7−→ Function Symbols (Value based outcomes)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 / 18

Predicate Logic Constructs: Syntax and Semantics

Variables – Free / Bound (Scopes)

Variables are bounded under the scope of its immediately nested quantifier.

∀x pred(x, y) : x is a bound variable and y is a free variable.

∀x
(

p(x, y) ∧ ∃z q(x, y, z, w)
)

: x and z are bounded by ∀x and ∃z, respectively,
whereas y and w in q(x, y, z, w) are free variables.

∀x
(

p(x, y) ∧ ∃y ∃z q(x, y, z, w)
)

: x is bounded by ∀x, whereas y in p(x, y) is free. But,
both y and z in q(x, y, z, w) is bounded by ∃y and ∃z, respectively,
whereas w in q(x, y, z, w) is a free variable.

Symbols – Functions / Predicates

Propositional Symbols 7−→ Predicate Symbols (Boolean outcomes)

Constant Symbols 7−→ Function Symbols (Value based outcomes)

Quantification Eligibility of Variables and Symbols

Variables can be, but Symbols cannot be quantified in First-Order / Predicate Logic.

Incorrect: ∃p ∀x [p(x)] or ∃Age ∀x ∃y [gt(Age(x), Age(y))]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 / 18

Predicate Logic: Terminalogies

Constant Symbols: M, N, O, P, . . .

Variable Symbols: x, y, z, w, . . .

Function Symbols: F(x), G(x, y), H(x, y, z), . . .

Predicate Symbols: p(x), q(x, y), r(x, y, z), . . .

Connectors/Quantifiers: ¬,∧,∨,→ and ∃, ∀

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 13 / 18

Predicate Logic: Terminalogies

Constant Symbols: M, N, O, P, . . .

Variable Symbols: x, y, z, w, . . .

Function Symbols: F(x), G(x, y), H(x, y, z), . . .

Predicate Symbols: p(x), q(x, y), r(x, y, z), . . .

Connectors/Quantifiers: ¬,∧,∨,→ and ∃, ∀

Terms: Variables and Constant Symbols are Terms.
If t1, t2, . . . , tk are Terms and F(x1, x2, . . . , xk) is a Function
Symbol, then F(t1, t2, . . . , tk) is a Term.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 13 / 18

Predicate Logic: Terminalogies

Constant Symbols: M, N, O, P, . . .

Variable Symbols: x, y, z, w, . . .

Function Symbols: F(x), G(x, y), H(x, y, z), . . .

Predicate Symbols: p(x), q(x, y), r(x, y, z), . . .

Connectors/Quantifiers: ¬,∧,∨,→ and ∃, ∀

Terms: Variables and Constant Symbols are Terms.
If t1, t2, . . . , tk are Terms and F(x1, x2, . . . , xk) is a Function
Symbol, then F(t1, t2, . . . , tk) is a Term.

Well-Formed Formula: The WFF (or, simply formula) is recursively defined as:

A proposition is a WFF.
If t1, t2, . . . , tk are Terms and P(x1, x2, . . . , xk) is a Predicate
Symbol, then P(t1, t2, . . . , tk) is a WFF.
If F1, F2 are WFFs, then ¬F1, (F1 ∧ F2), (F1 ∨ F2) and
(F1 → F2) are WFFs.
If P(x, . . .) is a Predicate where x is a free variable, then
∀x P(x, . . .) and ∃x P(x, . . .) are WFFs.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 13 / 18

Predicate Logic: Interpretations and Inferencing

Structures and Notions

Domain, D: Set of elements/values specified for every interpretation

Constants, C: Get assigned values from given domains

Functions, F(x1, x2, . . . , xn): Mapping defined as, (D1 × · · · × Dn) 7→ D

(For e.g., ‘sum of x and y’ = sum(x, y) : Int× Int 7→ Int)

Predicates, P(x1, x2, . . . , xn): Mapping defined as, (D1 × · · · × Dn) 7→ {True, False}

(For e.g., ‘x is greater than y’ = gt(x, y) : Int× Int 7→ {True, False})

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 14 / 18

Predicate Logic: Interpretations and Inferencing

Structures and Notions

Domain, D: Set of elements/values specified for every interpretation

Constants, C: Get assigned values from given domains

Functions, F(x1, x2, . . . , xn): Mapping defined as, (D1 × · · · × Dn) 7→ D

(For e.g., ‘sum of x and y’ = sum(x, y) : Int× Int 7→ Int)

Predicates, P(x1, x2, . . . , xn): Mapping defined as, (D1 × · · · × Dn) 7→ {True, False}

(For e.g., ‘x is greater than y’ = gt(x, y) : Int× Int 7→ {True, False})

Formal Interpretations of a Formula

Valid: A valid formula is true for all interpretations.

Invalid: An invalid formula is false under at least one interpretation.

Satisfiable: A satisfiable formula is true under at least one interpretation.

Unsatisfiable: An unsatisfiable formula is false for all interpretations.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 14 / 18

Predicate Logic Deductions: Few Examples

Example-1

F1 : ∀x (goes(Ankush, x) → goes(Dog, x)) F2 : goes(Ankush, School)
G : goes(Dog, School) Query : Is (F1 ∧ F2) → G valid?

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 / 18

Predicate Logic Deductions: Few Examples

Example-1

F1 : ∀x (goes(Ankush, x) → goes(Dog, x)) F2 : goes(Ankush, School)
G : goes(Dog, School) Query : Is (F1 ∧ F2) → G valid?

Let, the doamin of variable x be D = {School, Ground, Library, . . .}.
Hence, for x = School, we have, F′1 : goes(Ankush, School) → goes(Dog, School).

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 / 18

Predicate Logic Deductions: Few Examples

Example-1

F1 : ∀x (goes(Ankush, x) → goes(Dog, x)) F2 : goes(Ankush, School)
G : goes(Dog, School) Query : Is (F1 ∧ F2) → G valid?

Let, the doamin of variable x be D = {School, Ground, Library, . . .}.
Hence, for x = School, we have, F′1 : goes(Ankush, School) → goes(Dog, School).

Inferencing:

F ′

1
F2
∴ G

, i.e.
goes(Ankush,School)→goes(Dog,School)

goes(Ankush,School)
∴ goes(Dog,School)

(implying (F1 ∧ F2) → G as valid)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 / 18

Predicate Logic Deductions: Few Examples

Example-1

F1 : ∀x (goes(Ankush, x) → goes(Dog, x)) F2 : goes(Ankush, School)
G : goes(Dog, School) Query : Is (F1 ∧ F2) → G valid?

Let, the doamin of variable x be D = {School, Ground, Library, . . .}.
Hence, for x = School, we have, F′1 : goes(Ankush, School) → goes(Dog, School).

Inferencing:

F ′

1
F2
∴ G

, i.e.
goes(Ankush,School)→goes(Dog,School)

goes(Ankush,School)
∴ goes(Dog,School)

(implying (F1 ∧ F2) → G as valid)

Example-2

F1 : ∀x (contractor(x) → ¬dependable(x))
F2 : ∃x (engineer(x) ∧ contractor(x))
G : ∃x (engineer(x) ∧ ¬dependable(x)) Query : Is (F1 ∧ F2) → G valid?

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 / 18

Predicate Logic Deductions: Few Examples

Example-1

F1 : ∀x (goes(Ankush, x) → goes(Dog, x)) F2 : goes(Ankush, School)
G : goes(Dog, School) Query : Is (F1 ∧ F2) → G valid?

Let, the doamin of variable x be D = {School, Ground, Library, . . .}.
Hence, for x = School, we have, F′1 : goes(Ankush, School) → goes(Dog, School).

Inferencing:

F ′

1
F2
∴ G

, i.e.
goes(Ankush,School)→goes(Dog,School)

goes(Ankush,School)
∴ goes(Dog,School)

(implying (F1 ∧ F2) → G as valid)

Example-2

F1 : ∀x (contractor(x) → ¬dependable(x))
F2 : ∃x (engineer(x) ∧ contractor(x))
G : ∃x (engineer(x) ∧ ¬dependable(x)) Query : Is (F1 ∧ F2) → G valid?

Here, let for x = A, we can produce,
F ′

1 : contractor(A)→¬dependable(A)

F ′

2 : engineer(A)∧contractor(A)
.

We can prove, G′ : engineer(A) ∧ ¬dependable(A), implying (F1 ∧ F2) → G as valid.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 / 18

Predicate Logic Deductions: Few Examples

Example-1

F1 : ∀x (goes(Ankush, x) → goes(Dog, x)) F2 : goes(Ankush, School)
G : goes(Dog, School) Query : Is (F1 ∧ F2) → G valid?

Let, the doamin of variable x be D = {School, Ground, Library, . . .}.
Hence, for x = School, we have, F′1 : goes(Ankush, School) → goes(Dog, School).

Inferencing:

F ′

1
F2
∴ G

, i.e.
goes(Ankush,School)→goes(Dog,School)

goes(Ankush,School)
∴ goes(Dog,School)

(implying (F1 ∧ F2) → G as valid)

Example-2

F1 : ∀x (contractor(x) → ¬dependable(x))
F2 : ∃x (engineer(x) ∧ contractor(x))
G : ∃x (engineer(x) ∧ ¬dependable(x)) Query : Is (F1 ∧ F2) → G valid?

Here, let for x = A, we can produce,
F ′

1 : contractor(A)→¬dependable(A)

F ′

2 : engineer(A)∧contractor(A)
.

We can prove, G′ : engineer(A) ∧ ¬dependable(A), implying (F1 ∧ F2) → G as valid.

Inferencing:

F ′

1
F ′

2
∴ G′

, because
contractor(A)→¬dependable(A)

engineer(A)∧contractor(A)
∴ ¬dependable(A)

and
engineer(A)∧contractor(A)

¬dependable(A)
∴ engineer(A)∧¬dependable(A)

.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 / 18

Predicate Logic: Inferencing and Deduction Rules

Rule of Universal Specification

Base Rule:

If ∀x p(x) is true, then p(A) is true for each element A from the domain of x.

If ∃x p(x) is true, then p(A) is true for at least one element A from the domain of x.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 / 18

Predicate Logic: Inferencing and Deduction Rules

Rule of Universal Specification

Base Rule:

If ∀x p(x) is true, then p(A) is true for each element A from the domain of x.

If ∃x p(x) is true, then p(A) is true for at least one element A from the domain of x.

Few Derived Rules:

∀x [p(x)→q(x)]
p(A)

∴ q(A)
(Modus Ponens)

∀x [p(x)→q(x)]
¬q(A)

∴ ¬p(A)
(Modus Tollens)

∀x [(p(x)∨q(x))→¬r(x)]
r(A)

∴ ¬p(A)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 / 18

Predicate Logic: Inferencing and Deduction Rules

Rule of Universal Specification

Base Rule:

If ∀x p(x) is true, then p(A) is true for each element A from the domain of x.

If ∃x p(x) is true, then p(A) is true for at least one element A from the domain of x.

Few Derived Rules:

∀x [p(x)→q(x)]
p(A)

∴ q(A)
(Modus Ponens)

∀x [p(x)→q(x)]
¬q(A)

∴ ¬p(A)
(Modus Tollens)

∀x [(p(x)∨q(x))→¬r(x)]
r(A)

∴ ¬p(A)

Rule of Universal Generalization

Base Rule: If ∀x p(x) is true, then p(c) is true for an arbitrarily chosen element c from
the domain of x.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 / 18

Predicate Logic: Inferencing and Deduction Rules

Rule of Universal Specification

Base Rule:

If ∀x p(x) is true, then p(A) is true for each element A from the domain of x.

If ∃x p(x) is true, then p(A) is true for at least one element A from the domain of x.

Few Derived Rules:

∀x [p(x)→q(x)]
p(A)

∴ q(A)
(Modus Ponens)

∀x [p(x)→q(x)]
¬q(A)

∴ ¬p(A)
(Modus Tollens)

∀x [(p(x)∨q(x))→¬r(x)]
r(A)

∴ ¬p(A)

Rule of Universal Generalization

Base Rule: If ∀x p(x) is true, then p(c) is true for an arbitrarily chosen element c from
the domain of x.

Few Derived Rules:

∀x [p(x)→q(x)]
∀x [q(x)→r(x)]

∴ ∀x [p(x)→r(x)]
(Universal Syllogism)

∀x [p(x)∨q(x)]
∀x [(¬p(x)∧q(x))→r(x)]

∴ ∀x [¬r(x)→p(x)]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 / 18

Limitations of Predicate Logic

Note: Predicate Logic can model any computable function.

Extensions to Predicate Logic

Higher-Order Logics: Can also quantify symbols along with quantifying variables.

∀p
(

(p(0) ∧ (∀x (p(x) → p(S(x)))) → ∀y (p(y))
)

[Guess what this formula expresses? Hint: A Math Theorem!]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 17 / 18

Limitations of Predicate Logic

Note: Predicate Logic can model any computable function.

Extensions to Predicate Logic

Higher-Order Logics: Can also quantify symbols along with quantifying variables.

∀p
(

(p(0) ∧ (∀x (p(x) → p(S(x)))) → ∀y (p(y))
)

[Guess what this formula expresses? Hint: A Math Theorem!]

Temporal Logics: Can also relate two time universes using additional constructs, such
as, next, future, always, until.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 17 / 18

Limitations of Predicate Logic

Note: Predicate Logic can model any computable function.

Extensions to Predicate Logic

Higher-Order Logics: Can also quantify symbols along with quantifying variables.

∀p
(

(p(0) ∧ (∀x (p(x) → p(S(x)))) → ∀y (p(y))
)

[Guess what this formula expresses? Hint: A Math Theorem!]

Temporal Logics: Can also relate two time universes using additional constructs, such
as, next, future, always, until.

Unsolvable Problem Specifications

Russell’s Paradox: The barber shaves all those who do not shave themselves. Does the
barber shaves himself?

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 17 / 18

Limitations of Predicate Logic

Note: Predicate Logic can model any computable function.

Extensions to Predicate Logic

Higher-Order Logics: Can also quantify symbols along with quantifying variables.

∀p
(

(p(0) ∧ (∀x (p(x) → p(S(x)))) → ∀y (p(y))
)

[Guess what this formula expresses? Hint: A Math Theorem!]

Temporal Logics: Can also relate two time universes using additional constructs, such
as, next, future, always, until.

Unsolvable Problem Specifications

Russell’s Paradox: The barber shaves all those who do not shave themselves. Does the
barber shaves himself?

There is a single barber in the town.

Those and only those who do not shave themselves are shaved by the barber.

Then, who shaves the barber? Undecidable!

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 17 / 18

Thank You!

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 18 / 18

