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From Propositional Logic to Predicate Logic

Example

1 Wherever Ankush goes, so does the pet dog. Ankush goes to school. So,
the dog goes to school.

2 No contractors are dependable. Some engineers are contractors. Therefore,
some engineers are not dependable.

3 All actresses are graceful. Anushka is a dancer. Anushka is an actress.
Therefore, some dancers are graceful.

4 Every passenger either travels in first class or second class. Each passenger
is in second class if and only if he or she is not wealthy. Some passengers are
wealthy. Not all passengers are wealthy. Therefore, some passengers travel
in second class.
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2 No contractors are dependable. Some engineers are contractors. Therefore,
some engineers are not dependable.

3 All actresses are graceful. Anushka is a dancer. Anushka is an actress.
Therefore, some dancers are graceful.

4 Every passenger either travels in first class or second class. Each passenger
is in second class if and only if he or she is not wealthy. Some passengers are
wealthy. Not all passengers are wealthy. Therefore, some passengers travel
in second class.

Propositional Logic Insufficiency

Quantifications: ‘some’, ‘none’, ‘all’, ‘every’, ‘wherever’ etc.

Associations: ‘x goes to some place y’, ‘z travels in first class’ etc.
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Predicate Logic Argument Formulation

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.
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Formal Constructs and Fundamentals

Following are the representational extensions made in First-Order Logic
(Predicate Logic) over Propositional Logic constructs:
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Quantifiers: Existantial (∃, i.e. there exists) and Universal (∀, i.e. for all)
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Predicate Logic Argument Formulation: Example-1

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.
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Predicate Logic Argument Formulation: Example-1

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Logical Formulation

Variables: x and y

Constants: Ankush, Dog and School

Predicate: goes(x, y): x goes to y
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Predicate Logic Argument Formulation: Example-1

Example

Wherever Ankush goes, so does the pet dog. Ankush goes to school. So, the dog
goes to school.

Logical Formulation

Variables: x and y

Constants: Ankush, Dog and School

Predicate: goes(x, y): x goes to y

Formula:
F1 : ∀x (goes(Ankush, x)→ goes(Dog, x))
F2 : goes(Ankush, School)
G : goes(Dog, School)

Requirement: To prove whether (F1 ∧ F2) → G is valid
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Predicate Logic Argument Formulation: Example-2

Example

No contractors are dependable. Some engineers are contractors. Therefore, some
engineers are not dependable.
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Predicates: Assuming the variable as x.

contractor(x) : x is a contractor
dependable(x) : x is dependable

engineer(x) : x is an engineer

Formula:

F1 : ∀x (contractor(x) → ¬dependable(x))
(Alt.) : ¬∃x (contractor(x) ∧ dependable(x))

F2 : ∃x (engineer(x) ∧ contractor(x))
(Alt.) : ∃x (engineer(x) → contractor(x)) ∧ ∃x engineer(x)

G : ∃x (engineer(x) ∧ ¬dependable(x))

Requirement: To prove whether (F1 ∧ F2) → G is valid
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Predicate Logic Argument Formulation: Example-3

Example

All actresses are graceful. Anushka is a dancer. Anushka is an actress. Therefore,
some dancers are graceful.
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Predicates: Assuming the variable as x.

actress(x) : x is an actress
graceful(x) : x is graceful

dancer(x) : x is a dancer

Formula:
F1 : ∀x (actress(x) → graceful(x))
F2 : dacncer(Anushka)
F3 : actress(Anushka)
G : ∃x (dancer(x) ∧ graceful(x))

Requirement: To prove whether (F1 ∧ F2 ∧ F3) → G is valid
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Predicate Logic Argument Formulation: Example-4

Example

Every passenger either travels in first class or second class. Each passenger is in second
class if and only if he or she is not wealthy. Some passengers are wealthy. Not all
passengers are wealthy. Therefore, some passengers travel in second class.
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Example

Every passenger either travels in first class or second class. Each passenger is in second
class if and only if he or she is not wealthy. Some passengers are wealthy. Not all
passengers are wealthy. Therefore, some passengers travel in second class.

Logical Formulation

Predicates: Assuming the variable as x.

pass(x) : x is a passenger
frst(x) : x travels in first class
scnd(x) : x travels in second class
wlty(x) : x is wealthy

Formula: To prove whether (F1 ∧ F2 ∧ F3 ∧ F4) → G is valid.

F1 : ∀x [pass(x) → (frst(x) ∨ scnd(x))]
F1 : ∀x [pass(x) →

(

(frst(x) ∧ ¬scnd(x)) ∨ (¬frst(x) ∧ scnd(x))
)

]
F2 : ∀x [pass(x) →

(

(scnd(x) → ¬wlty(x)) ∧ (¬wlty(x) → scnd(x))
)

]
F3 : ∃x [pass(x) ∧ wlty(x)] F4 : ¬∀x [pass(x) → wlty(x)]
G : ∃x [pass(x) ∧ scnd(x)] (Alt.) ∃x [pass(x) ∧ ¬wlty(x)]
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Predicate Logic Constructs: Use of Quantifiers

Example

A Everyone likes everyone. ∀x ∀y likes(x, y)

B Someone likes someone. ∃x ∃y likes(x, y)

C Everyone likes someone. ∀x
(

∃y likes(x, y)
)

D Someone likes everyone. ∃x
(

∀y likes(x, y)
)
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I Everyone is liked by everyone. ∀y
(

∀x likes(x, y)
)

II Someone is liked by someone. ∃y
(

∃x likes(x, y)
)

III Someone is liked by everyone. ∃y
(

∀x likes(x, y)
)

IV Everyone is liked by someone. ∀y
(

∃x likes(x, y)
)

Note: Active and Passive Voice statements in English are NOT logically similar!
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Predicate Logic Constructs: Use of Quantifiers

Example

1 If everyone likes everyone, then someone likes everyone.
(

∀x (∀y likes(x, y))
)

→
(

∃x (∀y likes(x, y))
)

2 If some person is liked by everyone, then that person likes himself/herself.
∃y

(

(∀x likes(x, y)) → likes(y, y)
)
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Example

1 If everyone likes everyone, then someone likes everyone.
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)

: ∀x
(

¬q(x) → ¬p(x)
)

Converse of ∀x
(

p(x) → q(x)
)

: ∀x
(

q(x) → p(x)
)

Inverse of ∀x
(

p(x) → q(x)
)

: ∀x
(

¬p(x) → ¬q(x)
)

Negation Law : (DeMorgan’s Principle)

¬∀x p(x) ≡ ∃x ¬p(x) [also written as, ¬∀x p(x) ⇔ ∃x ¬p(x)]
¬∃x p(x) ≡ ∀x ¬p(x) [also written as, ¬∃x p(x) ⇔ ∀x ¬p(x)]

(Intuitively, ∀x indicates ∧∞

i=0xi and ∃x indicates ∨∞

i=0xi)
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Predicate Logic Constructs: Use of Function Symbols

Example

1 If x is greater than y and y is greater than z, then x is greater than z.

Predicate: gt(x, y) denotes ‘x is greater than y’

Formula: ∀x ∀y ∀z
(

gt(x, y) ∧ gt(y, z) → gt(x, z)
)
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Formula: ∀x ∀y
(

child(x, y) → gt(Age(y), Age(x))
)

3 The age of a person is greater than the age of his/her grandchild.

Formula: ∀x ∀y ∀z
(

(child(x, y) ∧ child(y, z)) → gt(Age(z), Age(x))
)
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Predicate Logic Constructs: Use of Function Symbols
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2 The age of a person is greater than the age of his/her child.

Function Symbol: Age(x) denotes ‘age of the person x’

Predicate: child(x, y) denotes ‘x is a child of y’

Formula: ∀x ∀y
(

child(x, y) → gt(Age(y), Age(x))
)

3 The age of a person is greater than the age of his/her grandchild.

Formula: ∀x ∀y ∀z
(

(child(x, y) ∧ child(y, z)) → gt(Age(z), Age(x))
)

4 The sum of ages of two children are never more than or equal to the sum of ages
of their parents.

Function Symbol: sum(x, y) denotes ‘sum of x and y, i.e. (x+y)’

Formula: ∀w ∀x ∀y ∀z
(

(child(w, y) ∧ child(w, z) ∧ child(x, y) ∧ child(x, z))
→ (gt(sum(Age(y), Age(z)), sum(Age(w), Age(x))))

)
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Predicate Logic Constructs: Equivalence and Implications

Definitions

Logical Equivalence: Two predicates, p(x) and q(x) are said to be logically equivalent

when for each x = A in the universe, (p(A) ↔ q(A)) holds. Formally, we
express it as, ∀x (p(x) ⇔ q(x)).
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(
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)
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(
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(
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Predicate Logic Constructs: Syntax and Semantics

Variables – Free / Bound (Scopes)

Variables are bounded under the scope of its immediately nested quantifier.

∀x pred(x, y) : x is a bound variable and y is a free variable.

∀x
(

p(x, y) ∧ ∃z q(x, y, z, w)
)

: x and z are bounded by ∀x and ∃z, respectively,
whereas y and w in q(x, y, z, w) are free variables.

∀x
(

p(x, y) ∧ ∃y ∃z q(x, y, z, w)
)

: x is bounded by ∀x, whereas y in p(x, y) is free. But,
both y and z in q(x, y, z, w) is bounded by ∃y and ∃z, respectively,
whereas w in q(x, y, z, w) is a free variable.
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Variables – Free / Bound (Scopes)

Variables are bounded under the scope of its immediately nested quantifier.

∀x pred(x, y) : x is a bound variable and y is a free variable.

∀x
(

p(x, y) ∧ ∃z q(x, y, z, w)
)

: x and z are bounded by ∀x and ∃z, respectively,
whereas y and w in q(x, y, z, w) are free variables.

∀x
(

p(x, y) ∧ ∃y ∃z q(x, y, z, w)
)

: x is bounded by ∀x, whereas y in p(x, y) is free. But,
both y and z in q(x, y, z, w) is bounded by ∃y and ∃z, respectively,
whereas w in q(x, y, z, w) is a free variable.

Symbols – Functions / Predicates

Propositional Symbols 7−→ Predicate Symbols (Boolean outcomes)

Constant Symbols 7−→ Function Symbols (Value based outcomes)
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(

p(x, y) ∧ ∃y ∃z q(x, y, z, w)
)

: x is bounded by ∀x, whereas y in p(x, y) is free. But,
both y and z in q(x, y, z, w) is bounded by ∃y and ∃z, respectively,
whereas w in q(x, y, z, w) is a free variable.

Symbols – Functions / Predicates

Propositional Symbols 7−→ Predicate Symbols (Boolean outcomes)

Constant Symbols 7−→ Function Symbols (Value based outcomes)

Quantification Eligibility of Variables and Symbols

Variables can be, but Symbols cannot be quantified in First-Order / Predicate Logic.

Incorrect: ∃p ∀x [p(x)] or ∃Age ∀x ∃y [gt(Age(x), Age(y))]
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Predicate Logic: Terminalogies

Constant Symbols: M, N, O, P, . . .

Variable Symbols: x, y, z, w, . . .

Function Symbols: F(x), G(x, y), H(x, y, z), . . .

Predicate Symbols: p(x), q(x, y), r(x, y, z), . . .

Connectors/Quantifiers: ¬,∧,∨,→ and ∃, ∀
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Predicate Symbols: p(x), q(x, y), r(x, y, z), . . .

Connectors/Quantifiers: ¬,∧,∨,→ and ∃, ∀

Terms: Variables and Constant Symbols are Terms.
If t1, t2, . . . , tk are Terms and F(x1, x2, . . . , xk) is a Function
Symbol, then F(t1, t2, . . . , tk) is a Term.
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Function Symbols: F(x), G(x, y), H(x, y, z), . . .

Predicate Symbols: p(x), q(x, y), r(x, y, z), . . .

Connectors/Quantifiers: ¬,∧,∨,→ and ∃, ∀

Terms: Variables and Constant Symbols are Terms.
If t1, t2, . . . , tk are Terms and F(x1, x2, . . . , xk) is a Function
Symbol, then F(t1, t2, . . . , tk) is a Term.

Well-Formed Formula: The WFF (or, simply formula) is recursively defined as:

A proposition is a WFF.
If t1, t2, . . . , tk are Terms and P(x1, x2, . . . , xk) is a Predicate
Symbol, then P(t1, t2, . . . , tk) is a WFF.
If F1, F2 are WFFs, then ¬F1, (F1 ∧ F2), (F1 ∨ F2) and
(F1 → F2) are WFFs.
If P(x, . . .) is a Predicate where x is a free variable, then
∀x P(x, . . .) and ∃x P(x, . . .) are WFFs.
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Predicate Logic: Interpretations and Inferencing

Structures and Notions

Domain, D: Set of elements/values specified for every interpretation

Constants, C: Get assigned values from given domains

Functions, F(x1, x2, . . . , xn): Mapping defined as, (D1 × · · · × Dn) 7→ D

(For e.g., ‘sum of x and y’ = sum(x, y) : Int× Int 7→ Int)

Predicates, P(x1, x2, . . . , xn): Mapping defined as, (D1 × · · · × Dn) 7→ {True, False}

(For e.g., ‘x is greater than y’ = gt(x, y) : Int× Int 7→ {True, False})
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(For e.g., ‘sum of x and y’ = sum(x, y) : Int× Int 7→ Int)

Predicates, P(x1, x2, . . . , xn): Mapping defined as, (D1 × · · · × Dn) 7→ {True, False}

(For e.g., ‘x is greater than y’ = gt(x, y) : Int× Int 7→ {True, False})

Formal Interpretations of a Formula

Valid: A valid formula is true for all interpretations.

Invalid: An invalid formula is false under at least one interpretation.

Satisfiable: A satisfiable formula is true under at least one interpretation.

Unsatisfiable: An unsatisfiable formula is false for all interpretations.
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Predicate Logic Deductions: Few Examples

Example-1

F1 : ∀x (goes(Ankush, x) → goes(Dog, x)) F2 : goes(Ankush, School)
G : goes(Dog, School) Query : Is (F1 ∧ F2) → G valid?
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G : goes(Dog, School) Query : Is (F1 ∧ F2) → G valid?

Let, the doamin of variable x be D = {School, Ground, Library, . . .}.
Hence, for x = School, we have, F′1 : goes(Ankush, School) → goes(Dog, School).

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 / 18



Predicate Logic Deductions: Few Examples

Example-1

F1 : ∀x (goes(Ankush, x) → goes(Dog, x)) F2 : goes(Ankush, School)
G : goes(Dog, School) Query : Is (F1 ∧ F2) → G valid?

Let, the doamin of variable x be D = {School, Ground, Library, . . .}.
Hence, for x = School, we have, F′1 : goes(Ankush, School) → goes(Dog, School).

Inferencing:

F ′

1
F2
∴ G

, i.e.
goes(Ankush,School)→goes(Dog,School)

goes(Ankush,School)
∴ goes(Dog,School)

(implying (F1 ∧ F2) → G as valid)
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F ′

1
F2
∴ G

, i.e.
goes(Ankush,School)→goes(Dog,School)

goes(Ankush,School)
∴ goes(Dog,School)

(implying (F1 ∧ F2) → G as valid)

Example-2

F1 : ∀x (contractor(x) → ¬dependable(x))
F2 : ∃x (engineer(x) ∧ contractor(x))
G : ∃x (engineer(x) ∧ ¬dependable(x)) Query : Is (F1 ∧ F2) → G valid?
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Example-2

F1 : ∀x (contractor(x) → ¬dependable(x))
F2 : ∃x (engineer(x) ∧ contractor(x))
G : ∃x (engineer(x) ∧ ¬dependable(x)) Query : Is (F1 ∧ F2) → G valid?

Here, let for x = A, we can produce,
F ′

1 : contractor(A)→¬dependable(A)

F ′

2 : engineer(A)∧contractor(A)
.

We can prove, G′ : engineer(A) ∧ ¬dependable(A), implying (F1 ∧ F2) → G as valid.
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Here, let for x = A, we can produce,
F ′

1 : contractor(A)→¬dependable(A)

F ′

2 : engineer(A)∧contractor(A)
.

We can prove, G′ : engineer(A) ∧ ¬dependable(A), implying (F1 ∧ F2) → G as valid.

Inferencing:

F ′

1
F ′

2
∴ G′

, because
contractor(A)→¬dependable(A)

engineer(A)∧contractor(A)
∴ ¬dependable(A)

and
engineer(A)∧contractor(A)

¬dependable(A)
∴ engineer(A)∧¬dependable(A)

.
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Predicate Logic: Inferencing and Deduction Rules

Rule of Universal Specification

Base Rule:

If ∀x p(x) is true, then p(A) is true for each element A from the domain of x.

If ∃x p(x) is true, then p(A) is true for at least one element A from the domain of x.
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Rule of Universal Specification

Base Rule:

If ∀x p(x) is true, then p(A) is true for each element A from the domain of x.

If ∃x p(x) is true, then p(A) is true for at least one element A from the domain of x.

Few Derived Rules:

∀x [p(x)→q(x)]
p(A)

∴ q(A)
(Modus Ponens)

∀x [p(x)→q(x)]
¬q(A)

∴ ¬p(A)
(Modus Tollens)

∀x [(p(x)∨q(x))→¬r(x)]
r(A)

∴ ¬p(A)
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Predicate Logic: Inferencing and Deduction Rules

Rule of Universal Specification

Base Rule:

If ∀x p(x) is true, then p(A) is true for each element A from the domain of x.

If ∃x p(x) is true, then p(A) is true for at least one element A from the domain of x.

Few Derived Rules:

∀x [p(x)→q(x)]
p(A)

∴ q(A)
(Modus Ponens)

∀x [p(x)→q(x)]
¬q(A)

∴ ¬p(A)
(Modus Tollens)

∀x [(p(x)∨q(x))→¬r(x)]
r(A)

∴ ¬p(A)

Rule of Universal Generalization

Base Rule: If ∀x p(x) is true, then p(c) is true for an arbitrarily chosen element c from
the domain of x.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 / 18



Predicate Logic: Inferencing and Deduction Rules

Rule of Universal Specification

Base Rule:

If ∀x p(x) is true, then p(A) is true for each element A from the domain of x.
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(Modus Tollens)

∀x [(p(x)∨q(x))→¬r(x)]
r(A)

∴ ¬p(A)

Rule of Universal Generalization

Base Rule: If ∀x p(x) is true, then p(c) is true for an arbitrarily chosen element c from
the domain of x.

Few Derived Rules:

∀x [p(x)→q(x)]
∀x [q(x)→r(x)]

∴ ∀x [p(x)→r(x)]
(Universal Syllogism)

∀x [p(x)∨q(x)]
∀x [(¬p(x)∧q(x))→r(x)]

∴ ∀x [¬r(x)→p(x)]
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Limitations of Predicate Logic

Note: Predicate Logic can model any computable function.

Extensions to Predicate Logic

Higher-Order Logics: Can also quantify symbols along with quantifying variables.

∀p
(

(p(0) ∧ (∀x (p(x) → p(S(x)))) → ∀y (p(y))
)

[ Guess what this formula expresses? Hint: A Math Theorem! ]
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Limitations of Predicate Logic

Note: Predicate Logic can model any computable function.

Extensions to Predicate Logic

Higher-Order Logics: Can also quantify symbols along with quantifying variables.

∀p
(

(p(0) ∧ (∀x (p(x) → p(S(x)))) → ∀y (p(y))
)

[ Guess what this formula expresses? Hint: A Math Theorem! ]

Temporal Logics: Can also relate two time universes using additional constructs, such
as, next, future, always, until.

Unsolvable Problem Specifications

Russell’s Paradox: The barber shaves all those who do not shave themselves. Does the
barber shaves himself?

There is a single barber in the town.

Those and only those who do not shave themselves are shaved by the barber.

Then, who shaves the barber? Undecidable!
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Thank You!
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