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A Counting Problem

You appear in four tests.

• Algorithms

• Bioinformatics

• Compilers

• Discrete Structures

In each test, you get an integer mark in the range [0,10].

In how many ways can you get a total of 25 marks?

Some examples: 5+5+10+5 = 10+5+5+5 = 6+7+6+6 = 1+9+8+7 = 25.
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Frame the Problem Algebraically

• Algorithms: A = 1+a+a2 +a3 +a4 +a5 +a6 +a7 +a8 +a9 +a10.

• Bioinformatics: B = 1+b+b2 +b3 +b4 +b5 +b6 +b7 +b8 +b9 +b10.

• Compilers: C = 1+ c+ c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 + c10.

• Discrete Structures: D = 1+d+d2 +d3 +d4 +d5 +d6 +d7 +d8 +d9 +d10.

Consider the product ABCD.

The answer is the number of terms of the form aibjckdl in ABCD with i+ j+ k+ l = 25.

No real progress actually.
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An Insight

We are considering terms aibjckdl with i+ j+ k+ l = 25.

We can take a = b = c = d = x.

The coefficient of x25 in

(1+ x+ x2 + x3 + · · ·+ x10)4 =

(
1− x11

1− x

)4

=

(

1−
(

4

1

)

x11 +

(
4

2

)

x22 −
(

4

3

)

x33 + x44

)

∑
i>0

(
i+3

i

)

xi

gives the answer

(
25+3

25

)

−
(

4

1

)(
14+3

14

)

+

(
4

2

)(
3+3

3

)

=

(
28

25

)

−
(

4

1

)(
17

14

)

+

(
4

2

)(
6

3

)

= 676.

Exercise: Deduce the same formula by the principle of inclusion and exclusion.
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Combination with Repetitions

To choose r objects with repetition from a set of n distinct objects.

Each object can be chosen a maximum of r times.

Look at the coefficient of xr in (1+ x+ x2 + · · ·+ xr)n.

To simplify matters, look at the infinite series

(1+ x+ x2 + · · ·)n =

(
1

1− x

)n

=
1

(1− x)n

= ∑
i>0

(
n+ i−1

i

)

xi.

The coefficient of xr is

(
n+ r−1

r

)

.
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Definition

Let a0,a1,a2,a3, . . . ,an, . . . be an infinite sequence of real numbers.

The generating function of the sequence is

A(x) = a0 +a1x+a2x2 + · · ·+anxn + · · · .

The power series A(x) is formal.

We usually do not put any value for x in A(x).

Consequently, the convergence of the series is usually not an issue.

If we want to put a value for x, convergence issues must be considered.
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Examples

• Let n ∈ N. Then (1+ x)n is the generating function of

(
n

0

)

,

(
n

1

)

,

(
n

2

)

, . . . ,

(
n

n

)

,0,0,0, . . . .

• Let n ∈ N. Then
1− xn

1− x
= 1+ x+ x2 + · · ·+ xn−1 is the generating function of

1,1,1, . . . ,1,
︸ ︷︷ ︸

n times

0,0,0, . . . .

• 1

1− x
= 1+ x+ x2 + · · · is the generating function of 1,1,1, . . . .
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Examples

• 1

(1− x)2
= 1+2x+3x2 +4x3 + · · ·+(n+1)xn + · · ·

is the generating function of 1,2,3,4,5, . . . .

• x

(1− x)2
= 0+ x+2x2 +3x3 +4x4 + · · ·+nxn + · · ·

is the generating function of 0,1,2,3,4,5, . . . .

• d

dx

x

(1− x)2
=

1+ x

(1− x)3
= 12 +22x+32x2 +42x3 + · · ·+(n+1)2xn + · · ·

is the generating function of 12,22,32,42,52, . . . .

• x(1+ x)

(1− x)3
is the generating function of 02,12,22,32,42,52, . . . .
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Examples

• 1

1−αx
= 1+αx+α2x2 +α3x3 + · · ·+αnxn + · · ·

is the generating function of the geometric series 1,α ,α2,α3, . . . ,αn, . . . .

• If A(x) is the generating function of a0,a1,a2, . . . ,an, . . . , and B(x) the generating

function of b0,b1,b2, . . . ,bn, . . . , then A(x)+B(x) is the generating function of

a0 +b0,a1 +b1,a2 +b2, . . . ,an +bn, . . . .

• A(x)B(x) is the generating function of the convolution

a0b0,a0b1 +a1b0,a0b2 +a1b1 +a2b0, . . . ,a0bn +a1bn−1 +a2bn−2 + · · ·+anb0, . . . .

• Take B(x) =
1

1− x
in the convolution to see that

A(x)

1− x
is the generating function of

the prefix sums a0,a0 +a1,a0 +a1 +a2, . . . ,a0 +a1 +a2 + · · ·+an, . . . .
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Examples

In how many ways 20 marbles can be placed in three boxes such that

(1) Each box contains at least two marbles, and

(2) The third box contains no more than ten marbles?

Look at the coefficient of x20 in

(x2 + x3 + x4 + · · ·)2(x2 + x3 + · · ·+ x10)

= x6(1+ x+ x2 + · · ·)2(1+ x+ x2 + · · ·+ x8)

=
x6(1− x9)

(1− x)3

= (x6 − x15)∑
i>0

(
i+2

i

)

xi.

The answer is

(
14+2

14

)

−
(

5+2

5

)

=

(
16

2

)

−
(

7

2

)

= 120−21 = 99.
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Examples

How many 5-element subsets of {1,2,3,4, . . . ,20} do not contain consecutive integers?

Let {a1,a2,a3,a4,a5} be such a subset with

1 = a0 6 a1 < a2 < a3 < a4 < a5 6 a6 = 20.

For i = 0,1,2,3,4,5, define di = ai+1 −ai.

We have d0,d5 > 0, d1,d2,d3,d4 > 2, and d0 +d1 +d2 +d3 +d4 +d5 = 20−1 = 19.

The answer is the coefficient of x19 in

(1+ x+ x2 + · · ·)2(x2 + x3 + x4 + · · ·)4

=
x8

(1− x)6
= x8 ∑

i>0

(
i+5

i

)

xi,

that is,

(
11+5

11

)

=

(
16

5

)

= 4368.
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Geometric Distribution

• You toss a coin repeatedly until a head occurs.

• In each toss, p is the probability of head.

• Probability of tail is q = 1−p in each toss.

• Assume that 0 < p < 1, so 0 < q < 1 too.

• Let G be the number of times you need to toss.

• G assumes positive integral values.

• Pr[G = n] = qn−1p for n = 1,2,3, . . . .

• We want to compute E[G] and Var[G].

Discrete Structures, Autumn 2020 Abhijit Das



Expectation

• We have
1

(1− x)2
= 1+2x+3x2 +4x3 + · · ·+nxn−1 + · · · .

• The series converges for |x|< 1.

• Put x = q to get

1

(1−q)2
=

1

p2
= 1+2q+3q2 +4q3 + · · ·+nqn−1 + · · · .

• E[G] = p+2qp+3q2p+4q3p+ · · ·+nqn−1p+ · · ·= p× 1

p2
=

1

p
.
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Variance

• Var(G) = E[G2]−E[G]2.

• We have seen that
1+ x

(1− x)3
= 12 +22x+32x2 + · · ·+n2xn−1 + · · · .

• This series too converges for |x|< 1.

• Put x = q to get

12 +22q+32q2 + · · ·+n2qn−1 + · · ·= 1+q

(1−q)3
=

1+q

p3
.

• E[G2] = 12p+22qp+32q2p+42q3p+ · · ·+n2qn−1p+ · · ·= p×
(

1+q

p3

)

=
1+q

p2
.

• Thus Var(G) =
1+q

p2
−
(

1

p

)2

=
q

p2
.
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Ordered and Unordered Partitions of Positive Integers

Let n ∈ N.

In how many ways can n be written as a sum of positive integers?

If the order of the summands is important, we talk about compositions.

If the order of the summands is not important, we talk about partitions.

Compositions of 4 are

4 = 1+3 = 3+1 = 2+2 = 1+1+2 = 1+2+1 = 1+1+2 = 1+1+1+1.

Partitions of 4 are 4 = 1+3 = 2+2 = 1+1+2 = 1+1+1+1.

We proved earlier that the number of compositions of n is 2n−1.

The number of partitions of n does not have a known closed-form formula.

We will study these again in the light of generating functions.
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Counting Compositions of n

• Classify compositions by number of summands.

• One summand: Only one way of writing each n > 1. So the generating function is

x+ x2 + x3 + · · ·+ xn + · · ·= x

1− x
.

• Two summands: Look at the coefficient of xn in

(x+ x2 + x3 + · · ·)2 =

(
x

1− x

)2

.

• In general, for i summands, consider the coefficient of xn in

(x+ x2 + x3 + · · ·)i =

(
x

1− x

)i

.
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Counting Compositions of n

The generating function of the number of compositions of n is

∑
i>1

(
x

1− x

)i

=

(
x

1− x

)

∑
i>0

(
x

1− x

)i

=

(
x

1− x

)







1

1−
(

x

1− x

)







=
x

1−2x

= x(1+2x+22x2 +23x3 + · · ·+2n−1xn−1 + · · ·)
= x+2x2 +22x3 +23x4 + · · ·+2n−1xn + · · · .

We have again derived that the number of compositions of n is 2n−1.
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Counting Palindromic Compositions of n

• 4 = 2+2 = 1+2+1 = 1+1+1+1.

• 5 = 2+1+2 = 1+3+1 = 1+1+1+1+1.

• If the number of summands is even, n must be even.

• If the number of summands is odd, then the middle summand must have the same

parity as n.

• To the left of the center, any arbitrary composition is possible.

• To the right of the center, we write this composition in the reverse order.
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Case 1: n is Odd

• n may be the only summand (one case).

• Now consider multiple summands.

• The number of summands must be odd.

• The central summand must be odd (any one of 1,3,5,7, . . . ,n−2).

• The remaining sum is n−1,n−3,n−5,n−7, . . . ,2.

• This is distributed equally to the two sides of the center.

• The total count of palindromic compositions is therefore

1+
(

2
n−1

2
−1 +2

n−3
2

−1 +2
n−5

2
−1 + · · ·+21−1

)

= 2
n−1

2 = 2⌊ n
2⌋.

Discrete Structures, Autumn 2020 Abhijit Das



Case 2: n is Even

• n may be the only summand (one case).

• First, consider odd number of summands.

• The central summand must be even (any one of 2,4,6,8, . . . ,n−2).

• The remaining sum is n−2,n−4,n−6,n−8, . . . ,2.

• This is distributed equally to the two sides of the center.

• The total count of palindromic compositions with odd number of summands is

1+
(

2
n−2

2
−1 +2

n−4
2

−1 +2
n−6

2
−1 + · · ·+21−1

)

= 2
n−2

2 = 2
n
2
−1.

• If the number of summands is even, any composition of n/2 gives a palindromic

composition of n. The count in this case is 2
n
2
−1.

• The total count is 2
n
2 = 2⌊ n

2⌋.
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Counting Partitions of n

• p(n) is the number of partitions of n.

• We need to count how many times each i ∈ N may occur in the sum.

• 1 may occur never or once or twice or thrice or . . . giving the power series

1+ x+ x2 + x3 + · · ·= 1

1− x
.

• 2 may occur never or once or twice or thrice or . . . giving the power series

1+ x2 + x4 + x6 + · · ·= 1

1− x2
.

• In general, i may occur never or once or twice or thrice or . . . giving the power series

1+ xi + x2i + x3i + · · ·= 1

1− xi
.

Discrete Structures, Autumn 2020 Abhijit Das



Counting Partitions of n

• The generating function for p(n) is

∏
i>1

1

1− xi
.

• We may truncate the product after i = n.

• Nevertheless, we do not get any closed-form formula for p(n).
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Counting Partitions of n with Distinct Summands

• pd(n) is the number of partitions of n with distinct summands.

• 7 = 1+6 = 2+5 = 3+4 = 1+2+4.

• pd(7) = 5.

• Each i ∈ N occurs never or once in the sum.

• For any i > 1, the relevant series is 1+ xi.

• The generating function for pd(n) is therefore

(1+ x)(1+ x2)(1+ x3) · · ·= ∏
i>1

(1+ xi).
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Counting Partitions of n with Odd Summands

• po(n) is the number of partitions of n with odd summands.

• 7 = 1+1+5 = 1+3+3 = 1+1+1+1+3 = 1+1+1+1+1+1+1.

• po(7) = 5.

• Only 1,3,5,7, . . . are allowed in the sum.

• The generating function for po(n) is therefore

(1+ x+ x2 + x3 + · · ·)(1+ x3 + x6 + x9 + · · ·)(1+ x5 + x10 + x15 + · · ·) · · ·

=

(
1

1− x

)(
1

1− x3

)(
1

1− x5

)

· · ·

= ∏
i>1

(
1

1− x2i−1

)

.
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Equality of the Last Two Generating Functions

Use 1+ xi =
1− x2i

1− xi
.

∏
i>1

(1+ xi) = ∏
i>1

1− x2i

1− xi

=

(
1− x2

1− x

)(
1− x4

1− x2

)(
1− x6

1− x3

)(
1− x8

1− x4

)

· · ·

=

(
1

1− x

)(
1

1− x3

)(
1

1− x5

)

· · · .

It follows that pd(n) = po(n) for all n ∈ N.
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Ferrers Diagrams

20 = 7+5+4+2+2 = 5+5+3+3+2+1+1.

Observation: The number of partitions of n into m summands is equal to the number of

partitions of n into summands, among which m is the largest.

Exercise: Prove that the number of partitions of n is equal to the number of partitions of

2n into n summands.
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Exponential Generating Functions

(1+ x)n = C(n,0)+C(n,1)x+C(n,2)x2 + · · ·+C(n, i)xi + · · ·+C(n,n)xn

=
P(n,0)

0!
+

P(n,1)

1!
x+

P(n,2)

2!
x2 + · · ·+ P(n, i)

i!
xi + · · ·+ P(n,n)

n!
xn.

Let a0,a1,a2, . . . ,an, . . . be a sequence of real numbers.

The ordinary generating function (OGF) of the sequence is

A(x) = a0 +a1x+a2x2 + · · ·+anxn + · · · .

The exponential generating function (EGF) of the sequence is

Ae(x) =
a0

0!
+

a1

1!
x+

a2

2!
x2 + · · ·+ an

n!
xn + · · · .

Exponential generating functions are used for counting arrangements.

Discrete Structures, Autumn 2020 Abhijit Das



Examples

• ex = 1+ x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · is the EGF of 1,1,1,1,1, . . . , and the OGF of

1

0!
,

1

1!
,

1

2!
,

1

3!
, . . . ,

1

n!
, . . . .

• ex + e−x

2
= 1+

x2

2!
+

x4

4!
+

x6

6!
+ · · · is the EGF of 1,0,1,0,1,0, . . . .

• ex − e−x

2
= x+

x3

3!
+

x5

5!
+

x7

7!
+ · · · is the EGF of 0,1,0,1,0,1, . . . .
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Application 1

How many arrangements of four letters are possible

using the letters of ANANAS?

There are three A’s, two N’s, and one S. So the EGF is

(

1+ x+
x2

2!
+

x3

3!

)(

1+ x+
x2

2!

)

(1+ x).

The term involving x4 is

(
x3

3!
× x×1

)

︸ ︷︷ ︸

AAAN

+

(
x3

3!
×1× x

)

︸ ︷︷ ︸

AAAS

+

(
x2

2!
× x2

2!
×1

)

︸ ︷︷ ︸

AANN

+

(
x2

2!
× x× x

)

︸ ︷︷ ︸

AANS

+

(

x× x2

2!
× x

)

︸ ︷︷ ︸

ANNS

The coefficient of
x4

4!
in the EGF is

4!

3!
+

4!

3!
+

4!

2!2!
+

4!

2!
+

4!

2!
.
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Application 2

How many strings of length n > 0 over {a,b,c,d} such that

(1) the number of c’s is odd, and

(2) the number of d’s is even?

The EGF is

(

1+ x+
x2

2!
+

x3

3!
+ · · ·

)2(

x+
x3

3!
+

x5

5!
+ · · ·

)(

1+
x2

2!
+

x4

4!
+ · · ·

)

= e2x

(
ex − e−x

2

)(
ex + e−x

2

)

=
1

4
e2x(e2x − e−2x) =

1

4

(
e4x −1

)
=

1

4
∑
n>1

(4x)n

n!
.

The coefficient of
xn

n!
is 4n−1.
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A Simple Recurrence

a0 = 1

an = 3an−1 +2n for n > 1.

The first few terms of the sequence are

a0 = 1,

a1 = 3×1+2×1 = 5,

a2 = 3×5+2×2 = 19,

a3 = 3×19+2×3 = 63,

a4 = 3×63+2×4 = 197,

· · ·
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The Generating Function of the Sequence

A(x) = a0 +a1x+a2x2 +a3x3 + · · ·+anxn + · · ·
= 1+(3a0 +2×1)x+(3a1 +2×2)x2 +(3a2 +2×3)x3 + · · ·+(3an−1 +2n)xn + · · ·
= 1+3x(a0 +a1x+a2x2 +a3x3 + · · ·+anxn + · · ·)+

2x(1+2x+3x2 + · · ·+nxn−1 + · · ·)

= 1+3xA(x)+
2x

(1− x)2
.

Therefore

A(x) =
1

1−3x
+

2x

(1− x)2(1−3x)
.
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Expand A(x)

A(x) =
1

1−3x
+

2x

(1− x)2(1−3x)
=

A

1−3x
+

B

1− x
+

C

(1− x)2
.

(1− x)2 +2x = A(1− x)2 +B(1− x)(1−3x)+C(1−3x).

Put x =
1

3
to get A =

(1− 1
3
)2 + 2

3

(1− 1
3
)2

=
4+6

4
=

5

2
.

Put x = 1 to get C =
(1−1)2 +2

1−3
=−1.

Equate the constant coefficient to get 1 = A+B+C, so B = 1−A−C = 1− 5

2
+1 =−1

2
.
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Power Series Expansion of A(x)

A(x) =
5
2

1−3x
−

1
2

1− x
− 1

(1− x)2

=
5

2

[

1+3x+32x2 +33x3 + · · ·+3nxn + · · ·
]

−1

2

[

1+ x+ x2 + x3 + · · ·+ xn + · · ·
]

−
[

1+2x+3x2 +4x3 + · · ·+(n+1)xn + · · ·
]

.

Therefore an =
5

2
×3n − 1

2
− (n+1) =

5

2
×3n −n− 3

2
for all n > 0.
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Fibonacci Numbers

F0 = 0,

F1 = 1,

Fn = Fn−1 +Fn−2 for n > 2.

The generating function of the Fibonacci sequence is

F(x) = F0 +F1x+F2x2 +F3x3 + · · ·+Fnxn + · · · .
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Derivation of F(x)

F(x) = F0 +F1x+F2x2 +F3x3 + · · ·+Fnxn + · · ·
= 0+ x+(F1 +F0)x

2 +(F2 +F1)x
3 +(F3 +F2)x

4 + · · ·+(Fn−1 +Fn−2)x
n + · · ·

= x+(F1x2 +F2x3 +F3x4 + · · ·+Fn−1xn + · · ·)+
(F0x2 +F1x3 +F2x4 + · · ·+Fn−2xn + · · ·)

= x−F0x+(F0x+F1x2 +F2x3 +F3x4 + · · ·+Fn−1xn + · · ·)+
(F0x2 +F1x3 +F2x4 + · · ·+Fn−2xn + · · ·)

= x+ x(F0 +F1x+F2x2 +F3x3 + · · ·+Fnxn + · · ·)+
x2(F0 +F1x+F2x2 +F3x3 + · · ·+Fnxn + · · ·)

= x+ xF(x)+ x2F(x).

Therefore

F(x) =
x

1− x− x2
.
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Playing with F(x)

We want to write the denominator as

1− x− x2 = (1−αx)(1−βx).

Therefore we solve the quadratic equation y2 − y−1 = 0.

The roots are α =
1+

√
5

2
and β =

1−
√

5

2
.

This gives F(x) =
x

1− x− x2
=

x

(1−αx)(1−βx)
=

A

1−αx
+

B

1−βx
.

It follows that x = A(1−βx)+B(1−αx).

Put x = 1/α and x = 1/β to get

A =
1/α

1−β/α
=

1

α −β
=

1√
5

and B =
1/β

1−α/β
=

1

β −α
=− 1√

5
.
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Explicit Formula for Fibonacci Numbers

We have derived

F(x) =
1√
5

[
1

1−αx
− 1

1−βx

]

.

Power-series expansions of the two terms give

Fn =
1√
5

(

αn −β n
)

=
1√
5

[(

1+
√

5

2

)n

−
(

1−
√

5

2

)n ]

for all n > 0.
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A More Complicated Recurrence

b0 = 1,

b1 = 2,

b2 = 3,

bn = bn−1 +bn−2 −bn−3 +4 for all n > 3.

A few other terms of the sequence are

b3 = 3+2−1+4 = 8,

b4 = 8+3−2+4 = 13,

b5 = 13+8−3+4 = 22,

b6 = 22+13−8+4 = 31,

· · ·
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The Generating Function of the Sequence

B(x) = b0 +b1x+b2x2 +b3x3 +b4x4 + · · ·+bnxn + · · ·
= 1+2x+3x2 + ∑

n>3

(bn−1 +bn−2 −bn−3 +4)xn

= 1+2x+3x2 + x ∑
n>3

bn−1xn−1 + x2 ∑
n>3

bn−2xn−2 − x3 ∑
n>3

bn−3xn−3 +4x3 ∑
n>3

xn−3

= 1+2x+3x2 + x
(

B(x)−b0 −b1x
)

+ x2
(

B(x)−b0

)

− x3B(x)+
4x3

1− x

= 1+2x+3x2 − x−2x2 − x2 +
(

x+ x2 − x3
)

B(x)+
4x3

1− x

= 1+ x+
(

x+ x2 − x3
)

B(x)+
4x3

1− x
.

Therefore B(x) =
1− x2 +4x3

(1− x)(1− x− x2 + x3)
=

1− x2 +4x3

(1− x)3(1+ x)
.
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Expand B(x)

B(x) =
1− x2 +4x3

(1− x)3(1+ x)
=

A

1− x
+

B

(1− x)2
+

C

(1− x)3
+

D

1+ x
.

1− x2 +4x3 = A(1− x)2(1+ x)+B(1− x)(1+ x)+C(1+ x)+D(1− x)3.

Put x = 1 to get C = 2.

Put x =−1 to get D =− 1
2
.

Coefficient of x3: 4 = A−D, so A = 4+D = 7
2
.

Constant term: 1 = A+B+C+D, so B = 1−A−C−D =−4.
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Power Series Expansion of B(x)

B(x) =
7
2

1− x
− 4

(1− x)2
+

2

(1− x)3
−

1
2

1+ x

=
7

2
∑
n>0

xn −4 ∑
n>0

(n+1)xn +2 ∑
n>0

(n+1)(n+2)

2!
xn − 1

2
∑
n>0

(−1)nxn.

Therefore

bn =
7

2
−4(n+1)+(n+1)(n+2)− 1

2
(−1)n

= n2 −n+
3

2
− 1

2
(−1)n.
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Catalan Numbers

C0 = 1,

Cn = C0Cn−1 +C1Cn−2 +C2Cn−3 + · · ·+Cn−1C0 for all n > 1.

The generating function for the Catalan series is

C(x) = C0 +C1x+C2x2 +C3x3 + · · ·+Cnxn + · · ·
= 1+C0C0x+(C0C1 +C1C0)x

2 +(C0C2 +C1C1 +C2C0)x
3 + · · ·+

(C0Cn−1 +C1Cn−2 + · · ·+Cn−1C0)x
n + · · ·

= 1+ x(C0 +C1x+C2x2 + · · ·+Cnxn + · · ·)(C0 +C1x+C2x2 + · · ·+Cnxn + · · ·)
= 1+ xC(x)2.
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Solve for C(x)

xC(x)2 −C(x)+1 = 0.

C(x) =
1±

√
1−4x

2x
.

The choice of + in the numerator gives a term 1/x in C(x). So

C(x) =
1−

√
1−4x

2x
.

Therefore Cn is equal to half the coefficient of xn+1 in the power-series expansion of the

numerator 1−
√

1−4x.
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The Closed-Form Formula for Catalan Numbers

Cn = −(−4)n+1 1

2

[
1
2
( 1

2
−1)( 1

2
−2)( 1

2
−3) · · ·( 1

2
−n)

(n+1)!

]

= (−1)n+2 × 4n+1

2n+2
× (−1)n ×

[
1×3×5×·· ·× (2n−1)

(n+1)!

]

= 2n ×
[

1×3×5×·· ·× (2n−1)

(n+1)!

]

= 2n ×
[

1×3×5×·· ·× (2n−1)×n!

(n+1)!n!

]

=
1×3×5×·· ·× (2n−1)×2×4×6×·· ·× (2n)

(n+1)!n!

=
(2n)!

(n+1)n!n!
=

1

n+1

(
2n

n

)

.
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