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Basics of Functions

Functions: For two sets, A, B # ¢, a function (or mapping) f from A to B,
denoted as f : A — B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.
f(a)=b (a€ A, be B) when (a,b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b),(a,c) € f = b=rc.
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Basics of Functions

Functions: For two sets, A, B # ¢, a function (or mapping) f from A to B,
denoted as f : A — B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.
f(a)=b (a€ A, be B) when (a,b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b),(a,c) € f = b=rc.

Example: (1) Access function of 2-D array in memory, f : A — N (A = (ajj)mxn is
an m X n array) is defined by, f(a;) = (i —1)n+ .
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Basics of Functions

Functions: For two sets, A, B # ¢, a function (or mapping) f from A to B,
denoted as f : A — B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.
f(a)=b (a€ A, be B) when (a,b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b),(a,c) € f = b=rc.

Example: (1) Access function of 2-D array in memory, f : A — N (A = (aij)mxn is
an m X n array) is defined by, f(a;) = (i —1)n+ .
(2) Floor and ceiling functions, f : R — Z, are defined by,
f(x) = [x] and g(y) = [y] (x,y € R).
f(2.7) =2,f(=2.7) = =3,f(2) =2,f(—2) = —2 and
g(2.7) =3,g(—27) = -2,g(2) = 2,g(-2) = —-2.
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Basics of Functions

Functions: For two sets, A, B # ¢, a function (or mapping) f from A to B,
denoted as f : A — B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.
f(a)=b (a€ A, be B) when (a,b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b),(a,c) € f = b=rc.

Example: (1) Access function of 2-D array in memory, f : A — N (A = (aij)mxn is
an m X n array) is defined by, f(a;) = (i —1)n+ .
(2) Floor and ceiling functions, f : R — Z, are defined by,
f(x) = [x] and g(y) = [y] (x,y € R).
f(2.7) =2,f(=2.7) = =3,f(2) =2,f(—2) = —2 and
8(27) =3,8(-27) = -2,8(2) = 2,8(-2) = -2

Image and Pre-image: If f(a) = b, then b is the image of a
under f and a is the pre-image of b.
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Functions: For two sets, A, B # ¢, a function (or mapping) f from A to B,
denoted as f : A — B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.
f(a)=b (a€ A, be B) when (a,b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b),(a,c) € f = b=rc.

Example: (1) Access function of 2-D array in memory, f : A — N (A = (aij)mxn is
an m X n array) is defined by, f(a;) = (i —1)n+ .
(2) Floor and ceiling functions, f : R — Z, are defined by,
f(x) = [x] and g(y) = [y] (x,y € R).
f(2.7) =2,f(=2.7) = =3,f(2) =2,f(—2) = —2 and
8(27) =3,8(-27) = -2,8(2) = 2,8(-2) = -2

Image and Pre-image: If f(a) = b, then b is the image of a
under f and a is the pre-image of b.

Domain and Codomain: In f : A — B, A is the domain of f
and B is the codomain of f.
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Functions: For two sets, A, B # ¢, a function (or mapping) f from A to B,
denoted as f : A — B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.
f(a)=b (a€ A, be B) when (a,b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b),(a,c) € f = b=rc.

Example: (1) Access function of 2-D array in memory, f : A — N (A = (aij)mxn is
an m X n array) is defined by, f(a;) = (i —1)n+ .
(2) Floor and ceiling functions, f : R — Z, are defined by,
f(x) = [x] and g(y) = [y] (x,y € R).
f(2.7) =2,f(=2.7) = =3,f(2) =2,f(—2) = —2 and
8(27) =3,8(-27) = -2,8(2) = 2,8(-2) = -2

Image and Pre-image: If f(a) = b, then b is the image of a
under f and a is the pre-image of b.

Domain and Codomain: In f : A — B, A is the domain of f
and B is the codomain of f.

Range: Set of all images for elements of A in 15,
f(A) CB.
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Functions: For two sets, A, B # ¢, a function (or mapping) f from A to B,
denoted as f : A — B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.
f(a)=b (a€ A, be B) when (a,b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b),(a,c) € f = b=rc.

Example: (1) Access function of 2-D array in memory, f : A — N (A = (aij)mxn is
an m X n array) is defined by, f(a;) = (i —1)n+ .
(2) Floor and ceiling functions, f : R — Z, are defined by,
f(x) = [x] and g(y) = [y] (x,y € R).
f(2.7) =2,f(=2.7) = =3,f(2) =2,f(—2) = —2 and
8(27) =3,8(-27) = -2,8(2) = 2,8(-2) = -2

Image and Pre-image: If f(a) = b, then b is the image of a
under f and a is the pre-image of b.

Range
Domain and Codomain: In f : A — B, A is the domain of f m@

pre-image

and B is the codomain of f. image

Range: Set of all images for elements of A in B, e o
f(A) g B- omain odomain
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Properties of Functions

Number of Functions: Let A= {a1,...,am} (JA| = m) and
B={b1,...,bs} (|B|=n). f: A— Bis described as,
{(317)(1)7(327)(2)7"'7(am7Xm)}'
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So, Total Count = n™ = |B|!! (by rule-of-product).
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Properties of Functions

Number of Functions: Let A= {ai,...,am} (4| = m) and
B={b1,...,bs} (|B|=n). f: A— Bis described as,
{(317X1)7 (327X2)7 EER) (am,xm)}.
So, Total Count = n™ = |B|!! (by rule-of-product).

Image of Subset: If f: A — Band A C A, then f(A')={be B | b="f(a)}
(for some a € A’), and f(A’) is called the image of A" under f.
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Properties of Functions

Number of Functions: Let A= {a1,...,am} (JA| = m) and
B={b1,...,bs} (|B|=n). f: A— Bis described as,
{(317X1)7 (327X2)7 EER) (am,xm)}.
So, Total Count = n™ = |B|!! (by rule-of-product).

Image of Subset: If f: A — Band A C A, then f(A')={be B | b="f(a)}
(for some a € A’), and f(A’) is called the image of A" under f.

Restriction: If f: A — B and A" C A, then f|4 : A" — B is called the
restriction of f to A’ if f|4(a) = f(a) forallae A'.
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Number of Functions: Let A= {a1,...,am} (|A| = m) and
B={b1,...,bs} (|B|=n). f: A— Bis described as,
{(317X1)7 (327X2)7 EER) (am,xm)}.
So, Total Count = n™ = |B|!! (by rule-of-product).

Image of Subset: If f: A — Band A C A, then f(A')={be B | b="f(a)}
(for some a € A’), and f(A’) is called the image of A" under f.

Restriction: If f: A — B and A" C A, then f|4 : A" — B is called the

restriction of f to A’ if f|4(a) = f(a) forallae A'.

Extension: Let A’ C Aand f: A" — B. If g: A — B and g(a) = f(a) for all
a e A, then g is called an extension of f to A.
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Properties of Functions

Number of Functions: Let A= {a1,...,am} (|A| = m) and
B={b1,...,bs} (|B|=n). f: A— Bis described as,
{(al,xl), (32,X2), ey (am,xm)}.
So, Total Count = n™ = |B|!! (by rule-of-product).

Image of Subset: If f: A — Band A C A, then f(A')={be B | b="f(a)}
(for some a € A’), and f(A’) is called the image of A" under f.

Restriction: If f: A — B and A" C A, then f|4 : A" — B is called the
restriction of f to A’ if f|4(a) = f(a) forallae A'.

Extension: Let A’ C Aand f: A" — B. If g: A — B and g(a) = f(a) for all
a e A, then g is called an extension of f to A.

Let f: A — B, with A;, A> C A. Then, (I) If Ay C A = f(.Al) (
(ii) f(A1 U Ap) = f(A1) U f(Az), and (iii) (A1 N Az) C (A1) N1 (Az).

2),
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Properties of Functions

Number of Functions: Let A= {a1,...,am} (JA| = m) and
B={b1,...,bs} (|B|=n). f: A— Bis described as,
{(a1,x1), (32, %2), - - (am, Xm) }-

So, Total Count = n™ = |B|!! (by rule-of-product).

Image of Subset: If f: A — Band A C A, then f(A')={be B | b="f(a)}
(for some a € A’), and f(A’) is called the image of A" under f.

Restriction: If f: A — B and A" C A, then f|4 : A" — B is called the
restriction of f to A’ if f|4(a) = f(a) forallae A'.

Extension: Let A’ C Aand f: A" — B. If g: A — B and g(a) = f(a) for all
a e A, then g is called an extension of f to A.

Let f: A — B, with A;, A> C A. Then, (I) If Ay C A = f(.Al) - f(.Az),

(ii) (A1 UAp) = f(A1) U F(Az), and (iii) f(A1 N A) C f(A1) N F(A).

Proof: (ii) For each b € B, b € f(A1 N A2) = b= f(a), for some a € (A1 N Ay)
= [b = f(a) for some a € A;] A [b = f(a) for some a € Ay] = b € f(A1) A b € f(A2)
= b € (A1) N f(Az), implying the result.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3/17



Properties of Functions

Number of Functions: Let A= {a1,...,am} (|A| = m) and
B={b1,...,bs} (|B|=n). f: A— Bis described as,
{(alaxl)a (32,X2), teey (amyxm)}-
So, Total Count = n™ = |B|!! (by rule-of-product).

Image of Subset: If f: A — Band A C A, then f(A')={be B | b="f(a)}
(for some a € A’), and f(A’) is called the image of A" under f.

Restriction: If f: A — B and A" C A, then f|4 : A" — B is called the
restriction of f to A’ if f|4(a) = f(a) forallae A'.

Extension: Let A’ C Aand f: A" — B. If g: A — B and g(a) = f(a) for all
a e A, then g is called an extension of f to A.

Let f: A — B, with A;, A> C A. Then, (I) If Ay C A = f(.Al) - f(.Az),

(ii) f(A1 U Ap) = f(A1) U f(Az), and (iii) (A1 N Az) C (A1) N1 (Az).

Proof: (ii) For each b € B, b € f(A1 N A2) = b= f(a), for some a € (A1 N Ay)
= [b = f(a) for some a € A;] A [b = f(a) for some a € Ay] = b € f(A1) A b € f(A2)
= b € (A1) N f(Az), implying the result.

(i) and (ii) Left for You as an Exercise!
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One-to-One or Injective Functions

One-to-one (Injective) Function: f : A — B is a one-to-one (or injective)
function, if each element in B appears at most once as image of an
element of A.

@ For arbitrary sets A, B, f : A — B is one-to-one if and only if
Vai,ax € A, f(a1) = f(a2) = a1 = ax.
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One-to-One or Injective Functions

One-to-one (Injective) Function: f : A — B is a one-to-one (or injective)
function, if each element in B appears at most once as image of an
element of A.
@ For arbitrary sets A, B, f : A — B is one-to-one if and only if
Vai,ax € A, f(a1) = f(a2) = a1 = ax.
® If f : A — B is one-to-one with A, B finite, then |A| < |B|.
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One-to-One or Injective Functions

One-to-one (Injective) Function: f : A — B is a one-to-one (or injective)
function, if each element in B appears at most once as image of an
element of A.
@ For arbitrary sets A, B, f : A — B is one-to-one if and only if
Vai,ax € A, f(a1) = f(a2) = a1 = ax.
® If f : A — B is one-to-one with A, B finite, then |A| < |B|.
Examples: (i) f: R — R where f(x) = 2x + 1, Vx € R is one-to-one;

because for all x;, x> € R, we have
f(Xl) = f(X2) =2 +1=2x%+1= x3 = x.
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One-to-One or Injective Functions

One-to-one (Injective) Function: f : A — B is a one-to-one (or injective)
function, if each element in B appears at most once as image of an
element of A.
@ For arbitrary sets A, B, f : A — B is one-to-one if and only if
Vai,ax € A, f(a1) = f(a2) = a1 = ax.
® If f : A — B is one-to-one with A, B finite, then |A| < |B|.
Examples: (i) f: R — R where f(x) = 2x + 1, Vx € R is one-to-one;
because for all x;, x> € R, we have
f(Xl) = f(Xz) =2 +1=2x%+1= x3 = x.
(ii) g : R — R where g(x) = x?> + x, Vx € R is NOT one-to-one;
because g(—1) =0 and g(0) = 0.
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One-to-One or Injective Functions

One-to-one (Injective) Function: f : A — B is a one-to-one (or injective)
function, if each element in B appears at most once as image of an
element of A.
@ For arbitrary sets A, B, f : A — B is one-to-one if and only if
Vai,ax € A, f(a1) = f(a2) = a1 = ax.
® If f : A — B is one-to-one with A, B finite, then |A| < |B|.
Examples: (i) f: R — R where f(x) = 2x + 1, Vx € R is one-to-one;
because for all x;, x> € R, we have
f(Xl) = f(X2) =2 +1=2x%+1= x3 = x.
(ii) g : R — R where g(x) = x?> + x, Vx € R is NOT one-to-one;
because g(—1) =0 and g(0) = 0.
Number of Injective Functions: Let A = {a1,...,am} (J]A| = m) and
B={b1,....bs} (|B|=n) (m<n). f: A— B is described as,
{(a1,x1), (32, %2), - - -, (8ms Xm) }-
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One-to-One or Injective Functions

One-to-one (Injective) Function: f : A — B is a one-to-one (or injective)
function, if each element in B appears at most once as image of an
element of A.

@ For arbitrary sets A, B, f : A — B is one-to-one if and only if
Vai,ax € A, f(a1) = f(a2) = a1 = ax.
® If f : A — B is one-to-one with A, B finite, then |A| < |B|.

Examples: (i) f: R — R where f(x) = 2x + 1, Vx € R is one-to-one;

because for all x;, x> € R, we have
f(Xl) = f(Xz) =2 +1=2x%+1= x3 = x.
(ii) g : R — R where g(x) = x?> + x, Vx € R is NOT one-to-one;
because g(—1) =0 and g(0) = 0.

Number of Injective Functions: Let A = {a1,...,am} (J]A| = m) and
B={b1,....bs} (|B|=n) (m<n). f: A— B is described as,
{(a1,x1), (32, %2), - - -, (8ms Xm) }-
So, Total Count = n(n—1)---(n—m+1) = 7l = P(IB|, |A]).

(n—m
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One-to-One or Injective Functions

One-to-one (Injective) Function: f : A — B is a one-to-one (or injective)
function, if each element in B appears at most once as image of an
element of A.

@ For arbitrary sets A, B, f : A — B is one-to-one if and only if
Vai,ax € A, f(a1) = f(a2) = a1 = ax.
® If f : A — B is one-to-one with A, B finite, then |A| < |B|.

Examples: (i) f: R — R where f(x) = 2x + 1, Vx € R is one-to-one;

because for all x;, x> € R, we have
f(Xl) = f(Xz) =2 +1=2x%+1= x3 = x.
(ii) g : R — R where g(x) = x?> + x, Vx € R is NOT one-to-one;
because g(—1) =0 and g(0) = 0.

Number of Injective Functions: Let A = {a1,...,am} (J]A| = m) and
B={b1,....bs} (|B|=n) (m<n). f: A— B is described as,
{(a1,x1), (32, %2), - - -, (8ms Xm) }-
So, Total Count = n(n—1)---(n—m+1) = 7l = P(IB|, |A]).

(n—m

f: A— B, with A, 4> C A. Then, f(A1 N Ay) = (A1) N f(A2), if fis one-to-one.

J
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Onto or Surjective Functions

Onto (Surjective) Function: f: A — B is a onto (or surjective) function, if
f(A) =B, i.e. for all b € B there is at least one a € A
with f(a) = b.
@ For arbitrary sets A, B, f : A — B is onto if and only
if YVbe B, Ja € A, so that f(a) = b.
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Onto or Surjective Functions

Onto (Surjective) Function: f: A — B is a onto (or surjective) function, if
f(A) =B, i.e. for all b € B there is at least one a € A
with f(a) = b.

@ For arbitrary sets A, B, f : A — B is onto if and only
if YVbe B, Ja € A, so that f(a) = b.
@ If f: A — B is onto with A, B finite, then |A| > |B].
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Onto or Surjective Functions

Onto (Surjective) Function: f: A — B is a onto (or surjective) function, if
f(A) =B, i.e. for all b € B there is at least one a € A
with f(a) = b.

@ For arbitrary sets A, B, f : A — B is onto if and only
if YVbe B, Ja € A, so that f(a) = b.
@ If f: A — B is onto with A, B finite, then |A| > |B].

Examples: (i) f : R — R where f(x) = x> + 1, Vx € R is onto;
because for each y = x> + 1 € R, there is an x = ¥y — 1.
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Onto or Surjective Functions

Onto (Surjective) Function: f: A — B is a onto (or surjective) function, if

f(A) =B, i.e. for all b € B there is at least one a € A
with f(a) = b.

@ For arbitrary sets A, B, f : A — B is onto if and only

if YVbe B, Ja € A, so that f(a) = b.
@ If f: A — B is onto with A, B finite, then |A| > |B].
Examples: (i) f : R — R where f(x) = x> + 1, Vx € R is onto;

because for each y = x> + 1 € R, there is an x = ¥y — 1.
(i) f: R — R where f(x) = x?, ¥x € R is NOT onto;
because for an y = —4 € R, we get
x =,y =2ior—2i ZR.
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Onto or Surjective Functions

Onto (Surjective) Function: f: A — B is a onto (or surjective) function, if

f(A) =B, i.e. for all b € B there is at least one a € A
with f(a) = b.

@ For arbitrary sets A, B, f : A — B is onto if and only

if YVbe B, Ja € A, so that f(a) = b.
@ If f: A — B is onto with A, B finite, then |A| > |B].
Examples: (i) f : R — R where f(x) = x> + 1, Vx € R is onto;

because for each y = x> + 1 € R, there is an x = ¥y — 1.
(i) f: R — R where f(x) = x?, ¥x € R is NOT onto;
because for an y = —4 € R, we get
x =,y =2ior—2i ZR.

Number of Onto Functions: Counting is non-trivial and will be addressed later!
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Onto or Surjective Functions

Onto (Surjective) Function: f: A — B is a onto (or surjective) function, if

f(A) =B, i.e. for all b € B there is at least one a € A
with f(a) = b.

@ For arbitrary sets A, B, f : A — B is onto if and only

if YVbe B, Ja € A, so that f(a) = b.
@ If f: A — B is onto with A, B finite, then |A| > |B].
Examples: (i) f : R — R where f(x) = x> + 1, Vx € R is onto;

because for each y = x> + 1 € R, there is an x = ¥y — 1.
(i) f: R — R where f(x) = x?, ¥x € R is NOT onto;
because for an y = —4 € R, we get
x =,y =2ior—2i ZR.

Number of Onto Functions: Counting is non-trivial and will be addressed later!

One-to-one & Onto (Bijective) Function:

f: A — B is bijective if it is both one-to-one (injective) and onto (surjective).

@ For arbitrary sets A, B, f : A — B is bijective if and only if
Vb € B, Jda€ A, so that f(a) = b and Va'(# a) € A, f(a’) # b.

@ If f: A — B is bijective with A, B finite, then |A| = |B|.
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Onto or Surjective Functions

Onto (Surjective) Function: f : A — B is a onto (or surjective) function, if N
f(A) = B, i.e. for all b € B there is at least one a € A .
with f(a) = b. o
@ For arbitrary sets A, B, f : A — B is onto if and only :"do"“’
if YVbe B, Ja € A, so that f(a) = b. .
@ If f: A— B is onto with A, B finite, then | 4| > |B]. VAN
Examples: (i) f : R — R where f(x) = x> + 1, Vx € R is onto; g:te-l:—(;mte,
because for each y = x> + 1 € R, there is an x = ¥y — 1. :no s
(i) f: R — R where f(x) = x?, ¥x € R is NOT onto; .
because for an y = —4 € R, we get °
x =,y =2ior—2i ZR. p—-
not One-to-one
Number of Onto Functions: Counting is non-trivial and will be addressed later! .%
One-to-one & Onto (Bijective) Function: ar
f : A — B is bijective if it is both one-to-one (injective) and onto (surjective). Neilh‘erOge;lo—one,
@ For arbitrary sets A, B, f : A — B is bijective if and only if .
Vb € B, Jda€ A, so that f(a) = b and Va'(# a) € A, f(a’) # b.
@ If f: A — B is bijective with A, B finite, then |A| = |B|. o
ot a Function
(but 2Relation)
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(Binary) Operations and Properties

Definition

Binary Operation: For non-empty sets, A, B, any function f : A x A — B is called a
binary operation on A. If B C A then the binary operation is closed on

A (also A is closed under f). (Count: \B‘|‘A‘2)

Unary Operation: A function g : A — A is called unary (or monary) operation on A.
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(Binary) Operations and Properties

Binary Operation: For non-empty sets, A, B, any function f : A x A — B is called a
binary operation on A. If B C A then the binary operation is closed on

A (also A is closed under f). (Count: \B|‘A‘2)

Unary Operation: A function g : A — A is called unary (or monary) operation on A.

Properties: Let f : A x A — B is a binary operation.

|

Commutativity: If V(x,y) € A x A, f(x,y) = f(y,x) then f is commutative.

Associativity: If f is closed and Vx,y,z € A, f(f(x,y),z) = f(x,f(y,z)), then f is
associative.
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(Binary) Operations and Properties

Binary Operation: For non-empty sets, A, B, any function f : A x A — B is called a
binary operation on A. If B C A then the binary operation is closed on

A (also A is closed under f). (Count: \B|‘A‘2)

Unary Operation: A function g : A — A is called unary (or monary) operation on A.

Properties: Let f : A x A — B is a binary operation.

Commutativity: If V(x,y) € Ax A, f(x,y) = f(y,x) then f is commutative.

Associativity: If f is closed and Vx,y,z € A, f(f(x,y),z) = f(x,f(y, z)), then f is
associative.

A,

Example

Q g:Z' xZ" — 7 defined as g(x,y) = x — y, is a binary operation on Z which is
NOT closed as g(1,2) = —1 € Z™, though 1,2 € Z™.

v
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(Binary) Operations and Properties

Binary Operation: For non-empty sets, A, B, any function f : A x A — B is called a
binary operation on A. If B C A then the binary operation is closed on

A (also A is closed under f). (Count: \B|‘A‘2)

Unary Operation: A function g : A — A is called unary (or monary) operation on A.

Properties: Let f : A x A — B is a binary operation.

Commutativity: If V(x,y) € Ax A, f(x,y) = f(y,x) then f is commutative.

Associativity: If f is closed and Vx,y,z € A, f(f(x,y),z) = f(x,f(y, z)), then f is
associative.

A,

Example

Q g:Z' xZ" — 7 defined as g(x,y) = x — y, is a binary operation on Z which is
NOT closed as g(1,2) = —1 € Z™, though 1,2 € Z™.
Q h:R" — R" defined as h(x) = 2 is an unary operation on R*.

v
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(Binary) Operations and Properties

Binary Operation: For non-empty sets, A, B, any function f : A x A — B is called a
binary operation on A. If B C A then the binary operation is closed on
2
A (also A is closed under f). (Count: |B|A1)

Unary Operation: A function g : A — A is called unary (or monary) operation on A.

Properties: Let f : A x A — B is a binary operation.

Commutativity: If V(x,y) € Ax A, f(x,y) = f(y,x) then f is commutative.

Associativity: If f is closed and Vx,y,z € A, f(f(x,y),z) = f(x,f(y, z)), then f is
associative.

A,

Example

Q g:Z' xZ" — 7 defined as g(x,y) = x — y, is a binary operation on Z which is
NOT closed as g(1,2) = —1 € Z™, though 1,2 € Z™.

Q h:R" — R" defined as h(x) = 2 is an unary operation on R*.

©Q f:7Z xZ — 7 defined as f(x,y) = x — y, is a closed binary operation on Z which
is neither commutative nor associative. (Why?)

v
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(Binary) Operations and Properties

Definition

Binary Operation: For non-empty sets, A, B, any function f : A x A — B is called a
binary operation on A. If B C A then the binary operation is closed on
2
A (also A is closed under f). (Count: |B|A1)

Unary Operation: A function g : A — A is called unary (or monary) operation on A.

|

Properties: Let f : A x A — B is a binary operation.

Commutativity: If V(x,y) € Ax A, f(x,y) = f(y,x) then f is commutative.

Associativity: If f is closed and Vx,y,z € A, f(f(x,y),z) = f(x,f(y, z)), then f is
associative.

|

Example

Q g:Z' xZ" — 7 defined as g(x,y) = x — y, is a binary operation on Z which is
NOT closed as g(1,2) = —1 € Z™, though 1,2 € Z™.

Q h:R" — R" defined as h(x) = 2 is an unary operation on R*.

©Q f:7Z xZ — 7 defined as f(x,y) = x — y, is a closed binary operation on Z which
is neither commutative nor associative. (Why?)

@ f:ZXx7Z — 7 defined as f(a, b) = a+ b— ab is both commutative and associative.

v
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More Properties of Binary Operation

Properties: Let f: Ax A — B is a binary operation.

Identity: x € A is an identity (or identity element) for f if
f(a,x) = f(x,a) = a, Va € A.

v
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More Properties of Binary Operation

Properties: Let f: Ax A — B is a binary operation.

Identity: x € A is an identity (or identity element) for f if
f(a,x) = f(x,a) = a, Va € A.

Property: If f has an identity, then that identity is unique.

v
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More Properties of Binary Operation

Properties: Let f: Ax A — B is a binary operation.

Identity: x € A is an identity (or identity element) for f if
f(a,x) = f(x,a) = a, Va € A.
Property: If f has an identity, then that identity is unique.
(Proof: Let two identities, x1,x2 € A. Then, by definition
f(x1,x2) = x1 = f(x2, x1) = x2, leading to contradiction!)
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More Properties of Binary Operation

Properties: Let f: Ax A — B is a binary operation.

Identity: x € A is an identity (or identity element) for f if
f(a,x) = f(x,a) = a, Va € A.
Property: If f has an identity, then that identity is unique.
(Proof: Let two identities, x1,x2 € A. Then, by definition
f(x1,x2) = x1 = f(x2, x1) = x2, leading to contradiction!)
Example: f :7Z X Z — Z defined as f(a,b) = a+ b — ab has 0 as the unique
identity, because f(a,0) =a+0+a0=a=0+a+0.a= (0, a).
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More Properties of Binary Operation

Properties: Let f: Ax A — B is a binary operation.

Identity: x € A is an identity (or identity element) for f if
f(a,x) = f(x,a) = a, Va € A.

Property: If f has an identity, then that identity is unique.
(Proof: Let two identities, x1,x2 € A. Then, by definition
f(x1,x2) = x1 = f(x2, x1) = x2, leading to contradiction!)

Example: f :7Z X Z — Z defined as f(a,b) = a+ b — ab has 0 as the unique
identity, because f(a,0) =a+0+a0=a=0+a+0.a= (0, a).

Projection: For sets A, B, if C C A x B, then —
(i) 74 : C — A defined by w4 (a, b) = a, is called the projection on the
first coordinate. (ii) 75 : C — B defined by m5(a, b) = b, is called the
projection on the second coordinate.

v
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More Properties of Binary Operation

Properties: Let f: Ax A — B is a binary operation.

Identity: x € A is an identity (or identity element) for f if
f(a,x) = f(x,a) = a, Va € A.

Property:

Example:

If £ has an identity, then that identity is unique.
(Proof: Let two identities, x1,x2 € A. Then, by definition
f(x1,x2) = x1 = f(x2, x1) = x2, leading to contradiction!)

f:Z X Z — Z defined as f(a,b) = a+ b — ab has 0 as the unique
identity, because f(a,0) =a+0+a0=a=0+a+0.a= (0, a).

Projection:

Property:

For sets A, B, if C C A x B, then —
(i) 74 : C — A defined by w4 (a, b) = a, is called the projection on the
first coordinate. (ii) 75 : C — B defined by m5(a, b) = b, is called the
projection on the second coordinate.

If C = A x B, then m4 and 75 both are onto functions.

v
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More Properties of Binary Operation

Properties: Let f : A x A — B is a binary operation.

Identity: x € A is an identity (or identity element) for f if
f(a,x) = f(x,a) = a, Va € A.

Property: If f has an identity, then that identity is unique.
(Proof: Let two identities, x1,x2 € A. Then, by definition

f(x1,x2) = x1 = f(x2, x1) = x2, leading to contradiction!)

Example: f :7Z X Z — Z defined as f(a,b) = a+ b — ab has 0 as the unique
identity, because f(a,0) =a+0+a0=a=0+a+0.a= (0, a).

Projection: For sets A, B, if C C A x B, then —
(i) 74 : C — A defined by w4 (a, b) = a, is called the projection on the
first coordinate. (ii) 75 : C — B defined by m5(a, b) = b, is called the
projection on the second coordinate.

Property: If C = A x B, then w4 and 73 both are onto functions.

Example: Let A=B =R and C C A x Bwhere C={(x,y) | y =x2, x,y € R}
representing the Euclidean plane that contains points on the parabola y = x2.
Here, m4(3,9) = 3 and m5(3,9) = 9. Note that, 7 4(C) = R and hence 7 4 is
onto (and one-to-one as well). Whereas, 75(C) = [0, +c0] C R and hence 73
is NOT onto (nor it is one-to-one as 73(2,4) = 4 = (-2, 4)).
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Equal, Identity and Composite Functions

Identity Function: The function, 14 : A — A defined by 14(a) = a (Va € A), is called
the identity function for A.
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Equal, Identity and Composite Functions

Identity Function: The function, 14 : A — A defined by 14(a) = a (Va € A), is called
the identity function for A.

Equal Functions: Two functions f, g : A — B are said to be equal (denoted as f = g) if
f(a) = g(a), Vae A.
Note: Domain and Codomain of f, g must also be the same!
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Equal, Identity and Composite Functions

Identity Function: The function, 14 : A — A defined by 14(a) = a (Va € A), is called
the identity function for A.
Equal Functions: Two functions f, g : A — B are said to be equal (denoted as f = g) if
f(a) = g(a), Vae A.
Note: Domain and Codomain of f, g must also be the same!
Example: f,g:R — Z are defined as, f(x) = { Ix] _‘_1(’ :?;( E ﬁ 7 and
g(x) = [x], then f(x) = g(x) for every x € R (Why?). So, f = g.
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Equal, Identity and Composite Functions

Identity Function: The function, 14 : A — A defined by 14(a) = a (Va € A), is called
the identity function for A.

Equal Functions: Two functions f, g : A — B are said to be equal (denoted as f = g) if
f(a) = g(a), Vae A.
Note: Domain and Codomain of f, g must also be the same!

] ] . o x, fx€eZ
Example: f,g:R — Z are defined as, f(x) = x| +1. fxeR—Z and

g(x) = [x], then f(x) = g(x) for every x € R (Why?). So, f = g.

Composite Function: If f: A — B and g: B — C, we define the composite function,
gof: A—Cby(gof)(a)=g(f(a)), Vae A.
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Equal, Identity and Composite Functions

Identity Function: The function, 14 : A — A defined by 14(a) = a (Va € A), is called
the identity function for A.

Equal Functions: Two functions f, g : A — B are said to be equal (denoted as f = g) if
f(a) = g(a), Vae A.

Note: Domain and Codomain of f, g must also be the same!

] ] . o x, fx€eZ
Example: f,g:R — Z are defined as, f(x) = x| +1. fxeR—Z and
g(x) = [x], then f(x) = g(x) for every x € R (Why?). So, f = g.

Composite Function: If f: A — B and g: B — C, we define the composite function,
gof: A—Cby(gof)(a)=g(f(a)), Vae A.

@ Range of ¥ C Domain of g — sufficient for Function Composition!
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Equal, Identity and Composite Functions

Identity Function: The function, 14 : A — A defined by 14(a) = a (Va € A), is called
the identity function for A.

Equal Functions: Two functions f, g : A — B are said to be equal (denoted as f = g) if
f(a) = g(a), Vae A.
Note: Domain and Codomain of f, g must also be the same!
] ] . o x, fx€eZ
Example: f,g:R — Z are defined as, f(x) = x| +1. fxeR—Z and
g(x) = [x], then f(x) = g(x) for every x € R (Why?). So, f = g.
Composite Function: If f: A — B and g: B — C, we define the composite function,
gof: A—Cby(gof)(a)=g(f(a)), Vae A.
@ Range of ¥ C Domain of g — sufficient for Function Composition!

@ For two identity functions 14 : A — A and 15 : B — B,
folg=Ff=1gof.
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Equal, Identity and Composite Functions

Identity Function: The function, 14 : A — A defined by 14(a) = a (Va € A), is called
the identity function for A.

Equal Functions: Two functions f, g : A — B are said to be equal (denoted as f = g) if
f(a) = g(a), Vae A.
Note: Domain and Codomain of f, g must also be the same!
] ] . o x, fx€eZ
Example: f,g:R — Z are defined as, f(x) = x| +1. fxeR—Z and
g(x) = [x], then f(x) = g(x) for every x € R (Why?). So, f = g.

Composite Function: If f: A — B and g: B — C, we define the composite function,
gof: A—Cby(gof)(a)=g(f(a)), Vae A.

@ Range of ¥ C Domain of g — sufficient for Function Composition!
@ For two identity functions 14 : A — A and 15 : B — B,
fO]_A:f:]_BOf.
Example: Let f,g: R — R defined as, f(x) = x> and g(x) = x + 1. Then,
(fog)(x) =x?>+2x+1and (gof)(x) =x>+1. So, (fog)(x) # (go f)(x)

v
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Equal, Identity and Composite Functions

Identity Function: The function, 14 : A — A defined by 14(a) = a (Va € A), is called
the identity function for A.

Equal Functions: Two functions f, g : A — B are said to be equal (denoted as f = g) if
f(a) = g(a), Vae A.

Note: Domain and Codomain of f, g must also be the same!
Example: f,g:R — Z are defined as, f(x) = { x, fxeZ

x| +1, ifxer—z
g(x) = [x], then f(x) = g(x) for every x € R (Why?). So, f = g.

Composite Function: If f: A — B and g: B — C, we define the composite function,
gof: A—Cby(gof)(a)=g(f(a)), Vae A.

@ Range of ¥ C Domain of g — sufficient for Function Composition!
@ For two identity functions 14 : A — A and 15 : B — B,
fO]_A:f:]_BOf.

Example: Let f,g: R — R defined as, f(x) = x> and g(x) = x + 1. Then,
(fog)(x) =x?>+2x+1and (gof)(x) =x>+1. So, (fog)(x) # (go f)(x)
Commutativity of Function Compositions:

Does NOT Hold!
Function Composition is NOT Commutative, that is, we shall NOT always have

f o g(x) # g o f(x) for any two functions, f,g: A — A (and x € A).
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Composite Function Properties

Associativity of Function Compositions
Iff: A= B g:B—Cand h:C — D, then (hog)of =ho(gof).
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Composite Function Properties

Associativity of Function Compositions

Iff: A= B g:B—Cand h:C — D, then (hog)of =ho(gof).

(hog)of

Proof: (I;ocr) szrf}’,)?x)ejk;voe ;;2 TJE%V: (hog)(f(x)) qu

= h(g(f(x))) = h(g o f(x)) = ho (g o F)(x).
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Composite Function Properties

Associativity of Function Compositions

Iff: A= B g:B—Cand h:C — D, then (hog)of =ho(gof).

(hog)of

Proof: (I;ocr) szrf}’,)?x)ejk/:vj ;2 ilzz\;\l: (hog)(f(x)) qu

= h(g(f(x))) = h(g o f(x)) = ho (g o F)(x).

Recursive Compositions of Functions

Let f: A— A. Then, f! =f, and for n € Z¥, f"*' = f o (f") = (f") o f.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 9/17



Composite Function Properties

Associativity of Function Compositions

Iff: A= B g:B—Cand h:C — D, then (hog)of =ho(gof).

(hog)of

Proof: (I;o; szr;')?x)ej'(}:voe gC;"; ?c?z\;v: (hog)(f(x)) Gws

= h(g(f(x))) = h(g o f(x)) = ho(gof)(x)

Recursive Compositions of Functions
Let f: A— A. Then, f! =f, and for n € Z¥, f"*' = f o (f") = (f") o f.

Bijective Nature of Function Compositions
If f: A— Band g: B — C both are one-to-one , then go f : A — C is one-to-one.

4
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Composite Function Properties

Associativity of Function Compositions

Iff: A= B g:B—Cand h:C — D, then (hog)of =ho(gof).

(hog)of

Proof: (I;o; szr;')?x)ej'(}:voe gC;"; ?c?z\;v: (hog)(f(x)) Gws

= h(g(f(x))) = h(g o f(x)) = ho(gof)(x)

Recursive Compositions of Functions
Let f: A— A. Then, f! =f, and for n € Z¥, f"*' = f o (f") = (f") o f.

Bijective Nature of Function Compositions

If f: A— Band g: B — C both are one-to-one , then go f : A — C is one-to-one.
Proof: Let aj,a € A.
(gof)(a1) =(gof)(a2) = g(f(a1)) = g(f(az)) = f(a1) = f(a2) (as g is one-to-one).
Again, f(a1) = f(a2) = a1 = a (as f is one-to-one). Hence, g o f is one-to-one.

4
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Composite Function Properties

Associativity of Function Compositions
Iff: A= B g:B—Cand h:C — D, then (hog)of =ho(gof).

(hog)of

Proof: For every x € A, we can show, e@\s

ho(gof)

(hogof)(x)=(hog)of(x)=(hog)(f(x))
= h(g(f(x))) = h(g o f(x)) = ho(gof)(x)

Recursive Compositions of Functions
Let f: A— A. Then, f! =f, and for n € Z¥, f"*' = f o (f") = (f") o f.

Bijective Nature of Function Compositions

If f: A— Band g: B — C both are one-to-one , then go f : A — C is one-to-one.
Proof: Let aj,a € A.
(gof)(a1) =(gof)(a2) = g(f(a1)) = g(f(az)) = f(a1) = f(a2) (as g is one-to-one).
Again, f(a1) = f(a2) = a1 = a (as f is one-to-one). Hence, g o f is one-to-one.

If f: A— Band g: B — C both are onto, then go f : A — C is onto.

4
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Composite Function Properties

Associativity of Function Compositions

Iff: A= B g:B—Cand h:C — D, then (hog)of =ho(gof).

(hog)of

Proof: (I;o; szr;')?x)ej'(}:voe gC;"; ?c?z\;v: (hog)(f(x)) Gws

= h(g(f(x))) = h(g o f(x)) = ho(gof)(x)

Recursive Compositions of Functions
Let f: A— A. Then, f! =f, and for n € Z¥, f"*' = f o (f") = (f") o f.

Bijective Nature of Function Compositions

If f: A— Band g: B — C both are one-to-one , then go f : A — C is one-to-one.
Proof: Let aj,a € A.
(gof)(a1) = (gof)(az) = g(f(a1)) = g(f(az2)) = f(a1) = f(a2) (as g is one-to-one).
Again, f(a1) = f(a2) = a1 = a (as f is one-to-one). Hence, g o f is one-to-one.
If f: A— Band g: B — C both are onto, then go f : A — C is onto.
Proof: For any z € C, 3y € B (as g is onto) and y € B, 3x € A (as f is onto).
So, z = g(y) = g(f(x)) = (g o f)(x) and Range of (g o f) = C = Codomain of (g o f)./
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Composite Function Properties

Bijective Nature of Function Compositions

Let f: A — B and g: B — C and the composition go f : A — C is a one-to-one
(injective) function. Then, f is one-to-one (however, g need NOT be one-to-one).
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Composite Function Properties

Bijective Nature of Function Compositions

Let f: A — B and g: B — C and the composition go f : A — C is a one-to-one
(injective) function. Then, f is one-to-one (however, g need NOT be one-to-one).
Explanation:

f is one-to-one (Proof): Assuming f is NOT one-to-one, implies Ixi, x> € A such that
f(x1) = f(x2). So, go f(x1) = g o f(x2), contradicting g o f is injective!

v
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Composite Function Properties

Bijective Nature of Function Compositions

Let f: A — B and g: B — C and the composition go f : A — C is a one-to-one
(injective) function. Then, f is one-to-one (however, g need NOT be one-to-one).
Explanation:

f is one-to-one (Proof): Assuming f is NOT one-to-one, implies Ixi, x> € A such that
f(x1) = f(x2). So, go f(x1) = g o f(x2), contradicting g o f is injective!

g is not one-to-one (Example): f,g : R — R are defined as, f(x) = e* and g(x) = x*

(x €R). Here, go f : R — R is defined as, g o f(x) = €. So, (g o f)
is one-to-one, but g is NOT (note that, f is one-to-one as proven)!
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Composite Function Properties

Bijective Nature of Function Compositions

Let f: A — B and g: B — C and the composition go f : A — C is a one-to-one
(injective) function. Then, f is one-to-one (however, g need NOT be one-to-one).
Explanation:

f is one-to-one (Proof): Assuming f is NOT one-to-one, implies Ixi, x> € A such that
f(x1) = f(x2). So, go f(x1) = g o f(x2), contradicting g o f is injective!

g is not one-to-one (Example): f,g : R — R are defined as, f(x) = e* and g(x) = x*

(x €R). Here, go f : R — R is defined as, g o f(x) = €. So, (g o f)
is one-to-one, but g is NOT (note that, f is one-to-one as proven)!

Let f: A — B and g : B— C and the composition go f : A — C is a onto (surjective)
function. Then, g is onto (however, f need NOT be onto).
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g is not one-to-one (Example): f,g : R — R are defined as, f(x) = e* and g(x) = x*

(x €R). Here, go f : R — R is defined as, g o f(x) = €. So, (g o f)
is one-to-one, but g is NOT (note that, f is one-to-one as proven)!

Let f: A — B and g : B— C and the composition go f : A — C is a onto (surjective)
function. Then, g is onto (however, f need NOT be onto).
Explanation:
g is onto (Proof): As (g o f) is onto, for any z € C, 3x € A such that,
z = gof(x) = g(f(x)), implying that z has a pre-image defined as
f(x) € B — thus making g onto.

v
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Composite Function Properties

Bijective Nature of Function Compositions

Let f: A — B and g: B — C and the composition go f : A — C is a one-to-one
(injective) function. Then, f is one-to-one (however, g need NOT be one-to-one).
Explanation:

f is one-to-one (Proof): Assuming f is NOT one-to-one, implies Ixi, x> € A such that
f(x1) = f(x2). So, go f(x1) = g o f(x2), contradicting g o f is injective!

g is not one-to-one (Example): f,g : R — R are defined as, f(x) = e* and g(x) = x*

(x €R). Here, go f : R — R is defined as, g o f(x) = €. So, (g o f)
is one-to-one, but g is NOT (note that, f is one-to-one as proven)!

Let f: A — B and g : B— C and the composition go f : A — C is a onto (surjective)
function. Then, g is onto (however, f need NOT be onto).
Explanation:

g is onto (Proof): As (g o f) is onto, for any z € C, 3x € A such that,
z = gof(x) = g(f(x)), implying that z has a pre-image defined as
f(x) € B — thus making g onto.

X

f is not onto (Example): f,g :7Z — 7Z are defined as, f(x) = 2x and g(x) = | 3]
(x € Z). Here, gof :Z — Zis defined as, g o f(x) = x. So, (gof)is
onto, but f is NOT (note that, g is onto as proven)!

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 10 /17



Inverse Functions and Invertibility

Inverse Functions: For a function f : A — B, if fL’l, fR’l : B — A are defined such that
frlof =14 and fofy! =1z, then f, ! and f; ! are called the left
inverse and right inverse of f, respectively.
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Inverse Functions and Invertibility

Inverse Functions: For a function f : A — B, if fL’l, fR’l : B — A are defined such that
frlof =14 and fofy! =1z, then f, ! and f; ! are called the left
inverse and right inverse of f, respectively.

Invertible Functions: A function f : A — B is said to be invertible if there exist a
function f~*: B — Asuch that f*of =14 and fof ! =1z

f~1is called the inverse function of f.
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Inverse Functions and Invertibility

Inverse Functions: For a function f : A — B, if fL’l, fR’l : B — A are defined such that
frlof =14 and fofy! =1z, then f, ! and f; ! are called the left
inverse and right inverse of f, respectively.

Invertible Functions: A function f : A — B is said to be invertible if there exist a
function f~*: B — Asuch that f*of =14 and fof ! =1z

f~1is called the inverse function of f.

Unique Inverse: An invertible function f : A — B has a unique inverse f* : B — A.
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Inverse Functions and In

Inverse Functions: For a function f : A — B, if fL’l, fR’l : B — A are defined such that
frlof =14 and fofy! =1z, then f, ! and f; ! are called the left
inverse and right inverse of f, respectively.

Invertible Functions: A function f : A — B is said to be invertible if there exist a
function f*: B— Asuchthat f 'of=14and fof '=1z.
f~1is called the inverse function of f.

Unique Inverse: An invertible function f : A — B has a unique inverse f* : B — A.

(Pr oof Assume two lnverses i 1 and f;l. Using the definition, we get,
fl=flolg=fto(fofy )=(ftof)ofy, '=140f ' =£"1)
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Inverse Functions and Invertibility

Inverse Functions: For a function f : A — B, if fL’l, fR’l : B — A are defined such that
frlof =14 and fofy! =1z, then f, ! and f; ! are called the left
inverse and right inverse of f, respectively.

Invertible Functions: A function f : A — B is said to be invertible if there exist a
function f*: B— Asuchthat f 'of=14and fof '=1z.
f~1is called the inverse function of f.

Unique Inverse: An invertible function f : A — B has a unique inverse f* : B — A.

(Proof: Assume two inverses, ffl and f;l. Using the definition, we get,
fit=ftolg=flto(fofy )=(f'of)ofy '=140f'=£")

Examples: (1) Let f,g : Z — Z are defined as f(x) = 2x and g(x) = [*}}]
(x €Z). So, gof,fog:Z — Z are defined by, go f(x) = g(2x) = x

« x+1, if xis odd
and fog(x) = f(L%lD - x, if x is even

meaning g is the left inverse of f, but f o g # 17 meaning g is NOT the
right inverse of f.

.So, gof =1y
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Inverse Functions and Invertibility

Inverse Functions: For a function f : A — B, if fL’l, fR’l : B — A are defined such that
frlof =14 and fofy! =1z, then f, ! and f; ! are called the left
inverse and right inverse of f, respectively.

Invertible Functions: A function f : A — B is said to be invertible if there exist a
function f~*: B — Asuch that f*of =14 and fof ! =1z

f~1is called the inverse function of f.

Unique Inverse: An invertible function f : A — B has a unique inverse f* : B — A.

(Proof: Assume two inverses, ffl and f;l. Using the definition, we get,
fit=ftolg=flto(fofy )=(f'of)ofy '=140f'=£")

Examples: (1) Let f,g : Z — Z are defined as f(x) = 2x and g(x) = [*}}]
(x €Z). So, gof,fog:Z — Z are defined by, go f(x) = g(2x) = x

« x+1, if xis odd
and fog(x) = f(L%lD - x, if x is even

meaning g is the left inverse of f, but f o g # 17 meaning g is NOT the
right inverse of f.

(2) Let f, g : R — R are defined as f(x) = 2x and g(x) = 5 (x € R).
So, gof,fog:R — R are defined by, g o f(x) = g(2x) = x and
fog(x)=f(3)=x. So, gof =fog =1g meaning g is inverse of f.

.So, gof =1y
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Properties of Invertible Functions

® f: A — Bis invertible if and only if it is bijective (one-to-one + onto).
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Properties of Invertible Functions

® f: A — Bis invertible if and only if it is bijective (one-to-one + onto).

Proof: [ If | f is invertible means inverse function f=' : B — A exists.
f~lof =14 and 14 is injective, so f is injective.
fof~! =15 and 15 is surjective, so f is surjective.
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Properties of Invertible Functions

® f: A — Bis invertible if and only if it is bijective (one-to-one + onto).
Proof: [ If | f is invertible means inverse function f=' : B — A exists.

f~lof =14 and 14 is injective, so f is injective.
fof~! =15 and 15 is surjective, so f is surjective.
[Only-If] Since f is bijective, y € B has one and only one pre-image x € A.
We define f=*: B — A as f~*(y) = x (pre-image of y under f), y € B.
So, flof(x)=f'(y)=xand fof (y)=f(x)=y,
implying fof =14 and fof ! =15 = f is invertible.
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Properties of Invertible Functions

® f: A — Bis invertible if and only if it is bijective (one-to-one + onto).
Proof: [ If | f is invertible means inverse function f=' : B — A exists.

f~lof =14 and 14 is injective, so f is injective.
fof~! =15 and 15 is surjective, so f is surjective.
[Only-If] Since f is bijective, y € B has one and only one pre-image x € A.
We define f=*: B — A as f~*(y) = x (pre-image of y under f), y € B.
So, flof(x)=f'(y)=xand fof (y)=f(x)=y,
implying fof =14 and fof ! =15 = f is invertible.

@ If f: A— B, g: B — C are invertible, then go f : A — C is invertible and
(gof) ' =flog™

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 /17



Properties of Invertible Functions

® f: A — Bis invertible if and only if it is bijective (one-to-one + onto).
Proof: [ If | f is invertible means inverse function f=' : B — A exists.
f~lof =14 and 14 is injective, so f is injective.
fof~! =15 and 15 is surjective, so f is surjective.

[Only-If] Since f is bijective, y € B has one and only one pre-image x € A.
We define f=*: B — A as f~*(y) = x (pre-image of y under f), y € B.
So, flof(x)=f'(y)=xand fof (y)=f(x)=y,
implying fof =14 and fo f~' =15 = f is invertible.
@ If f: A— B, g: B — C are invertible, then go f : A — C is invertible and

(gof) '=flog™

Proof: f, g are invertible implies that f, g are bijective functions.
So, (g o f) is also bijective and hence invertible (using above property).
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Properties of Invertible Functions

® f: A — Bis invertible if and only if it is bijective (one-to-one + onto).
Proof: [ If | f is invertible means inverse function f=' : B — A exists.
f~lof =14 and 14 is injective, so f is injective.
fof~! =15 and 15 is surjective, so f is surjective.

[Only-If] Since f is bijective, y € B has one and only one pre-image x € A.
We define f=*: B — A as f~*(y) = x (pre-image of y under f), y € B.
So, flof(x)=f'(y)=xand fof (y)=f(x)=y,
implying fof =14 and fof ! =15 = f is invertible.
@ If f: A— B, g: B — C are invertible, then go f : A — C is invertible and

(gof) '=flog™

Proof: f, g are invertible implies that f, g are bijective functions.
So, (g o f) is also bijective and hence invertible (using above property).
(flogt)o(gof)=Ffto(glog)of=Fflolgof=Ff1of=14.
(gof)o(ftog™)=15. So, (f*og™!)is the inverse of (g o f).
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Properties of Invertible Functions

® f: A — Bis invertible if and only if it is bijective (one-to-one + onto).
Proof: [ If | f is invertible means inverse function f=' : B — A exists.
f~lof =14 and 14 is injective, so f is injective.
fof~! =15 and 15 is surjective, so f is surjective.
[Only-If] Since f is bijective, y € B has one and only one pre-image x € A.
We define f=*: B — A as f~*(y) = x (pre-image of y under f), y € B.
So, flof(x)=f"Yy)=xand fofl(y)=Ff(x)=y,
implying fof =14 and fof ! =15 = f is invertible.
@ If f: A— B, g: B — C are invertible, then go f : A — C is invertible and
(gof) '=flog™
Proof: f, g are invertible implies that f, g are bijective functions.
So, (g o f) is also bijective and hence invertible (using above property).
(flogt)o(gof)=Ffto(glog)of=Fflolgof=Ff1of=14.
(gof)o(ftog ™) =15. So, (f tog 1) is the inverse of (g o f).

f : R — R is defined by f(x) = 3x + 1 (x € R). Note that, f is bijective (Why?) and
hence invertible. Now, f~* : R — R defined by f~!(y) = %, y €R
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Properties with Direct and Inverse Images

Direct Image: Let f : A — B and (non-empty) A" C A. The direct image of A’ under
fis f(A") C B given by, f(A") ={f(x) | xe A’}
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Properties with Direct and Inverse Images

Direct Image: Let f : A — B and (non-empty) A" C A. The direct image of A’ under
fis f(A") C B given by, f(A") ={f(x) | xe A’}

Inverse Image: Let f: A — B and (non-empty) B’ C B. The inverse image (pre-image)
of B’ under f is f~1(B') C A given by, f~1(B') = {x | f(x) € B'}.
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Properties with Direct and Inverse Images

Direct Image: Let f : A — B and (non-empty) A" C A. The direct image of A’ under
fis f(A") C B given by, f(A") ={f(x) | xe A’}
Inverse Image: Let f: A — B and (non-empty) B’ C B. The inverse image (pre-image)
of B’ under f is f~1(B') C A given by, f~1(B') = {x | f(x) € B'}.
Example: f : R — R is defined by f(x) = x*> (x €R). Let P = {x €R | x € [0,2]}.
The direct image f(P) ={y | y € [0,4]} (¥ € R) and the inverse image of set f(P) is
fH(F(P)) = {x | x € [~2,2]}. So, f ' (f(P)) # P and f is not a bijection / invertible.
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Properties with Direct and Inverse Images

Direct Image: Let f : A — B and (non-empty) A" C A. The direct image of A’ under

fis f(A") C B given by, f(A") ={f(x) | xe A’}

Inverse Image: Let f: A — B and (non-empty) B’ C B. The inverse image (pre-image)
of B’ under f is f~1(B') C A given by, f~1(B') = {x | f(x) € B'}.

Example: f : R — R is defined by f(x) = x*> (x €R). Let P = {x €R | x € [0,2]}.

The direct image f(P) ={y | y € [0,4]} (¥ € R) and the inverse image of set f(P) is

fH(F(P)) = {x | x € [~2,2]}. So, f ' (f(P)) # P and f is not a bijection / invertible.

Properties: @ (RECAP) Let f: A — B, with Ay, Ay C A. Then,

(i) If A1 C Ay = (A1) C F(Az), (ii) F(A1 U A) = (A1) Uf(A),
and (iii) (A1 NAp) C f(A1) N F(A).

N—
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Properties with Direct and Inverse Images

Direct Image: Let f : A — B and (non-empty) A" C A. The direct image of A’ under
fis f(A") C B given by, f(A") ={f(x) | xe A’}

Inverse Image: Let f: A — B and (non-empty) B’ C B. The inverse image (pre-image)
of B’ under f is f~1(B') C A given by, f~1(B') = {x | f(x) € B'}.

Example: f : R — R is defined by f(x) = x*> (x €R). Let P = {x €R | x € [0,2]}.
The direct image f(P) ={y | y € [0,4]} (¥ € R) and the inverse image of set f(P) is
fH(F(P)) = {x | x € [~2,2]}. So, f ' (f(P)) # P and f is not a bijection / invertible.

Properties: @ (RECAP) Let f: A — B, with Ay, Ay C A. Then,
(i) If A1 C Az = (A1) C f(A2), (i) (A1 UA) = F(A1) U f(Az),
and (i) (A1 NA2) C (A1) NF(A2).
Note: In general, (A1 N .Az) # (A1) N F(A2). Consider, f:R—Ras
f(x) = x? and A; = {0, 172737 3 A ={0,— ,—%,...}. Here,
f(A1NAz) = {0} #{0,1, %, %} = F(A1) N f(Az)
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Properties with Direct and Inverse Images

Direct Image: Let f : A — B and (non-empty) A" C A. The direct image of A’ under
fis f(A") C B given by, f(A") ={f(x) | xe A’}
Inverse Image: Let f: A — B and (non-empty) B’ C B. The inverse image (pre-image)
of B’ under f is f~1(B') C A given by, f~1(B') = {x | f(x) € B'}.
Example: f : R — R is defined by f(x) = x*> (x €R). Let P = {x €R | x € [0,2]}.
The direct image f(P) ={y | y € [0,4]} (¥ € R) and the inverse image of set f(P) is
fH(F(P)) = {x | x € [~2,2]}. So, f ' (f(P)) # P and f is not a bijection / invertible.
Properties: @ (RECAP) Let f: A — B, with Ay, Ay C A. Then,
() If A1 C Ay = F(AL) C F(A2), (i) F(AL U As) = F(AL) U F(A2),
and (i) (A1 NA2) C (A1) NF(A2).
Note: In general, (A1 N .Az) # (A1) N F(A2). Consider, f:R—Ras
f(x) = x? and A; = {0, 1,2737 3 A ={0,— ,—%,...}. Here,
FALNA) = {0} #{0,1, %, %} = f(A1) N f(Az)

@ Let f: A — BB be an onto mapping, with Bi, B> C B. Then,
() If By C Bo= F1(B1) C FY(Ba), (ii) F1(B1) = F(By),
(III) f71(81 U Bz) fﬁl(Bl) U fﬁl(Bz), and

(iV) f71(81 N 82) fﬁl(Bl) N fﬁl(Bg).
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Properties with Direct and Inverse Images

Direct Image: Let f : A — B and (non-empty) A" C A. The direct image of A’ under
fis f(A") C B given by, f(A") ={f(x) | xe A’}

Inverse Image: Let f: A — B and (non-empty) B’ C B. The inverse image (pre-image)
of B’ under f is f~1(B') C A given by, f~1(B') = {x | f(x) € B'}.

Example: f : R — R is defined by f(x) = x*> (x €R). Let P = {x €R | x € [0,2]}.
The direct image f(P) ={y | y € [0,4]} (¥ € R) and the inverse image of set f(P) is
fH(F(P)) = {x | x € [~2,2]}. So, f ' (f(P)) # P and f is not a bijection / invertible.

Properties: @ (RECAP) Let f: A — B, with Ay, Ay C A. Then,
(i) If A1 C Az = (A1) C f(A2), (i) (A1 UA) = F(A1) U f(Az),
and (i) (A1 NA2) C (A1) NF(A2).
Note: In general, (A1 N .Az) # (A1) N F(A2). Consider, f:R—Ras
f(x) = x? and A; = {0, 1,2,3,. g A ={0,— ,—%,...}. Here,
f(A1NAz) = {0} #{0,1, %, %} = F(A1) N f(Az)

@ Let f: A — BB be an onto mapping, with Bi, B> C B. Then,
() If By C Bo= F1(B1) C FY(Ba), (ii) F1(B1) = F(By),
(III) f71(81 U Bz) = 71(61) U fﬁl(Bz), and
(iV) f71(81 N 82) = fﬁl(Bl) N fﬁl(Bg).
Proof: (i) Let x € f~1(By1) = f(x) € B1. Since By C By, therefore
f(x) € By = f(x) € Ba. So, x € f~1(B) implying f~1(B1) C f~1(Bo).
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Properties with Direct and Inverse Images

Direct Image: Let f : A — B and (non-empty) A" C A. The direct image of A’ under
fis f(A") C B given by, f(A") ={f(x) | xe A’}

Inverse Image: Let f: A — B and (non-empty) B’ C B. The inverse image (pre-image)
of B’ under f is f~1(B') C A given by, f~1(B') = {x | f(x) € B'}.

Example: f : R — R is defined by f(x) = x*> (x €R). Let P = {x €R | x € [0,2]}.
The direct image f(P) ={y | y € [0,4]} (¥ € R) and the inverse image of set f(P) is
fH(F(P)) = {x | x € [~2,2]}. So, f ' (f(P)) # P and f is not a bijection / invertible.

Properties: @ (RECAP) Let f: A — B, with Ay, Ay C A. Then,
(i) If A1 C Az = (A1) C f(A2), (i) (A1 UA) = F(A1) U f(Az),
and (i) (A1 NA2) C (A1) NF(A2).
Note: In general, (A1 N .Az) # (A1) N F(A2). Consider, f:R—Ras
f(x) = x? and A; = {0, 1,2,3,. g A ={0,— ,—%,...}. Here,
f(A1NAz) = {0} #{0,1, %, %} = F(A1) N f(Az)

@ Let f: A — BB be an onto mapping, with Bi, B> C B. Then,
() If By C Bo= F1(B1) C FY(Ba), (ii) F1(B1) = F(By),
(III) f71(81 U Bz) = fﬁl(Bl) U fﬁl(Bz), and
(iV) f71(81 N 82) = fﬁl(Bl) N fﬁl(Bg).
Proof: (i) Let x € f~1(By1) = f(x) € B1. Since By C By, therefore
f(x) € By = f(x) € Ba. So, x € f~1(B) implying f~1(B1) C f~1(Bo).
(i), (i) and (iv) Left for You as.an Exercise!
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The Leftover: Number of Onto Functions under f : A — B

If 0 < |A] = m < n=|B]|, how many Onto functions? =0
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The Leftover: Number of Onto Functions under f : A — B

If 0 < |A] = m < n=|B]|, how many Onto functions? =0
If |JA] = m=1= n=|B|, how many Onto functions? =1
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The Leftover: Number of Onto Functions under f : A — B

If 0 < |A] = m < n=|B]|, how many Onto functions? =0
If |JA] = m=1= n=|B|, how many Onto functions? =1
If |JA] = m > n=2=|B|, how many Onto functions? =27 —2
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Leftover: Number of Onto Functions under f : A — B

fo<|Al=m<n=|B
Ifl[Al=m=1=n=|B
If |JA] = m > n=2=|B|, how many Onto functions? =27 —2

If A= {x,y,z}, B={1,2}, then all possible functions = |B|"! = 23,

, how many Onto functions? =0

, how many Onto functions? =1
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Leftover: Number of Onto Functions under f : A — B
fo<|Al=m<n=|B
IflAl=m=1=n=|B
IflAl=m>n=2=|B

, how many Onto functions? =0
, how many Onto functions? =1

, how many Onto functions? =27 —2

If A= {x,y,z}, B={1,2}, then all possible functions = |B|A! = 23;

but fi = {(x,1), (v, 1), (z,1)} and i = {(x,2), (¥,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2% — 2 = 6.
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Leftover: Number of Onto Functions under f : A — B
fo<|Al=m<n=|B
IflAl=m=1=n=|B
IflAl=m>n=2=|B

, how many Onto functions? =0
, how many Onto functions? =1

, how many Onto functions? =27 —2

If A= {x,y,z}, B={1,2}, then all possible functions = |B|A! = 23;

but fi = {(x,1), (v, 1), (z,1)} and i = {(x,2), (¥,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2% — 2 = 6.
Ifl[Al=m>n=3=|B

, how many Onto functions? = (2)3"’ — (;)2"’ + (‘;’)1"’
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Leftover: Number of Onto Functions under f : A — B

fo<|Al=m<n=|B
IflAl=m=1=n=|B
IflAl=m>n=2=|B

, how many Onto functions? =0

, how many Onto functions? =1

, how many Onto functions? =27 —2
If A= {x,y,z}, B={1,2}, then all possible functions = |B|A! = 23;

but fi = {(x,1), (v, 1), (z,1)} and i = {(x,2), (¥,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2% — 2 = 6.

If |JA| = m > n =3 = |B|, how many Onto functions? = (2)3"’ — (;)2"’ + (‘;’)1"’
If A= {w,x,y,z}, B={1,2,3}, then all possible functions = 3*;
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Leftover: Number of Onto Functions under f : A — B

fo<|Al=m<n=|B
IflAl=m=1=n=|B
If |[A| = m > n=2=|B|, how many Onto functions? =27 —2
If A= {x,y,z}, B={1,2}, then all possible functions = |B|"! = 23,
but fi = {(x,1),(y,1),(z,1)} and o = {(x,2),(y,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2° — 2 = 6.
If |[A| = m > n= 3= |B|, how many Onto functions? = (2)3"’ —()2m+ ()1
If A= {w,x,y,z}, B={1,2,3}, then all possible functions = 3*; this
includes 2* non-onto functions each from A — {1,2}, A — {1,3} and
A — {2,3}. Now, the running count for onto functions = 3* — 3.2*.

, how many Onto functions? =0

, how many Onto functions? =1
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Leftover: Number of Onto Functions under f : A — B

fo<|Al=m<n=|B
IflAl=m=1=n=|B
If |[A| = m > n=2=|B|, how many Onto functions? =27 —2
If A= {x,y,z}, B={1,2}, then all possible functions = |B|"! = 23,
but fi = {(x,1),(y,1),(z,1)} and o = {(x,2),(y,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2° — 2 = 6.
If |[A| = m > n= 3= |B|, how many Onto functions? = @)3"’ —()2m+ ()1
If A= {w,x,y,z}, B={1,2,3}, then all possible functions = 3*; this
includes 2* non-onto functions each from A — {1,2}, A — {1,3} and
A — {2,3}. Now, the running count for onto functions = 3* — 3.2*.
But, we removed the constant function {(w,2), (x,2),(y,2),(z,2)}
twice — both during function removal from A — {1,2}, A — {2,3}.

, how many Onto functions? =0

, how many Onto functions? =1
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Leftover: Number of Onto Functions under f : A — B

fo<|Al=m<n=|B
IflAl=m=1=n=|B
If |[A| = m > n=2=|B|, how many Onto functions? =27 —2
If A= {x,y,z}, B={1,2}, then all possible functions = |B|"! = 23,
but fi = {(x,1),(y,1),(z,1)} and o = {(x,2),(y,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2 — 2 = 6.
If |[A| = m > n= 3= |B|, how many Onto functions? = @)3"’ —()2m+ ()1
If A= {w,x,y,z}, B={1,2,3}, then all possible functions = 3*; this
includes 2* non-onto functions each from A — {1,2}, A — {1,3} and
A — {2,3}. Now, the running count for onto functions = 3* — 3.2*.
But, we removed the constant function {(w,2), (x,2),(y,2),(z,2)}

twice — both during function removal from A — {1,2}, A — {2,3}. So,
the final onto functions count = 3" —3.2* +3 = (3)3* — (})2* + ()1*.

, how many Onto functions? =0

, how many Onto functions? =1
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Leftover: Number of Onto Functions under f : A — B

fo<|Al=m<n=|B
IflAl=m=1=n=|B
If |[A| = m > n=2=|B|, how many Onto functions? =27 —2
If A= {x,y,z}, B={1,2}, then all possible functions = |B|"! = 23,
but fi = {(x,1),(y,1),(z,1)} and o = {(x,2),(y,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2° — 2 = 6.
If |[A| = m > n= 3= |B|, how many Onto functions? = @)3"’ —()2m+ ()1
If A= {w,x,y,z}, B={1,2,3}, then all possible functions = 3*; this
includes 2* non-onto functions each from A — {1,2}, A — {1,3} and
A — {2,3}. Now, the running count for onto functions = 3* — 3.2*.
But, we removed the constant function {(w,2), (x,2),(y,2),(z,2)}
twice — both during function removal from A — {1,2}, A — {2,3}. So,
the final onto functions count = 3" —3.2* +3 = (3)3* — (})2* + ()1*.
If |[A| = m > n=|B|, how many Onto functions? = O(m, n)

, how many Onto functions? =0

, how many Onto functions? =1
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Leftover: Number of Onto Functions under f : A — B

fo<|Al=m<n=|B
IflAl=m=1=n=|B
If |[A| = m > n=2=|B|, how many Onto functions? =27 —2
If A= {x,y,z}, B={1,2}, then all possible functions = |B|"! = 23,
but fi = {(x,1),(y,1),(z,1)} and o = {(x,2),(y,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2° — 2 = 6.
If |[A| = m > n= 3= |B|, how many Onto functions? = @)3"’ —()2m+ ()1
If A= {w,x,y,z}, B={1,2,3}, then all possible functions = 3*; this
includes 2* non-onto functions each from A — {1,2}, A — {1,3} and
A — {2,3}. Now, the running count for onto functions = 3* — 3.2*.
But, we removed the constant function {(w,2), (x,2),(y,2),(z,2)}
twice — both during function removal from A — {1,2}, A — {2,3}. So,
the final onto functions count = 3" —3.2* +3 = (3)3* — (})2* + ()1*.
If |[A| = m > n=|B|, how many Onto functions? = O(m, n)
What do the above steps reveal?

, how many Onto functions? =0

, how many Onto functions? =1
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Leftover: Number of Onto Functions under f : A — B

fo<|Al=m<n=|B
Ifl[Al=m=1=n=|B
If |JA] = m > n=2=|B|, how many Onto functions? =27 —2

If A= {x,y,z}, B={1,2}, then all possible functions = |B|"! = 23,

but fi = {(x,1), (v, 1), (z,1)} and i = {(x,2), (¥,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2% — 2 = 6.

If |[A| = m > n= 3= |B|, how many Onto functions? = @)3"’ —()2m+ ()1
If A= {w,x,y,z}, B={1,2,3}, then all possible functions = 3*; this
includes 2* non-onto functions each from A — {1,2}, A — {1,3} and
A — {2,3}. Now, the running count for onto functions = 3* — 3.2*.
But, we removed the constant function {(w,2), (x,2),(y,2),(z,2)}
twice — both during function removal from A — {1,2}, A — {2,3}. So,
the final onto functions count = 3" —3.2* +3 = (3)3* — (})2* + ()1*.
If |[A| = m > n=|B|, how many Onto functions? = O(m, n)
What do the above steps reveal? = Principle of Inclusion-Exclusion!

, how many Onto functions? =0

, how many Onto functions? =1
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Leftover: Number of Onto Functions under f : A — B

fo<|Al=m<n=|B
IflAl=m=1=n=|B
If |[A| = m > n=2=|B|, how many Onto functions? =27 —2
If A= {x,y,z}, B={1,2}, then all possible functions = |B|"! = 23,
but A ={(x,1),(y,1),(z,1)} and . = {(x,2),(y,2),(z,2)} are NOT
onto. Hence, number of onto functions = 2 — 2 = 6.
If |[A| = m > n= 3= |B|, how many Onto functions? = @)3"’ —()2m+ ()1
If A= {w,x,y,z}, B={1,2,3}, then all possible functions = 3*; this
includes 2* non-onto functions each from A — {1,2}, A — {1,3} and
A — {2,3}. Now, the running count for onto functions = 3* — 3.2*.
But, we removed the constant function {(w,2), (x,2),(y,2),(z,2)}
twice — both during function removal from A — {1,2}, A — {2,3}. So,
the final onto functions count = 3" —3.2* +3 = (3)3* — (})2* + ()1*.
If |[A| = m > n=|B|, how many Onto functions? = O(m, n)
What do the above steps reveal? = Principle of Inclusion-Exclusion!

, how many Onto functions? =0

, how many Onto functions? =1

O(m,n) = ()n" = (") (n=1)" +(,7,) (n=2)" =+ (=1)"*(3)2" + (=1)" " ()1”

= SE)E-)T = S e
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Stirling Number of the Second Kind

@ For m > n, Number of ways to distribute m objects into n identical (but
numbered) containers with no container empty = " (—1)'(,",)(n —i)™.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 /17



Stirling Number of the Second Kind

@ For m > n, Number of ways to distribute m objects into n identical (but
numbered) containers with no container empty = " (—1)'(,",)(n —i)™.

@ Removing numbering in containers yields the number of ways to distribute m
objects into n perfectly identical containers with no container empty
=150 (-1)(,",)(n— i)™ = S(m, n) = Stirling Number of Second Kind.

n—i
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Stirling Number of the Second Kind

Combinatorial Definition

@ For m > n, Number of ways to distribute m objects into n identical (but
numbered) containers with no container empty = " (—1)'(,",)(n —i)™.

@ Removing numbering in containers yields the number of ways to distribute m
objects into n perfectly identical containers with no container empty
=150 (-1)(,",)(n— i)™ = S(m, n) = Stirling Number of Second Kind.

n—i

@ Therefore, in f : A — B, number of onto functions, O(m, n) = n!.S(m, n).
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Stirling Number of the Second Kind

Combinatorial Definition

@ For m > n, Number of ways to distribute m objects into n identical (but
numbered) containers with no container empty = " (—1)'(,",)(n —i)™.

@ Removing numbering in containers yields the number of ways to distribute m
objects into n perfectly identical containers with no container empty
=150 (-1)(,",)(n— i)™ = S(m, n) = Stirling Number of Second Kind.

n—i

@ Therefore, in f : A — B, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to ‘Principle of Inclusion-Exclusion’

Let m,n € Z* with 1 < n < m. Then, S(m+1,n) = S(m,n— 1) + n.S(m, n).

4
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Stirling Number of the Second Kind

Combinatorial Definition

@ For m > n, Number of ways to distribute m objects into n identical (but
numbered) containers with no container empty = " (—1)'(,",)(n —i)™.

@ Removing numbering in containers yields the number of ways to distribute m
objects into n perfectly identical containers with no container empty
=150 (-1)(,",)(n— i)™ = S(m, n) = Stirling Number of Second Kind.

n—i

@ Therefore, in f : A — B, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to ‘Principle of Inclusion-Exclusion’

Let m,n € Z* with 1 < n < m. Then, S(m+1,n) = S(m,n— 1) + n.S(m, n).

Proof: @ S(m,n— 1) ways to distribute m objects into (n — 1) identical
containers with none left empty and putting the (m + 1)”’ object into
nth container alone = contributing S(m, n — 1) ways to S(m + 1, n).

4
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Stirling Number of the Second Kind

Combinatorial Definition

@ For m > n, Number of ways to distribute m objects into n identical (but
numbered) containers with no container empty = " (—1)'(,",)(n —i)™.

@ Removing numbering in containers yields the number of ways to distribute m
objects into n perfectly identical containers with no container empty
=150 (-1)(,",)(n— i)™ = S(m, n) = Stirling Number of Second Kind.

n—i

@ Therefore, in f : A — B, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to ‘Principle of Inclusion-Exclusion’

Let m,n € Z* with 1 < n < m. Then, S(m+1,n) = S(m,n— 1) + n.S(m, n).

Proof: @ S(m,n— 1) ways to distribute m objects into (n — 1) identical
containers with none left empty and putting the (m + 1)”’ object into
nth container alone = contributing S(m, n — 1) ways to S(m + 1, n).
@ S(m, n) ways to distribute m objects into n identical containers with
none left empty and then placing (m + 1)”’ object in any of the already
filled n containers = contributing n.S(m, n) ways to S(m + 1, n).

4
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Stirling Number of the Second Kind

Combinatorial Definition

@ For m > n, Number of ways to distribute m objects into n identical (but
numbered) containers with no container empty = " (—1)'(,",)(n —i)™.

@ Removing numbering in containers yields the number of ways to distribute m
objects into n perfectly identical containers with no container empty
=150 (-1)(,",)(n— i)™ = S(m, n) = Stirling Number of Second Kind.

n—i

@ Therefore, in f : A — B, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to ‘Principle of Inclusion-Exclusion’

Let m,n € Z* with 1 < n < m. Then, S(m+1,n) = S(m,n— 1) + n.S(m, n).

Proof: @ S(m,n— 1) ways to distribute m objects into (n — 1) identical
containers with none left empty and putting the (m + 1)”’ object into
nth container alone = contributing S(m, n — 1) ways to S(m + 1, n).
@ S(m, n) ways to distribute m objects into n identical containers with
none left empty and then placing (m + 1)”’ object in any of the already
filled n containers = contributing n.S(m, n) ways to S(m + 1, n).

Corollary: %[n!.S(m—i— 1,n)] =[(n—1)1.S(m, n—1)] + [n!.S(m, n)] (multiply by (n—1)!)

4
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Stirling Number of the Second Kind

Combinatorial Definition

@ For m > n, Number of ways to distribute m objects into n identical (but
numbered) containers with no container empty = " (—1)'(,",)(n —i)™.
@ Removing numbering in containers yields the number of ways to distribute m

objects into n perfectly identical containers with no container empty
=150 (-1)(,",)(n— i)™ = S(m, n) = Stirling Number of Second Kind.

n—i

@ Therefore, in f : A — B, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to ‘Principle of Inclusion-Exclusion’

Let m,n € Z* with 1 < n < m. Then, S(m+1,n) = S(m,n— 1) + n.S(m, n).

Proof: @ S(m,n— 1) ways to distribute m objects into (n — 1) identical
containers with none left empty and putting the (m + 1)”’ object into
nth container alone = contributing S(m, n — 1) ways to S(m + 1, n).
@ S(m, n) ways to distribute m objects into n identical containers with
none left empty and then placing (m + 1)”’ object in any of the already
filled n containers = contributing n.S(m, n) ways to S(m + 1, n).

Corollary: %[n!.S(m—i— 1,n)] =[(n—1)1.S(m, n—1)] + [n!.S(m, n)] (multiply by (n—1)!)
= 2.0(m+1,n)=O(m,n—1)+ O(m,n)

4
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Counting Problems: Are these problems well-recognized now?

@ Suppose you set your computer password of length m from a fixed chosen
set of n different characters available in the keyboard (m > n). How many
different passwords can you set so that at least one occurrence of each
symbol (from the n chosen set of keyboard symbols) will be present?
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Counting Problems: Are these problems well-recognized now?

@ Suppose you set your computer password of length m from a fixed chosen
set of n different characters available in the keyboard (m > n). How many
different passwords can you set so that at least one occurrence of each
symbol (from the n chosen set of keyboard symbols) will be present?

@ An m x n 2-dimensional (2-D) array, (ajj)mxn having m rows and n columns,
is filled up with only 0 and 1 values. How many different 2-D arrays you can
construct so that exactly one 1 is present in each row and at least one 1 is
present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)
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Counting Problems: Are these problems well-recognized now?

@ Suppose you set your computer password of length m from a fixed chosen
set of n different characters available in the keyboard (m > n). How many
different passwords can you set so that at least one occurrence of each
symbol (from the n chosen set of keyboard symbols) will be present?

@ An m x n 2-dimensional (2-D) array, (ajj)mxn having m rows and n columns,
is filled up with only 0 and 1 values. How many different 2-D arrays you can
construct so that exactly one 1 is present in each row and at least one 1 is
present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)

© m different component manufacturing contracts of a high-security project is
to be executed by n different companies so that every company works on
some components of the project. How many possible ways these m
contracts can get assigned to n companies?
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Counting Problems: Are these problems well-recognized now?

@ Suppose you set your computer password of length m from a fixed chosen
set of n different characters available in the keyboard (m > n). How many
different passwords can you set so that at least one occurrence of each
symbol (from the n chosen set of keyboard symbols) will be present?

@ An m x n 2-dimensional (2-D) array, (ajj)mxn having m rows and n columns,
is filled up with only 0 and 1 values. How many different 2-D arrays you can
construct so that exactly one 1 is present in each row and at least one 1 is
present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)

© m different component manufacturing contracts of a high-security project is
to be executed by n different companies so that every company works on
some components of the project. How many possible ways these m
contracts can get assigned to n companies?

n
Q For m,n € Z* with m < n, prove that, > (=1)¥(,",)(n— k)™ =0.
k=0
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Counting Problems: Are these problems well-recognized now?

@ Suppose you set your computer password of length m from a fixed chosen
set of n different characters available in the keyboard (m > n). How many
different passwords can you set so that at least one occurrence of each
symbol (from the n chosen set of keyboard symbols) will be present?

@ An m x n 2-dimensional (2-D) array, (ajj)mxn having m rows and n columns,
is filled up with only 0 and 1 values. How many different 2-D arrays you can
construct so that exactly one 1 is present in each row and at least one 1 is
present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)

© m different component manufacturing contracts of a high-security project is
to be executed by n different companies so that every company works on
some components of the project. How many possible ways these m
contracts can get assigned to n companies?

n
Q For m,n € Z* with m < n, prove that, > (=1)¥(,",)(n— k)™ =0.
k=0

n
@ For n e Z*, verify that, 3 (—1)"(,",)(n— k)" = nl.
k=0
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Thank You!
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