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Basics of Functions

Functions: For two sets, A,B 6= φ, a function (or mapping) f from A to B,
denoted as f : A → B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.

f (a) = b (a ∈ A, b ∈ B) when (a, b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b), (a, c) ∈ f ⇒ b = c.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2 / 17



Basics of Functions

Functions: For two sets, A,B 6= φ, a function (or mapping) f from A to B,
denoted as f : A → B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.

f (a) = b (a ∈ A, b ∈ B) when (a, b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b), (a, c) ∈ f ⇒ b = c.

Example: (1) Access function of 2-D array in memory, f : A → N (A = (aij )m×n is
an m × n array) is defined by, f (aij ) = (i − 1)n + j .

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2 / 17



Basics of Functions

Functions: For two sets, A,B 6= φ, a function (or mapping) f from A to B,
denoted as f : A → B, is a relation from A to B in which every element
of A appears exactly once in the first component of an ordered pair in
the relation.

f (a) = b (a ∈ A, b ∈ B) when (a, b) is an ordered pair in the function f
associating each a to an unique b. Thus, (a, b), (a, c) ∈ f ⇒ b = c.

Example: (1) Access function of 2-D array in memory, f : A → N (A = (aij )m×n is
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(2) Floor and ceiling functions, f : R → Z, are defined by,
f (x) = ⌊x⌋ and g(y) = ⌈y⌉ (x , y ∈ R).

f (2.7) = 2, f (−2.7) = −3, f (2) = 2, f (−2) = −2 and
g(2.7) = 3, g(−2.7) = −2, g(2) = 2, g(−2) = −2.
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Image and Pre-image: If f (a) = b, then b is the image of a
under f and a is the pre-image of b.
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Properties of Functions

Number of Functions: Let A = {a1, . . . , am} (|A| = m) and
B = {b1, . . . , bn} (|B| = n). f : A → B is described as,
{(a1, x1), (a2, x2), . . . , (am, xm)}.
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(i) and (ii) Left for You as an Exercise!
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One-to-One or Injective Functions

One-to-one (Injective) Function: f : A → B is a one-to-one (or injective)
function, if each element in B appears at most once as image of an
element of A.

For arbitrary sets A,B, f : A → B is one-to-one if and only if
∀a1, a2 ∈ A, f (a1) = f (a2) ⇒ a1 = a2.
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(ii) g : R → R where g(x) = x2 + x , ∀x ∈ R is NOT one-to-one;
because g(−1) = 0 and g(0) = 0.
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B = {b1, . . . , bn} (|B| = n) (m ≤ n). f : A → B is described as,
{(a1, x1), (a2, x2), . . . , (am, xm)}.
So, Total Count = n(n− 1) · · · (n−m+1) = n!

(n−m)! = P(|B|, |A|).

f : A → B, with A1,A2 ⊆ A. Then, f (A1 ∩A2) = f (A1) ∩ f (A2), if f is one-to-one.
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Onto or Surjective Functions

Onto (Surjective) Function: f : A → B is a onto (or surjective) function, if
f (A) = B, i.e. for all b ∈ B there is at least one a ∈ A
with f (a) = b.

For arbitrary sets A,B, f : A → B is onto if and only
if ∀b ∈ B, ∃a ∈ A, so that f (a) = b.
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Examples: (i) f : R → R where f (x) = x3 + 1, ∀x ∈ R is onto;
because for each y = x3 + 1 ∈ R, there is an x = 3

√
y − 1.
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For arbitrary sets A,B, f : A → B is onto if and only
if ∀b ∈ B, ∃a ∈ A, so that f (a) = b.
If f : A → B is onto with A,B finite, then |A| ≥ |B|.

Examples: (i) f : R → R where f (x) = x3 + 1, ∀x ∈ R is onto;
because for each y = x3 + 1 ∈ R, there is an x = 3

√
y − 1.

(ii) f : R → R where f (x) = x2, ∀x ∈ R is NOT onto;
because for an y = −4 ∈ R, we get
x =

√
y = 2i or− 2i 6∈ R.
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x =

√
y = 2i or− 2i 6∈ R.

Number of Onto Functions: Counting is non-trivial and will be addressed later!
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x =

√
y = 2i or− 2i 6∈ R.

Number of Onto Functions: Counting is non-trivial and will be addressed later!

One-to-one & Onto (Bijective) Function:

f : A → B is bijective if it is both one-to-one (injective) and onto (surjective).

For arbitrary sets A,B, f : A → B is bijective if and only if
∀b ∈ B, ∃a ∈ A, so that f (a) = b and ∀a′( 6= a) ∈ A, f (a′) 6= b.

If f : A → B is bijective with A,B finite, then |A| = |B|.
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Neither One−to−one,

nor Onto

(but a Relation)

Not a Function

Onto, but

not One−to−one

One−to−one,

but not Onto

One−to−one

and Onto
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(Binary) Operations and Properties

Definition

Binary Operation: For non-empty sets, A,B, any function f : A×A → B is called a
binary operation on A. If B ⊆ A then the binary operation is closed on

A (also A is closed under f ). (Count: |B||A|2 )

Unary Operation: A function g : A → A is called unary (or monary) operation on A.
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(Binary) Operations and Properties

Definition

Binary Operation: For non-empty sets, A,B, any function f : A×A → B is called a
binary operation on A. If B ⊆ A then the binary operation is closed on

A (also A is closed under f ). (Count: |B||A|2 )

Unary Operation: A function g : A → A is called unary (or monary) operation on A.

Properties: Let f : A×A → B is a binary operation.

Commutativity: If ∀(x , y) ∈ A×A, f (x , y) = f (y , x) then f is commutative.

Associativity: If f is closed and ∀x , y , z ∈ A, f (f (x , y), z) = f (x , f (y , z)), then f is
associative.
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A (also A is closed under f ). (Count: |B||A|2 )

Unary Operation: A function g : A → A is called unary (or monary) operation on A.

Properties: Let f : A×A → B is a binary operation.

Commutativity: If ∀(x , y) ∈ A×A, f (x , y) = f (y , x) then f is commutative.

Associativity: If f is closed and ∀x , y , z ∈ A, f (f (x , y), z) = f (x , f (y , z)), then f is
associative.

Example

1 g : Z+ × Z
+ → Z defined as g(x , y) = x − y , is a binary operation on Z which is

NOT closed as g(1, 2) = −1 6∈ Z
+, though 1, 2 ∈ Z

+.
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associative.
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1 g : Z+ × Z
+ → Z defined as g(x , y) = x − y , is a binary operation on Z which is

NOT closed as g(1, 2) = −1 6∈ Z
+, though 1, 2 ∈ Z

+.
2 h : R+ → R

+ defined as h(x) = 1
x
is an unary operation on R

+.
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Unary Operation: A function g : A → A is called unary (or monary) operation on A.

Properties: Let f : A×A → B is a binary operation.

Commutativity: If ∀(x , y) ∈ A×A, f (x , y) = f (y , x) then f is commutative.

Associativity: If f is closed and ∀x , y , z ∈ A, f (f (x , y), z) = f (x , f (y , z)), then f is
associative.

Example

1 g : Z+ × Z
+ → Z defined as g(x , y) = x − y , is a binary operation on Z which is

NOT closed as g(1, 2) = −1 6∈ Z
+, though 1, 2 ∈ Z

+.
2 h : R+ → R

+ defined as h(x) = 1
x
is an unary operation on R

+.
3 f : Z× Z → Z defined as f (x , y) = x − y , is a closed binary operation on Z which

is neither commutative nor associative. (Why?)
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(Binary) Operations and Properties

Definition

Binary Operation: For non-empty sets, A,B, any function f : A×A → B is called a
binary operation on A. If B ⊆ A then the binary operation is closed on

A (also A is closed under f ). (Count: |B||A|2 )

Unary Operation: A function g : A → A is called unary (or monary) operation on A.

Properties: Let f : A×A → B is a binary operation.

Commutativity: If ∀(x , y) ∈ A×A, f (x , y) = f (y , x) then f is commutative.

Associativity: If f is closed and ∀x , y , z ∈ A, f (f (x , y), z) = f (x , f (y , z)), then f is
associative.

Example

1 g : Z+ × Z
+ → Z defined as g(x , y) = x − y , is a binary operation on Z which is

NOT closed as g(1, 2) = −1 6∈ Z
+, though 1, 2 ∈ Z

+.
2 h : R+ → R

+ defined as h(x) = 1
x
is an unary operation on R

+.
3 f : Z× Z → Z defined as f (x , y) = x − y , is a closed binary operation on Z which

is neither commutative nor associative. (Why?)
4 f : Z×Z → Z defined as f (a,b) = a+b− ab is both commutative and associative.
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More Properties of Binary Operation

Properties: Let f : A×A → B is a binary operation.

Identity: x ∈ A is an identity (or identity element) for f if
f (a, x) = f (x , a) = a, ∀a ∈ A.
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Identity: x ∈ A is an identity (or identity element) for f if
f (a, x) = f (x , a) = a, ∀a ∈ A.

Property: If f has an identity, then that identity is unique.
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Properties: Let f : A×A → B is a binary operation.

Identity: x ∈ A is an identity (or identity element) for f if
f (a, x) = f (x , a) = a, ∀a ∈ A.

Property: If f has an identity, then that identity is unique.
(Proof: Let two identities, x1, x2 ∈ A. Then, by definition

f (x1, x2) = x1 = f (x2, x1) = x2, leading to contradiction!)
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More Properties of Binary Operation

Properties: Let f : A×A → B is a binary operation.

Identity: x ∈ A is an identity (or identity element) for f if
f (a, x) = f (x , a) = a, ∀a ∈ A.

Property: If f has an identity, then that identity is unique.
(Proof: Let two identities, x1, x2 ∈ A. Then, by definition

f (x1, x2) = x1 = f (x2, x1) = x2, leading to contradiction!)

Example: f : Z× Z → Z defined as f (a,b) = a+ b − ab has 0 as the unique
identity, because f (a, 0) = a + 0 + a.0 = a = 0 + a + 0.a = f (0, a).
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f (x1, x2) = x1 = f (x2, x1) = x2, leading to contradiction!)

Example: f : Z× Z → Z defined as f (a,b) = a+ b − ab has 0 as the unique
identity, because f (a, 0) = a + 0 + a.0 = a = 0 + a + 0.a = f (0, a).

Projection: For sets A,B, if C ⊆ A× B, then –
(i) πA : C → A defined by πA(a, b) = a, is called the projection on the
first coordinate. (ii) πB : C → B defined by πB(a, b) = b, is called the
projection on the second coordinate.
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Example: f : Z× Z → Z defined as f (a,b) = a+ b − ab has 0 as the unique
identity, because f (a, 0) = a + 0 + a.0 = a = 0 + a + 0.a = f (0, a).

Projection: For sets A,B, if C ⊆ A× B, then –
(i) πA : C → A defined by πA(a, b) = a, is called the projection on the
first coordinate. (ii) πB : C → B defined by πB(a, b) = b, is called the
projection on the second coordinate.

Property: If C = A× B, then πA and πB both are onto functions.
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Properties: Let f : A×A → B is a binary operation.

Identity: x ∈ A is an identity (or identity element) for f if
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Property: If f has an identity, then that identity is unique.
(Proof: Let two identities, x1, x2 ∈ A. Then, by definition

f (x1, x2) = x1 = f (x2, x1) = x2, leading to contradiction!)

Example: f : Z× Z → Z defined as f (a,b) = a+ b − ab has 0 as the unique
identity, because f (a, 0) = a + 0 + a.0 = a = 0 + a + 0.a = f (0, a).

Projection: For sets A,B, if C ⊆ A× B, then –
(i) πA : C → A defined by πA(a, b) = a, is called the projection on the
first coordinate. (ii) πB : C → B defined by πB(a, b) = b, is called the
projection on the second coordinate.

Property: If C = A× B, then πA and πB both are onto functions.

Example: Let A = B = R and C ⊆ A× B where C = {(x , y) | y = x2, x , y ∈ R}

representing the Euclidean plane that contains points on the parabola y = x2.

Here, πA(3, 9) = 3 and πB(3, 9) = 9. Note that, πA(C) = R and hence πA is

onto (and one-to-one as well). Whereas, πB(C) = [0,+∞] ⊂ R and hence πB

is NOT onto (nor it is one-to-one as πB(2, 4) = 4 = πB(−2, 4)).
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Equal, Identity and Composite Functions

Identity Function: The function, 1A : A → A defined by 1A(a) = a (∀a ∈ A), is called
the identity function for A.
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Equal, Identity and Composite Functions

Identity Function: The function, 1A : A → A defined by 1A(a) = a (∀a ∈ A), is called
the identity function for A.

Equal Functions: Two functions f , g : A → B are said to be equal (denoted as f = g) if
f (a) = g(a), ∀a ∈ A.

Note: Domain and Codomain of f , g must also be the same!
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the identity function for A.

Equal Functions: Two functions f , g : A → B are said to be equal (denoted as f = g) if
f (a) = g(a), ∀a ∈ A.

Note: Domain and Codomain of f , g must also be the same!

Example: f , g : R → Z are defined as, f (x) =

{

x , if x ∈ Z

⌊x⌋ + 1, if x ∈ R− Z
and

g(x) = ⌈x⌉, then f (x) = g(x) for every x ∈ R (Why?). So, f = g .
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Equal, Identity and Composite Functions

Identity Function: The function, 1A : A → A defined by 1A(a) = a (∀a ∈ A), is called
the identity function for A.

Equal Functions: Two functions f , g : A → B are said to be equal (denoted as f = g) if
f (a) = g(a), ∀a ∈ A.

Note: Domain and Codomain of f , g must also be the same!

Example: f , g : R → Z are defined as, f (x) =

{

x , if x ∈ Z

⌊x⌋ + 1, if x ∈ R− Z
and

g(x) = ⌈x⌉, then f (x) = g(x) for every x ∈ R (Why?). So, f = g .

Composite Function: If f : A → B and g : B → C, we define the composite function,
g ◦ f : A → C by (g ◦ f )(a) = g(f (a)), ∀a ∈ A.
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and
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Composite Function: If f : A → B and g : B → C, we define the composite function,
g ◦ f : A → C by (g ◦ f )(a) = g(f (a)), ∀a ∈ A.

Range of f ⊆ Domain of g – sufficient for Function Composition!
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Identity Function: The function, 1A : A → A defined by 1A(a) = a (∀a ∈ A), is called
the identity function for A.

Equal Functions: Two functions f , g : A → B are said to be equal (denoted as f = g) if
f (a) = g(a), ∀a ∈ A.

Note: Domain and Codomain of f , g must also be the same!

Example: f , g : R → Z are defined as, f (x) =

{

x , if x ∈ Z

⌊x⌋ + 1, if x ∈ R− Z
and

g(x) = ⌈x⌉, then f (x) = g(x) for every x ∈ R (Why?). So, f = g .

Composite Function: If f : A → B and g : B → C, we define the composite function,
g ◦ f : A → C by (g ◦ f )(a) = g(f (a)), ∀a ∈ A.

Range of f ⊆ Domain of g – sufficient for Function Composition!
For two identity functions 1A : A → A and 1B : B → B,

f ◦ 1A = f = 1B ◦ f .
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g(x) = ⌈x⌉, then f (x) = g(x) for every x ∈ R (Why?). So, f = g .

Composite Function: If f : A → B and g : B → C, we define the composite function,
g ◦ f : A → C by (g ◦ f )(a) = g(f (a)), ∀a ∈ A.

Range of f ⊆ Domain of g – sufficient for Function Composition!
For two identity functions 1A : A → A and 1B : B → B,

f ◦ 1A = f = 1B ◦ f .
Example: Let f , g : R → R defined as, f (x) = x2 and g(x) = x + 1. Then,

(f ◦ g)(x) = x2 + 2x + 1 and (g ◦ f )(x) = x2 + 1. So, (f ◦ g)(x) 6= (g ◦ f )(x).
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Equal, Identity and Composite Functions

Identity Function: The function, 1A : A → A defined by 1A(a) = a (∀a ∈ A), is called
the identity function for A.

Equal Functions: Two functions f , g : A → B are said to be equal (denoted as f = g) if
f (a) = g(a), ∀a ∈ A.

Note: Domain and Codomain of f , g must also be the same!

Example: f , g : R → Z are defined as, f (x) =

{

x , if x ∈ Z

⌊x⌋ + 1, if x ∈ R− Z
and

g(x) = ⌈x⌉, then f (x) = g(x) for every x ∈ R (Why?). So, f = g .

Composite Function: If f : A → B and g : B → C, we define the composite function,
g ◦ f : A → C by (g ◦ f )(a) = g(f (a)), ∀a ∈ A.

Range of f ⊆ Domain of g – sufficient for Function Composition!
For two identity functions 1A : A → A and 1B : B → B,

f ◦ 1A = f = 1B ◦ f .
Example: Let f , g : R → R defined as, f (x) = x2 and g(x) = x + 1. Then,

(f ◦ g)(x) = x2 + 2x + 1 and (g ◦ f )(x) = x2 + 1. So, (f ◦ g)(x) 6= (g ◦ f )(x).

Commutativity of Function Compositions: Does NOT Hold!

Function Composition is NOT Commutative, that is, we shall NOT always have
f ◦ g(x) 6= g ◦ f (x) for any two functions, f , g : A → A (and x ∈ A).
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Composite Function Properties

Associativity of Function Compositions

If f : A → B, g : B → C and h : C → D, then (h ◦ g) ◦ f = h ◦ (g ◦ f ).
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Composite Function Properties

Associativity of Function Compositions

If f : A → B, g : B → C and h : C → D, then (h ◦ g) ◦ f = h ◦ (g ◦ f ).

Proof: For every x ∈ A, we can show,
(h ◦ g ◦ f )(x) = (h ◦ g) ◦ f (x) = (h ◦ g)(f (x))

= h(g(f (x))) = h(g ◦ f (x)) = h ◦ (g ◦ f )(x).
C DBA

h o (g o f)

(h o g) o f

h o g

g o f

f g h
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Composite Function Properties

Associativity of Function Compositions

If f : A → B, g : B → C and h : C → D, then (h ◦ g) ◦ f = h ◦ (g ◦ f ).

Proof: For every x ∈ A, we can show,
(h ◦ g ◦ f )(x) = (h ◦ g) ◦ f (x) = (h ◦ g)(f (x))

= h(g(f (x))) = h(g ◦ f (x)) = h ◦ (g ◦ f )(x).
C DBA

h o (g o f)

(h o g) o f

h o g

g o f

f g h

Recursive Compositions of Functions

Let f : A → A. Then, f 1 = f , and for n ∈ Z
+, f n+1 = f ◦ (f n) = (f n) ◦ f .
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Composite Function Properties

Bijective Nature of Function Compositions

Let f : A → B and g : B → C and the composition g ◦ f : A → C is a one-to-one
(injective) function. Then, f is one-to-one (however, g need NOT be one-to-one).
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(injective) function. Then, f is one-to-one (however, g need NOT be one-to-one).
Explanation:

f is one-to-one (Proof): Assuming f is NOT one-to-one, implies ∃x1, x2 ∈ A such that
f (x1) = f (x2). So, g ◦ f (x1) = g ◦ f (x2), contradicting g ◦ f is injective!
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(x ∈ R). Here, g ◦ f : R → R is defined as, g ◦ f (x) = e2x . So, (g ◦ f )
is one-to-one, but g is NOT (note that, f is one-to-one as proven)!
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z = g ◦ f (x) = g(f (x)), implying that z has a pre-image defined as
f (x) ∈ B – thus making g onto.
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f (x) ∈ B – thus making g onto.

f is not onto (Example): f , g : Z → Z are defined as, f (x) = 2x and g(x) = ⌊ x
2
⌋

(x ∈ Z). Here, g ◦ f : Z → Z is defined as, g ◦ f (x) = x . So, (g ◦ f ) is
onto, but f is NOT (note that, g is onto as proven)!
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Inverse Functions and Invertibility

Inverse Functions: For a function f : A → B, if f −1
L , f −1

R : B → A are defined such that
f −1
L ◦ f = 1A and f ◦ f −1

R = 1B , then f −1
L and f −1

R are called the left
inverse and right inverse of f , respectively.
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(Proof: Assume two inverses, f −1
1 and f −1

2 . Using the definition, we get,

f −1
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1 ◦ (f ◦ f −1
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1 ◦ (f ◦ f −1

2 ) = (f −1
1 ◦ f ) ◦ f −1

2 = 1A ◦ f −1
2 = f −1

2 .)

Examples: (1) Let f , g : Z → Z are defined as f (x) = 2x and g(x) = ⌊ x+1
2
⌋

(x ∈ Z). So, g ◦ f , f ◦ g : Z → Z are defined by, g ◦ f (x) = g(2x) = x

and f ◦ g(x) = f (⌊ x+1
2

⌋) =

{

x + 1, if x is odd
x , if x is even

. So, g ◦ f = 1Z

meaning g is the left inverse of f , but f ◦ g 6= 1Z meaning g is NOT the
right inverse of f .
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Properties of Invertible Functions

Properties

f : A → B is invertible if and only if it is bijective (one-to-one + onto).
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f −1 ◦ f = 1A and 1A is injective, so f is injective.
f ◦ f −1 = 1B and 1B is surjective, so f is surjective.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 / 17



Properties of Invertible Functions

Properties

f : A → B is invertible if and only if it is bijective (one-to-one + onto).

Proof: [ If ] f is invertible means inverse function f −1 : B → A exists.
f −1 ◦ f = 1A and 1A is injective, so f is injective.
f ◦ f −1 = 1B and 1B is surjective, so f is surjective.

[Only-If] Since f is bijective, y ∈ B has one and only one pre-image x ∈ A.
We define f −1 : B → A as f −1(y) = x (pre-image of y under f ), y ∈ B.
So, f −1 ◦ f (x) = f −1(y) = x and f ◦ f −1(y) = f (x) = y ,
implying f −1 ◦ f = 1A and f ◦ f −1 = 1B ⇒ f is invertible.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 / 17



Properties of Invertible Functions

Properties

f : A → B is invertible if and only if it is bijective (one-to-one + onto).

Proof: [ If ] f is invertible means inverse function f −1 : B → A exists.
f −1 ◦ f = 1A and 1A is injective, so f is injective.
f ◦ f −1 = 1B and 1B is surjective, so f is surjective.

[Only-If] Since f is bijective, y ∈ B has one and only one pre-image x ∈ A.
We define f −1 : B → A as f −1(y) = x (pre-image of y under f ), y ∈ B.
So, f −1 ◦ f (x) = f −1(y) = x and f ◦ f −1(y) = f (x) = y ,
implying f −1 ◦ f = 1A and f ◦ f −1 = 1B ⇒ f is invertible.

If f : A → B, g : B → C are invertible, then g ◦ f : A → C is invertible and
(g ◦ f )−1 = f −1 ◦ g−1.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 / 17



Properties of Invertible Functions

Properties

f : A → B is invertible if and only if it is bijective (one-to-one + onto).

Proof: [ If ] f is invertible means inverse function f −1 : B → A exists.
f −1 ◦ f = 1A and 1A is injective, so f is injective.
f ◦ f −1 = 1B and 1B is surjective, so f is surjective.

[Only-If] Since f is bijective, y ∈ B has one and only one pre-image x ∈ A.
We define f −1 : B → A as f −1(y) = x (pre-image of y under f ), y ∈ B.
So, f −1 ◦ f (x) = f −1(y) = x and f ◦ f −1(y) = f (x) = y ,
implying f −1 ◦ f = 1A and f ◦ f −1 = 1B ⇒ f is invertible.

If f : A → B, g : B → C are invertible, then g ◦ f : A → C is invertible and
(g ◦ f )−1 = f −1 ◦ g−1.

Proof: f , g are invertible implies that f , g are bijective functions.
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So, (g ◦ f ) is also bijective and hence invertible (using above property).

(f −1 ◦ g−1) ◦ (g ◦ f ) = f −1 ◦ (g−1 ◦ g) ◦ f = f −1 ◦ 1B ◦ f = f −1 ◦ f = 1A.
(g ◦ f ) ◦ (f −1 ◦ g−1) = 1B . So, (f

−1 ◦ g−1) is the inverse of (g ◦ f ).

Example

f : R → R is defined by f (x) = 3x + 1 (x ∈ R). Note that, f is bijective (Why?) and
hence invertible. Now, f −1 : R → R defined by f −1(y) = y−1

3
, y ∈ R.
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Properties with Direct and Inverse Images
Direct Image: Let f : A → B and (non-empty) A′ ⊆ A. The direct image of A′ under

f is f (A′) ⊆ B given by, f (A′) = {f (x) | x ∈ A′}.
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Inverse Image: Let f : A → B and (non-empty) B′ ⊆ B. The inverse image (pre-image)

of B′ under f is f −1(B′) ⊆ A given by, f −1(B′) = {x | f (x) ∈ B′}.
Example: f : R → R is defined by f (x) = x2 (x ∈ R). Let P = {x ∈ R | x ∈ [0, 2]}.
The direct image f (P) = {y | y ∈ [0, 4]} (y ∈ R) and the inverse image of set f (P) is
f −1(f (P)) = {x | x ∈ [−2, 2]}. So, f −1(f (P)) 6= P and f is not a bijection / invertible.
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The direct image f (P) = {y | y ∈ [0, 4]} (y ∈ R) and the inverse image of set f (P) is
f −1(f (P)) = {x | x ∈ [−2, 2]}. So, f −1(f (P)) 6= P and f is not a bijection / invertible.

Properties: (RECAP) Let f : A → B, with A1,A2 ⊆ A. Then,
(i) If A1 ⊂ A2 ⇒ f (A1) ⊂ f (A2), (ii) f (A1 ∪ A2) = f (A1) ∪ f (A2),
and (iii) f (A1 ∩A2) ⊂ f (A1) ∩ f (A2).
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(i) If A1 ⊂ A2 ⇒ f (A1) ⊂ f (A2), (ii) f (A1 ∪ A2) = f (A1) ∪ f (A2),
and (iii) f (A1 ∩A2) ⊂ f (A1) ∩ f (A2).

Note: In general, f (A1 ∩ A2) 6= f (A1) ∩ f (A2). Consider, f : R → R as

f (x) = x2 and A1 = {0, 1, 1
2
,
1
3
, . . .}, A2 = {0,−1,− 1

2
,− 1

3
, . . .}. Here,

f (A1 ∩ A2) = {0} 6= {0, 1, 1
22
,

1
32
} = f (A1) ∩ f (A2).
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, . . .}. Here,

f (A1 ∩ A2) = {0} 6= {0, 1, 1
22
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32
} = f (A1) ∩ f (A2).

Let f : A → B be an onto mapping, with B1,B2 ⊆ B. Then,
(i) If B1 ⊂ B2 ⇒ f −1(B1) ⊂ f −1(B2), (ii) f −1(B1) = f −1(B1),
(iii) f −1(B1 ∪ B2) = f −1(B1) ∪ f −1(B2), and
(iv) f −1(B1 ∩ B2) = f −1(B1) ∩ f −1(B2).
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Note: In general, f (A1 ∩ A2) 6= f (A1) ∩ f (A2). Consider, f : R → R as

f (x) = x2 and A1 = {0, 1, 1
2
,
1
3
, . . .}, A2 = {0,−1,− 1

2
,− 1

3
, . . .}. Here,

f (A1 ∩ A2) = {0} 6= {0, 1, 1
22
,

1
32
} = f (A1) ∩ f (A2).

Let f : A → B be an onto mapping, with B1,B2 ⊆ B. Then,
(i) If B1 ⊂ B2 ⇒ f −1(B1) ⊂ f −1(B2), (ii) f −1(B1) = f −1(B1),
(iii) f −1(B1 ∪ B2) = f −1(B1) ∪ f −1(B2), and
(iv) f −1(B1 ∩ B2) = f −1(B1) ∩ f −1(B2).
Proof: (i) Let x ∈ f −1(B1) ⇒ f (x) ∈ B1. Since B1 ⊂ B2, therefore

f (x) ∈ B1 ⇒ f (x) ∈ B2. So, x ∈ f −1(B2) implying f −1(B1) ⊂ f −1(B2).
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Note: In general, f (A1 ∩ A2) 6= f (A1) ∩ f (A2). Consider, f : R → R as

f (x) = x2 and A1 = {0, 1, 1
2
,
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3
, . . .}, A2 = {0,−1,− 1

2
,− 1
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, . . .}. Here,

f (A1 ∩ A2) = {0} 6= {0, 1, 1
22
,

1
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} = f (A1) ∩ f (A2).

Let f : A → B be an onto mapping, with B1,B2 ⊆ B. Then,
(i) If B1 ⊂ B2 ⇒ f −1(B1) ⊂ f −1(B2), (ii) f −1(B1) = f −1(B1),
(iii) f −1(B1 ∪ B2) = f −1(B1) ∪ f −1(B2), and
(iv) f −1(B1 ∩ B2) = f −1(B1) ∩ f −1(B2).
Proof: (i) Let x ∈ f −1(B1) ⇒ f (x) ∈ B1. Since B1 ⊂ B2, therefore

f (x) ∈ B1 ⇒ f (x) ∈ B2. So, x ∈ f −1(B2) implying f −1(B1) ⊂ f −1(B2).

(ii), (iii) and (iv) Left for You as an Exercise!
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The Leftover: Number of Onto Functions under f : A → B

If 0 < |A| = m < n = |B|, how many Onto functions? = 0
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The Leftover: Number of Onto Functions under f : A → B

If 0 < |A| = m < n = |B|, how many Onto functions? = 0

If |A| = m = 1 = n = |B|, how many Onto functions? = 1
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The Leftover: Number of Onto Functions under f : A → B

If 0 < |A| = m < n = |B|, how many Onto functions? = 0

If |A| = m = 1 = n = |B|, how many Onto functions? = 1

If |A| = m ≥ n = 2 = |B|, how many Onto functions? = 2m − 2

If A = {x , y , z}, B = {1, 2}, then all possible functions = |B||A| = 23;
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If |A| = m ≥ n = 2 = |B|, how many Onto functions? = 2m − 2

If A = {x , y , z}, B = {1, 2}, then all possible functions = |B||A| = 23;
but f1 = {(x , 1), (y , 1), (z , 1)} and f2 = {(x , 2), (y , 2), (z , 2)} are NOT
onto. Hence, number of onto functions = 23 − 2 = 6.
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onto. Hence, number of onto functions = 23 − 2 = 6.

If |A| = m ≥ n = 3 = |B|, how many Onto functions? =
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(
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1
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If A = {w , x , y , z}, B = {1, 2, 3}, then all possible functions = 34;
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If A = {w , x , y , z}, B = {1, 2, 3}, then all possible functions = 34; this
includes 24 non-onto functions each from A → {1, 2}, A → {1, 3} and
A → {2, 3}. Now, the running count for onto functions = 34 − 3.24.
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If A = {w , x , y , z}, B = {1, 2, 3}, then all possible functions = 34; this
includes 24 non-onto functions each from A → {1, 2}, A → {1, 3} and
A → {2, 3}. Now, the running count for onto functions = 34 − 3.24.
But, we removed the constant function {(w , 2), (x , 2), (y , 2), (z , 2)}
twice – both during function removal from A → {1, 2}, A → {2, 3}.
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If A = {w , x , y , z}, B = {1, 2, 3}, then all possible functions = 34; this
includes 24 non-onto functions each from A → {1, 2}, A → {1, 3} and
A → {2, 3}. Now, the running count for onto functions = 34 − 3.24.
But, we removed the constant function {(w , 2), (x , 2), (y , 2), (z , 2)}
twice – both during function removal from A → {1, 2}, A → {2, 3}. So,
the final onto functions count = 34 − 3.24 + 3 =

(

3
3

)

34 −
(

3
2

)

24 +
(

3
1

)

14.
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If A = {w , x , y , z}, B = {1, 2, 3}, then all possible functions = 34; this
includes 24 non-onto functions each from A → {1, 2}, A → {1, 3} and
A → {2, 3}. Now, the running count for onto functions = 34 − 3.24.
But, we removed the constant function {(w , 2), (x , 2), (y , 2), (z , 2)}
twice – both during function removal from A → {1, 2}, A → {2, 3}. So,
the final onto functions count = 34 − 3.24 + 3 =
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3
1

)

14.

If |A| = m ≥ n = |B|, how many Onto functions? = O(m, n)
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The Leftover: Number of Onto Functions under f : A → B

If 0 < |A| = m < n = |B|, how many Onto functions? = 0

If |A| = m = 1 = n = |B|, how many Onto functions? = 1
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If A = {w , x , y , z}, B = {1, 2, 3}, then all possible functions = 34; this
includes 24 non-onto functions each from A → {1, 2}, A → {1, 3} and
A → {2, 3}. Now, the running count for onto functions = 34 − 3.24.
But, we removed the constant function {(w , 2), (x , 2), (y , 2), (z , 2)}
twice – both during function removal from A → {1, 2}, A → {2, 3}. So,
the final onto functions count = 34 − 3.24 + 3 =

(

3
3

)

34 −
(

3
2

)

24 +
(

3
1

)

14.

If |A| = m ≥ n = |B|, how many Onto functions? = O(m, n)

What do the above steps reveal?
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The Leftover: Number of Onto Functions under f : A → B

If 0 < |A| = m < n = |B|, how many Onto functions? = 0

If |A| = m = 1 = n = |B|, how many Onto functions? = 1

If |A| = m ≥ n = 2 = |B|, how many Onto functions? = 2m − 2
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If A = {w , x , y , z}, B = {1, 2, 3}, then all possible functions = 34; this
includes 24 non-onto functions each from A → {1, 2}, A → {1, 3} and
A → {2, 3}. Now, the running count for onto functions = 34 − 3.24.
But, we removed the constant function {(w , 2), (x , 2), (y , 2), (z , 2)}
twice – both during function removal from A → {1, 2}, A → {2, 3}. So,
the final onto functions count = 34 − 3.24 + 3 =

(

3
3

)

34 −
(

3
2

)

24 +
(

3
1

)

14.

If |A| = m ≥ n = |B|, how many Onto functions? = O(m, n)

What do the above steps reveal? ⇒ Principle of Inclusion-Exclusion!
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The Leftover: Number of Onto Functions under f : A → B

If 0 < |A| = m < n = |B|, how many Onto functions? = 0

If |A| = m = 1 = n = |B|, how many Onto functions? = 1

If |A| = m ≥ n = 2 = |B|, how many Onto functions? = 2m − 2

If A = {x , y , z}, B = {1, 2}, then all possible functions = |B||A| = 23;
but f1 = {(x , 1), (y , 1), (z , 1)} and f2 = {(x , 2), (y , 2), (z , 2)} are NOT
onto. Hence, number of onto functions = 23 − 2 = 6.

If |A| = m ≥ n = 3 = |B|, how many Onto functions? =
(

3
3

)

3m −
(

3
2

)

2m +
(

3
1

)

1m

If A = {w , x , y , z}, B = {1, 2, 3}, then all possible functions = 34; this
includes 24 non-onto functions each from A → {1, 2}, A → {1, 3} and
A → {2, 3}. Now, the running count for onto functions = 34 − 3.24.
But, we removed the constant function {(w , 2), (x , 2), (y , 2), (z , 2)}
twice – both during function removal from A → {1, 2}, A → {2, 3}. So,
the final onto functions count = 34 − 3.24 + 3 =

(

3
3

)

34 −
(

3
2

)

24 +
(

3
1

)

14.

If |A| = m ≥ n = |B|, how many Onto functions? = O(m, n)

What do the above steps reveal? ⇒ Principle of Inclusion-Exclusion!

O(m, n) =
(

n

n

)

nm −
(

n

n−1

)

(n− 1)m +
(

n

n−2

)

(n− 2)m − · · ·+(−1)n−2
(

n

2

)

2m +(−1)n−1
(

n

1

)

1m

=
n−1
∑

i=0

(−1)i
(

n

n−i

)

(n − i)m =
n
∑

i=0

(−1)i
(

n

n−i

)

(n − i)m
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Stirling Number of the Second Kind

Combinatorial Definition

For m ≥ n, Number of ways to distribute m objects into n identical (but
numbered) containers with no container empty =

∑n

i=0(−1)i
(

n

n−i

)

(n − i)m.
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Removing numbering in containers yields the number of ways to distribute m
objects into n perfectly identical containers with no container empty
= 1

n!

∑n

i=0(−1)i
(

n

n−i

)

(n − i)m = S(m, n) = Stirling Number of Second Kind.
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(n − i)m = S(m, n) = Stirling Number of Second Kind.

Therefore, in f : A → B, number of onto functions, O(m,n) = n!.S(m, n).

Combinatorial Derivation: A Primer to ‘Principle of Inclusion-Exclusion’

Let m, n ∈ Z
+ with 1 < n ≤ m. Then, S(m + 1, n) = S(m, n − 1) + n.S(m, n).
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Let m, n ∈ Z
+ with 1 < n ≤ m. Then, S(m + 1, n) = S(m, n − 1) + n.S(m, n).

Proof: S(m, n − 1) ways to distribute m objects into (n − 1) identical
containers with none left empty and putting the (m + 1)th object into
nth container alone ⇒ contributing S(m, n − 1) ways to S(m + 1, n).
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containers with none left empty and putting the (m + 1)th object into
nth container alone ⇒ contributing S(m, n − 1) ways to S(m + 1, n).
S(m, n) ways to distribute m objects into n identical containers with
none left empty and then placing (m + 1)th object in any of the already
filled n containers ⇒ contributing n.S(m, n) ways to S(m + 1, n).
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S(m, n) ways to distribute m objects into n identical containers with
none left empty and then placing (m + 1)th object in any of the already
filled n containers ⇒ contributing n.S(m, n) ways to S(m + 1, n).

Corollary: 1
n
[n!.S(m+1, n)] = [(n− 1)!.S(m, n− 1)] + [n!.S(m, n)] (multiply by (n− 1)!)
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Counting Problems: Are these problems well-recognized now?

1 Suppose you set your computer password of length m from a fixed chosen
set of n different characters available in the keyboard (m ≥ n). How many
different passwords can you set so that at least one occurrence of each
symbol (from the n chosen set of keyboard symbols) will be present?
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different passwords can you set so that at least one occurrence of each
symbol (from the n chosen set of keyboard symbols) will be present?

2 An m× n 2-dimensional (2-D) array, (aij)m×n having m rows and n columns,
is filled up with only 0 and 1 values. How many different 2-D arrays you can
construct so that exactly one 1 is present in each row and at least one 1 is
present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)
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is filled up with only 0 and 1 values. How many different 2-D arrays you can
construct so that exactly one 1 is present in each row and at least one 1 is
present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)

3 m different component manufacturing contracts of a high-security project is
to be executed by n different companies so that every company works on
some components of the project. How many possible ways these m

contracts can get assigned to n companies?
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3 m different component manufacturing contracts of a high-security project is
to be executed by n different companies so that every company works on
some components of the project. How many possible ways these m

contracts can get assigned to n companies?

4 For m, n ∈ Z
+ with m < n, prove that,

n
∑

k=0

(−1)k
(

n
n−k

)

(n − k)m = 0.
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+ with m < n, prove that,

n
∑

k=0

(−1)k
(
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5 For n ∈ Z
+, verify that,

n
∑

k=0

(−1)n
(

n
n−k

)

(n − k)n = n!.
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Thank You!
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