Functions

Aritra Hazra

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020 1 / 17

Functions: For two sets, $\mathcal{A}, \mathcal{B} \neq \phi$, a function (or mapping) f from \mathcal{A} to \mathcal{B} , denoted as $f : \mathcal{A} \rightarrow \mathcal{B}$, is a relation from \mathcal{A} to \mathcal{B} in which every element of \mathcal{A} appears exactly once in the first component of an ordered pair in the relation.

f(a) = b ($a \in A, b \in B$) when (a, b) is an ordered pair in the function f associating each a to an unique b. Thus, $(a, b), (a, c) \in f \Rightarrow b = c$.

Functions: For two sets, $\mathcal{A}, \mathcal{B} \neq \phi$, a function (or mapping) f from \mathcal{A} to \mathcal{B} , denoted as $f : \mathcal{A} \rightarrow \mathcal{B}$, is a relation from \mathcal{A} to \mathcal{B} in which every element of \mathcal{A} appears exactly once in the first component of an ordered pair in the relation.

f(a) = b $(a \in A, b \in B)$ when (a, b) is an ordered pair in the function f associating each a to an unique b. Thus, $(a, b), (a, c) \in f \Rightarrow b = c$.

Example: (1) Access function of 2-D array in memory, $f : A \to \mathbb{N}$ $(A = (a_{ij})_{m \times n}$ is an $m \times n$ array) is defined by, $f(a_{ij}) = (i-1)n + j$.

Functions: For two sets, $\mathcal{A}, \mathcal{B} \neq \phi$, a function (or mapping) f from \mathcal{A} to \mathcal{B} , denoted as $f : \mathcal{A} \rightarrow \mathcal{B}$, is a relation from \mathcal{A} to \mathcal{B} in which every element of \mathcal{A} appears exactly once in the first component of an ordered pair in the relation.

f(a) = b $(a \in A, b \in B)$ when (a, b) is an ordered pair in the function f associating each a to an unique b. Thus, $(a, b), (a, c) \in f \Rightarrow b = c$.

Example: (1) Access function of 2-D array in memory, f : A → N (A = (a_{ij})_{m×n} is an m×n array) is defined by, f(a_{ij}) = (i - 1)n + j.
(2) Floor and ceiling functions, f : R → Z, are defined by, f(x) = [x] and g(y) = [y] (x, y ∈ R).
f(2.7) = 2, f(-2.7) = -3, f(2) = 2, f(-2) = -2 and g(2.7) = 3, g(-2.7) = -2, g(2) = 2, g(-2) = -2.

Functions: For two sets, $\mathcal{A}, \mathcal{B} \neq \phi$, a function (or mapping) f from \mathcal{A} to \mathcal{B} , denoted as $f : \mathcal{A} \rightarrow \mathcal{B}$, is a relation from \mathcal{A} to \mathcal{B} in which every element of \mathcal{A} appears exactly once in the first component of an ordered pair in the relation.

f(a) = b $(a \in A, b \in B)$ when (a, b) is an ordered pair in the function f associating each a to an unique b. Thus, $(a, b), (a, c) \in f \Rightarrow b = c$.

Example: (1) Access function of 2-D array in memory, $f : \mathcal{A} \to \mathbb{N}$ ($\mathcal{A} = (a_{ij})_{m \times n}$ is an $m \times n$ array) is defined by, $f(a_{ij}) = (i-1)n+j$. (2) Floor and ceiling functions, $f : \mathbb{R} \to \mathbb{Z}$, are defined by, $f(x) = \lfloor x \rfloor$ and $g(y) = \lceil y \rceil$ ($x, y \in \mathbb{R}$). f(2.7) = 2, f(-2.7) = -3, f(2) = 2, f(-2) = -2 and g(2.7) = 3, g(-2.7) = -2, g(2) = 2, g(-2) = -2.

Image and Pre-image: If f(a) = b, then b is the image of a under f and a is the pre-image of b.

(4) (日本)

Functions: For two sets, $\mathcal{A}, \mathcal{B} \neq \phi$, a function (or mapping) f from \mathcal{A} to \mathcal{B} , denoted as $f : \mathcal{A} \rightarrow \mathcal{B}$, is a relation from \mathcal{A} to \mathcal{B} in which every element of \mathcal{A} appears exactly once in the first component of an ordered pair in the relation.

f(a) = b $(a \in A, b \in B)$ when (a, b) is an ordered pair in the function f associating each a to an unique b. Thus, $(a, b), (a, c) \in f \Rightarrow b = c$.

Example: (1) Access function of 2-D array in memory, f : A → N (A = (a_{ij})_{m×n} is an m×n array) is defined by, f(a_{ij}) = (i - 1)n + j.
(2) Floor and ceiling functions, f : R → Z, are defined by, f(x) = [x] and g(y) = [y] (x, y ∈ R).
f(2.7) = 2, f(-2.7) = -3, f(2) = 2, f(-2) = -2 and g(2.7) = 3, g(-2.7) = -2, g(2) = 2, g(-2) = -2.

Image and Pre-image: If f(a) = b, then b is the image of a under f and a is the pre-image of b.

Domain and Codomain: In $f : \mathcal{A} \to \mathcal{B}$, \mathcal{A} is the domain of fand \mathcal{B} is the codomain of f.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Functions: For two sets, $\mathcal{A}, \mathcal{B} \neq \phi$, a function (or mapping) f from \mathcal{A} to \mathcal{B} , denoted as $f : \mathcal{A} \rightarrow \mathcal{B}$, is a relation from \mathcal{A} to \mathcal{B} in which every element of \mathcal{A} appears exactly once in the first component of an ordered pair in the relation.

f(a) = b $(a \in A, b \in B)$ when (a, b) is an ordered pair in the function f associating each a to an unique b. Thus, $(a, b), (a, c) \in f \Rightarrow b = c$.

Example: (1) Access function of 2-D array in memory, f : A → N (A = (a_{ij})_{m×n} is an m×n array) is defined by, f(a_{ij}) = (i - 1)n + j.
(2) Floor and ceiling functions, f : R → Z, are defined by, f(x) = [x] and g(y) = [y] (x, y ∈ R).
f(2.7) = 2, f(-2.7) = -3, f(2) = 2, f(-2) = -2 and g(2.7) = 3, g(-2.7) = -2, g(2) = 2, g(-2) = -2.

Image and Pre-image: If f(a) = b, then b is the image of a under f and a is the pre-image of b.

Domain and Codomain: In $f : \mathcal{A} \to \mathcal{B}$, \mathcal{A} is the domain of fand \mathcal{B} is the codomain of f.

> Range: Set of all images for elements of \mathcal{A} in \mathcal{B} , $f(\mathcal{A}) \subseteq \mathcal{B}$.

Aritra Hazra (CSE, IITKGP)

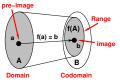
・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Functions: For two sets, $\mathcal{A}, \mathcal{B} \neq \phi$, a function (or mapping) f from \mathcal{A} to \mathcal{B} , denoted as $f : \mathcal{A} \rightarrow \mathcal{B}$, is a relation from \mathcal{A} to \mathcal{B} in which every element of \mathcal{A} appears exactly once in the first component of an ordered pair in the relation.

f(a) = b $(a \in A, b \in B)$ when (a, b) is an ordered pair in the function f associating each a to an unique b. Thus, $(a, b), (a, c) \in f \Rightarrow b = c$.

Example: (1) Access function of 2-D array in memory, f : A → N (A = (a_{ij})_{m×n} is an m×n array) is defined by, f(a_{ij}) = (i - 1)n + j.
(2) Floor and ceiling functions, f : R → Z, are defined by, f(x) = ⌊x⌋ and g(y) = ⌈y⌉ (x, y ∈ R).
f(2.7) = 2, f(-2.7) = -3, f(2) = 2, f(-2) = -2 and g(2.7) = 3, g(-2.7) = -2, g(2) = 2, g(-2) = -2.

Image and Pre-image: If f(a) = b, then b is the image of a under f and a is the pre-image of b. Domain and Codomain: In $f : A \to B$, A is the domain of f and B is the codomain of f. Range: Set of all images for elements of A in B, $f(A) \subset B$.



Aritra Hazra (CSE, IITKGP)

Number of Functions: Let $\mathcal{A} = \{a_1, \dots, a_m\}$ $(|\mathcal{A}| = m)$ and $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as, $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}.$

Number of Functions: Let
$$\mathcal{A} = \{a_1, \dots, a_m\}$$
 $(|\mathcal{A}| = m)$ and
 $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as,
 $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}$.
So, Total Count = $n^m = |\mathcal{B}|^{|\mathcal{A}|}$ (by rule-of-product).

Number of Functions: Let
$$\mathcal{A} = \{a_1, \dots, a_m\}$$
 $(|\mathcal{A}| = m)$ and
 $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as,
 $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}$.
So, Total Count $= n^m = |\mathcal{B}|^{|\mathcal{A}|}$ (by rule-of-product).

Image of Subset: If $f : A \to B$ and $A' \subseteq A$, then $f(A') = \{b \in B \mid b = f(a)\}$ (for some $a \in A'$), and f(A') is called the image of A' under f.

Number of Functions: Let
$$\mathcal{A} = \{a_1, \dots, a_m\}$$
 $(|\mathcal{A}| = m)$ and
 $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as,
 $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}$.
So, Total Count = $n^m = |\mathcal{B}|^{|\mathcal{A}|}$ (by rule-of-product).

Image of Subset: If $f : A \to B$ and $A' \subseteq A$, then $f(A') = \{b \in B \mid b = f(a)\}$ (for some $a \in A'$), and f(A') is called the image of A' under f.

Restriction: If $f : A \to B$ and $A' \subseteq A$, then $f|_{A'} : A' \to B$ is called the restriction of f to A' if $f|_{A'}(a) = f(a)$ for all $a \in A'$.

Number of Functions: Let
$$\mathcal{A} = \{a_1, \dots, a_m\}$$
 $(|\mathcal{A}| = m)$ and
 $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as,
 $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}$.
So, Total Count $= n^m = |\mathcal{B}|^{|\mathcal{A}|}$ (by rule-of-product).
Image of Subset: If $f : \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f(\mathcal{A}') = \{b \in \mathcal{B} \mid b = f(a)\}$
(for some $a \in \mathcal{A}'$), and $f(\mathcal{A}')$ is called the image of \mathcal{A}' under f .
Restriction: If $f : \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f|_{\mathcal{A}'} : \mathcal{A}' \to \mathcal{B}$ is called the
restriction of f to \mathcal{A}' if $f|_{\mathcal{A}'}(a) = f(a)$ for all $a \in \mathcal{A}'$.
Extension: Let $\mathcal{A}' \subseteq \mathcal{A}$ and $f : \mathcal{A}' \to \mathcal{B}$. If $g : \mathcal{A} \to \mathcal{B}$ and $g(a) = f(a)$ for all
 $a \in \mathcal{A}'$, then g is called an extension of f to \mathcal{A} .

Number of Functions: Let
$$\mathcal{A} = \{a_1, \dots, a_m\}$$
 $(|\mathcal{A}| = m)$ and
 $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as,
 $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}$.
So, Total Count = $n^m = |\mathcal{B}|^{|\mathcal{A}|}$ (by rule-of-product).
Image of Subset: If $f : \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f(\mathcal{A}') = \{b \in \mathcal{B} \mid b = f(a)\}$
(for some $a \in \mathcal{A}'$), and $f(\mathcal{A}')$ is called the image of \mathcal{A}' under f .
Restriction: If $f : \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f|_{\mathcal{A}'} : \mathcal{A}' \to \mathcal{B}$ is called the
restriction of f to \mathcal{A}' if $f|_{\mathcal{A}'}(a) = f(a)$ for all $a \in \mathcal{A}'$.
Extension: Let $\mathcal{A}' \subseteq \mathcal{A}$ and $f : \mathcal{A}' \to \mathcal{B}$. If $g : \mathcal{A} \to \mathcal{B}$ and $g(a) = f(a)$ for all
 $a \in \mathcal{A}'$, then g is called an extension of f to \mathcal{A} .

Let $f : \mathcal{A} \to \mathcal{B}$, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then, (i) If $\mathcal{A}_1 \subset \mathcal{A}_2 \Rightarrow f(\mathcal{A}_1) \subseteq f(\mathcal{A}_2)$, (ii) $f(\mathcal{A}_1 \cup \mathcal{A}_2) = f(\mathcal{A}_1) \cup f(\mathcal{A}_2)$, and (iii) $f(\mathcal{A}_1 \cap \mathcal{A}_2) \subseteq f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$.

Number of Functions: Let
$$\mathcal{A} = \{a_1, \dots, a_m\}$$
 $(|\mathcal{A}| = m)$ and
 $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as,
 $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}$.
So, Total Count = $n^m = |\mathcal{B}|^{|\mathcal{A}|}$ (by rule-of-product).
Image of Subset: If $f : \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f(\mathcal{A}') = \{b \in \mathcal{B} \mid b = f(a)\}$
(for some $a \in \mathcal{A}'$), and $f(\mathcal{A}')$ is called the image of \mathcal{A}' under f .
Restriction: If $f : \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f|_{\mathcal{A}'} : \mathcal{A}' \to \mathcal{B}$ is called the
restriction of f to \mathcal{A}' if $f|_{\mathcal{A}'}(a) = f(a)$ for all $a \in \mathcal{A}'$.
Extension: Let $\mathcal{A}' \subseteq \mathcal{A}$ and $f : \mathcal{A}' \to \mathcal{B}$. If $g : \mathcal{A} \to \mathcal{B}$ and $g(a) = f(a)$ for all
 $a \in \mathcal{A}'$, then g is called an extension of f to \mathcal{A} .

Let $f : \mathcal{A} \to \mathcal{B}$, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then, (i) If $\mathcal{A}_1 \subset \mathcal{A}_2 \Rightarrow f(\mathcal{A}_1) \subseteq f(\mathcal{A}_2)$, (ii) $f(\mathcal{A}_1 \cup \mathcal{A}_2) = f(\mathcal{A}_1) \cup f(\mathcal{A}_2)$, and (iii) $f(\mathcal{A}_1 \cap \mathcal{A}_2) \subseteq f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$.

Proof: (ii) For each $b \in \mathcal{B}$, $b \in f(\mathcal{A}_1 \cap \mathcal{A}_2) \Rightarrow b = f(a)$, for some $a \in (\mathcal{A}_1 \cap \mathcal{A}_2)$ $\Rightarrow [b = f(a)$ for some $a \in \mathcal{A}_1] \land [b = f(a)$ for some $a \in \mathcal{A}_2] \Rightarrow b \in f(\mathcal{A}_1) \land b \in f(\mathcal{A}_2)$ $\Rightarrow b \in f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$, implying the result.

Number of Functions: Let
$$\mathcal{A} = \{a_1, \dots, a_m\}$$
 $(|\mathcal{A}| = m)$ and
 $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as,
 $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}$.
So, Total Count $= n^m = |\mathcal{B}|^{|\mathcal{A}|}$ (by rule-of-product).
Image of Subset: If $f : \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f(\mathcal{A}') = \{b \in \mathcal{B} \mid b = f(a)\}$
(for some $a \in \mathcal{A}'$), and $f(\mathcal{A}')$ is called the image of \mathcal{A}' under f .
Restriction: If $f : \mathcal{A} \to \mathcal{B}$ and $\mathcal{A}' \subseteq \mathcal{A}$, then $f|_{\mathcal{A}'} : \mathcal{A}' \to \mathcal{B}$ is called the
restriction of f to \mathcal{A}' if $f|_{\mathcal{A}'}(a) = f(a)$ for all $a \in \mathcal{A}'$.
Extension: Let $\mathcal{A}' \subseteq \mathcal{A}$ and $f : \mathcal{A}' \to \mathcal{B}$. If $g : \mathcal{A} \to \mathcal{B}$ and $g(a) = f(a)$ for all
 $a \in \mathcal{A}'$, then g is called an extension of f to \mathcal{A} .
Let $f : \mathcal{A} \to \mathcal{B}$, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then, (i) If $\mathcal{A}_1 \subset \mathcal{A}_2 \Rightarrow f(\mathcal{A}_1) \subseteq f(\mathcal{A}_2)$,

(ii) $f(\mathcal{A}_1 \cup \mathcal{A}_2) = f(\mathcal{A}_1) \cup f(\mathcal{A}_2)$, and (iii) $f(\mathcal{A}_1 \cap \mathcal{A}_2) \subseteq f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$.

Proof: (ii) For each $b \in \mathcal{B}$, $b \in f(\mathcal{A}_1 \cap \mathcal{A}_2) \Rightarrow b = f(a)$, for some $a \in (\mathcal{A}_1 \cap \mathcal{A}_2)$ $\Rightarrow [b = f(a)$ for some $a \in \mathcal{A}_1] \land [b = f(a)$ for some $a \in \mathcal{A}_2] \Rightarrow b \in f(\mathcal{A}_1) \land b \in f(\mathcal{A}_2)$ $\Rightarrow b \in f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$, implying the result.

(i) and (ii) Left for You as an Exercise!

One-to-one (Injective) Function: $f : A \rightarrow B$ is a one-to-one (or injective)

function, if each element in ${\cal B}$ appears at most once as image of an element of ${\cal A}.$

• For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is one-to-one if and only if $\forall a_1, a_2 \in \mathcal{A}, f(a_1) = f(a_2) \Rightarrow a_1 = a_2.$

One-to-one (Injective) Function: $f : A \rightarrow B$ is a one-to-one (or injective)

function, if each element in ${\cal B}$ appears at most once as image of an element of ${\cal A}.$

- For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is one-to-one if and only if $\forall a_1, a_2 \in \mathcal{A}, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.
- If $f : \mathcal{A} \to \mathcal{B}$ is one-to-one with \mathcal{A}, \mathcal{B} finite, then $|\mathcal{A}| \leq |\mathcal{B}|$.

One-to-one (Injective) Function: $f : A \rightarrow B$ is a one-to-one (or injective)

function, if each element in ${\cal B}$ appears at most once as image of an element of ${\cal A}.$

• For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is one-to-one if and only if $\forall a_1, a_2 \in \mathcal{A}, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.

• If $f : A \to B$ is one-to-one with A, B finite, then $|A| \leq |B|$.

Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where f(x) = 2x + 1, $\forall x \in \mathbb{R}$ is one-to-one; because for all $x_1, x_2 \in \mathbb{R}$, we have $f(x_1) = f(x_2) \Rightarrow 2x_1 + 1 = 2x_2 + 1 \Rightarrow x_1 = x_2$.

One-to-one (Injective) Function: $f : A \rightarrow B$ is a one-to-one (or injective)

function, if each element in ${\cal B}$ appears at most once as image of an element of ${\cal A}.$

• For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is one-to-one if and only if $\forall a_1, a_2 \in \mathcal{A}, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.

• If $f : A \to B$ is one-to-one with A, B finite, then $|A| \leq |B|$.

Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where f(x) = 2x + 1, $\forall x \in \mathbb{R}$ is one-to-one; because for all $x_1, x_2 \in \mathbb{R}$, we have $f(x_1) = f(x_2) \Rightarrow 2x_1 + 1 = 2x_2 + 1 \Rightarrow x_1 = x_2$. (ii) $g : \mathbb{R} \to \mathbb{R}$ where $g(x) = x^2 + x$, $\forall x \in \mathbb{R}$ is NOT one-to-one; because g(-1) = 0 and g(0) = 0.

One-to-one (Injective) Function: $f : A \rightarrow B$ is a one-to-one (or injective)

function, if each element in ${\cal B}$ appears at most once as image of an element of ${\cal A}.$

- For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is one-to-one if and only if $\forall a_1, a_2 \in \mathcal{A}, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.
- If $f : A \to B$ is one-to-one with A, B finite, then $|A| \leq |B|$.

Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where f(x) = 2x + 1, $\forall x \in \mathbb{R}$ is one-to-one; because for all $x_1, x_2 \in \mathbb{R}$, we have $f(x_1) = f(x_2) \Rightarrow 2x_1 + 1 = 2x_2 + 1 \Rightarrow x_1 = x_2$. (ii) $g : \mathbb{R} \to \mathbb{R}$ where $g(x) = x^2 + x$, $\forall x \in \mathbb{R}$ is NOT one-to-one; because g(-1) = 0 and g(0) = 0.

Number of Injective Functions: Let $\mathcal{A} = \{a_1, \dots, a_m\}$ $(|\mathcal{A}| = m)$ and $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$ $(m \le n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as, $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}.$

One-to-one (Injective) Function: $f : A \rightarrow B$ is a one-to-one (or injective)

function, if each element in ${\cal B}$ appears at most once as image of an element of ${\cal A}.$

- For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is one-to-one if and only if $\forall a_1, a_2 \in \mathcal{A}, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.
- If $f : A \to B$ is one-to-one with A, B finite, then $|A| \leq |B|$.

Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where f(x) = 2x + 1, $\forall x \in \mathbb{R}$ is one-to-one; because for all $x_1, x_2 \in \mathbb{R}$, we have $f(x_1) = f(x_2) \Rightarrow 2x_1 + 1 = 2x_2 + 1 \Rightarrow x_1 = x_2$. (ii) $g : \mathbb{R} \to \mathbb{R}$ where $g(x) = x^2 + x$, $\forall x \in \mathbb{R}$ is NOT one-to-one; because g(-1) = 0 and g(0) = 0.

Number of Injective Functions: Let $\mathcal{A} = \{a_1, \dots, a_m\}$ $(|\mathcal{A}| = m)$ and $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$ $(m \le n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as, $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}$. So, Total Count = $n(n-1) \cdots (n-m+1) = \frac{n!}{(n-m)!} = P(|\mathcal{B}|, |\mathcal{A}|)$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

One-to-one (Injective) Function: $f : A \to B$ is a one-to-one (or injective) function, if each element in B appears at most once as image of an element of A.

- For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is one-to-one if and only if $\forall a_1, a_2 \in \mathcal{A}, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.
- If $f : A \to B$ is one-to-one with A, B finite, then $|A| \leq |B|$.

Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where f(x) = 2x + 1, $\forall x \in \mathbb{R}$ is one-to-one; because for all $x_1, x_2 \in \mathbb{R}$, we have $f(x_1) = f(x_2) \Rightarrow 2x_1 + 1 = 2x_2 + 1 \Rightarrow x_1 = x_2$. (ii) $g : \mathbb{R} \to \mathbb{R}$ where $g(x) = x^2 + x$, $\forall x \in \mathbb{R}$ is NOT one-to-one; because g(-1) = 0 and g(0) = 0.

Number of Injective Functions: Let $\mathcal{A} = \{a_1, \dots, a_m\}$ $(|\mathcal{A}| = m)$ and $\mathcal{B} = \{b_1, \dots, b_n\}$ $(|\mathcal{B}| = n)$ $(m \le n)$. $f : \mathcal{A} \to \mathcal{B}$ is described as, $\{(a_1, x_1), (a_2, x_2), \dots, (a_m, x_m)\}$. So, Total Count = $n(n-1) \cdots (n-m+1) = \frac{n!}{(n-m)!} = P(|\mathcal{B}|, |\mathcal{A}|)$.

 $f : \mathcal{A} \to \mathcal{B}$, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then, $f(\mathcal{A}_1 \cap \mathcal{A}_2) = f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$, if f is one-to-one.

Onto (Surjective) Function: $f : A \to B$ is a onto (or surjective) function, if f(A) = B, i.e. for all $b \in B$ there is at least one $a \in A$ with f(a) = b.

For arbitrary sets A, B, f : A → B is onto if and only if ∀b ∈ B, ∃a ∈ A, so that f(a) = b.

Onto (Surjective) Function: $f : A \to B$ is a onto (or surjective) function, if f(A) = B, i.e. for all $b \in B$ there is at least one $a \in A$ with f(a) = b.

- For arbitrary sets A, B, f : A → B is onto if and only if ∀b ∈ B, ∃a ∈ A, so that f(a) = b.
- If $f : \mathcal{A} \to \mathcal{B}$ is onto with \mathcal{A}, \mathcal{B} finite, then $|\mathcal{A}| \geq |\mathcal{B}|$.

Onto (Surjective) Function: $f : A \to B$ is a onto (or surjective) function, if f(A) = B, i.e. for all $b \in B$ there is at least one $a \in A$ with f(a) = b.

- For arbitrary sets A, B, f : A → B is onto if and only if ∀b ∈ B, ∃a ∈ A, so that f(a) = b.
- If $f : \mathcal{A} \to \mathcal{B}$ is onto with \mathcal{A}, \mathcal{B} finite, then $|\mathcal{A}| \geq |\mathcal{B}|$.

Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^3 + 1$, $\forall x \in \mathbb{R}$ is onto; because for each $y = x^3 + 1 \in \mathbb{R}$, there is an $x = \sqrt[3]{y-1}$.

Onto (Surjective) Function: $f : A \to B$ is a onto (or surjective) function, if f(A) = B, i.e. for all $b \in B$ there is at least one $a \in A$ with f(a) = b.

- For arbitrary sets A, B, f : A → B is onto if and only if ∀b ∈ B, ∃a ∈ A, so that f(a) = b.
- If $f : A \to B$ is onto with A, B finite, then $|A| \ge |B|$.

Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^3 + 1$, $\forall x \in \mathbb{R}$ is onto; because for each $y = x^3 + 1 \in \mathbb{R}$, there is an $x = \sqrt[3]{y-1}$. (ii) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$, $\forall x \in \mathbb{R}$ is NOT onto; because for an $y = -4 \in \mathbb{R}$, we get $x = \sqrt{y} = 2i$ or $-2i \notin \mathbb{R}$.

Onto (Surjective) Function: $f : A \to B$ is a onto (or surjective) function, if f(A) = B, i.e. for all $b \in B$ there is at least one $a \in A$ with f(a) = b.

- For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is onto if and only if $\forall b \in \mathcal{B}, \exists a \in \mathcal{A}$, so that f(a) = b.
- If $f : \mathcal{A} \to \mathcal{B}$ is onto with \mathcal{A}, \mathcal{B} finite, then $|\mathcal{A}| \geq |\mathcal{B}|$.

Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^3 + 1$, $\forall x \in \mathbb{R}$ is onto; because for each $y = x^3 + 1 \in \mathbb{R}$, there is an $x = \sqrt[3]{y-1}$. (ii) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$, $\forall x \in \mathbb{R}$ is NOT onto; because for an $y = -4 \in \mathbb{R}$, we get $x = \sqrt{y} = 2i$ or $-2i \notin \mathbb{R}$.

Number of Onto Functions: Counting is non-trivial and will be addressed later!

Onto (Surjective) Function: $f : A \to B$ is a onto (or surjective) function, if f(A) = B, i.e. for all $b \in B$ there is at least one $a \in A$ with f(a) = b.

- For arbitrary sets $\mathcal{A}, \mathcal{B}, f : \mathcal{A} \to \mathcal{B}$ is onto if and only if $\forall b \in \mathcal{B}, \exists a \in \mathcal{A}$, so that f(a) = b.
- If $f : \mathcal{A} \to \mathcal{B}$ is onto with \mathcal{A}, \mathcal{B} finite, then $|\mathcal{A}| \geq |\mathcal{B}|$.

Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^3 + 1$, $\forall x \in \mathbb{R}$ is onto; because for each $y = x^3 + 1 \in \mathbb{R}$, there is an $x = \sqrt[3]{y-1}$. (ii) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$, $\forall x \in \mathbb{R}$ is NOT onto; because for an $y = -4 \in \mathbb{R}$, we get $x = \sqrt{y} = 2i$ or $-2i \notin \mathbb{R}$.

Number of Onto Functions: Counting is non-trivial and will be addressed later!

One-to-one & Onto (Bijective) Function:

 $f: \mathcal{A} \rightarrow \mathcal{B}$ is bijective if it is both one-to-one (injective) and onto (surjective).

For arbitrary sets A, B, f : A → B is bijective if and only if
 ∀b ∈ B, ∃a ∈ A, so that f(a) = b and ∀a'(≠ a) ∈ A, f(a') ≠ b.

• If $f : A \to B$ is bijective with A, B finite, then |A| = |B|.

Onto (Surjective) Function: $f : A \to B$ is a onto (or surjective) function, if f(A) = B, i.e. for all $b \in B$ there is at least one $a \in A$ with f(a) = b. • For arbitrary sets $A, B, f : A \to B$ is onto if and only if $\forall b \in B, \exists a \in A$, so that f(a) = b. • If $f : A \to B$ is onto with A, B finite, then $|A| \ge |B|$. Examples: (i) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^3 + 1$, $\forall x \in \mathbb{R}$ is onto; because for each $y = x^3 + 1 \in \mathbb{R}$, there is an $x = \sqrt[3]{y-1}$. (ii) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2$, $\forall x \in \mathbb{R}$ is NOT onto; because for an $y = -4 \in \mathbb{R}$, we get $x = \sqrt{y} = 2i$ or $-2i \notin \mathbb{R}$.

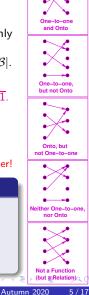
Number of Onto Functions: Counting is non-trivial and will be addressed later!

One-to-one & Onto (Bijective) Function:

 $f: \mathcal{A} \rightarrow \mathcal{B}$ is bijective if it is both one-to-one (injective) and onto (surjective).

For arbitrary sets A, B, f : A → B is bijective if and only if
 ∀b ∈ B, ∃a ∈ A, so that f(a) = b and ∀a'(≠ a) ∈ A, f(a') ≠ b.

• If $f : A \to B$ is bijective with A, B finite, then |A| = |B|.



Definition

Binary Operation: For non-empty sets, \mathcal{A}, \mathcal{B} , any function $f : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is called a
binary operation on \mathcal{A} . If $\mathcal{B} \subseteq \mathcal{A}$ then the binary operation is closed on
 \mathcal{A} (also \mathcal{A} is closed under f).(Count: $|\mathcal{B}|^{|\mathcal{A}|^2}$)

Unary Operation: A function $g : A \to A$ is called unary (or monary) operation on A.

Definition

Binary Operation: For non-empty sets, \mathcal{A}, \mathcal{B} , any function $f : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is called a binary operation on \mathcal{A} . If $\mathcal{B} \subseteq \mathcal{A}$ then the binary operation is closed on \mathcal{A} (also \mathcal{A} is closed under f). (Count: $|\mathcal{B}|^{|\mathcal{A}|^2}$)

Unary Operation: A function $g : A \to A$ is called unary (or monary) operation on A.

Properties:

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Commutativity: If $\forall (x, y) \in A \times A$, f(x, y) = f(y, x) then f is commutative.

Associativity: If f is closed and $\forall x, y, z \in A$, f(f(x, y), z) = f(x, f(y, z)), then f is associative.

Definition

Binary Operation: For non-empty sets, \mathcal{A}, \mathcal{B} , any function $f : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is called a binary operation on \mathcal{A} . If $\mathcal{B} \subseteq \mathcal{A}$ then the binary operation is closed on \mathcal{A} (also \mathcal{A} is closed under f). (Count: $|\mathcal{B}|^{|\mathcal{A}|^2}$)

Unary Operation: A function $g : A \to A$ is called unary (or monary) operation on A.

Properties:

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Commutativity: If $\forall (x, y) \in A \times A$, f(x, y) = f(y, x) then f is commutative.

Associativity: If f is closed and $\forall x, y, z \in A$, f(f(x, y), z) = f(x, f(y, z)), then f is associative.

Example

• $g: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}$ defined as g(x, y) = x - y, is a binary operation on \mathbb{Z} which is NOT closed as $g(1, 2) = -1 \notin \mathbb{Z}^+$, though $1, 2 \in \mathbb{Z}^+$.

Definition

Binary Operation: For non-empty sets, \mathcal{A}, \mathcal{B} , any function $f : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is called a binary operation on \mathcal{A} . If $\mathcal{B} \subseteq \mathcal{A}$ then the binary operation is closed on \mathcal{A} (also \mathcal{A} is closed under f). (Count: $|\mathcal{B}|^{|\mathcal{A}|^2}$)

Unary Operation: A function $g : A \to A$ is called unary (or monary) operation on A.

Properties:

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Commutativity: If $\forall (x, y) \in \mathcal{A} \times \mathcal{A}$, f(x, y) = f(y, x) then f is commutative.

Associativity: If f is closed and $\forall x, y, z \in A$, f(f(x, y), z) = f(x, f(y, z)), then f is associative.

Example

- $g: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}$ defined as g(x, y) = x y, is a binary operation on \mathbb{Z} which is NOT closed as $g(1, 2) = -1 \notin \mathbb{Z}^+$, though $1, 2 \in \mathbb{Z}^+$.
- 2 $h: \mathbb{R}^+ \to \mathbb{R}^+$ defined as $h(x) = \frac{1}{x}$ is an unary operation on \mathbb{R}^+ .

Definition

Binary Operation: For non-empty sets, \mathcal{A}, \mathcal{B} , any function $f : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is called a
binary operation on \mathcal{A} . If $\mathcal{B} \subseteq \mathcal{A}$ then the binary operation is closed on
 \mathcal{A} (also \mathcal{A} is closed under f).(Count: $|\mathcal{B}|^{|\mathcal{A}|^2}$)

Unary Operation: A function $g : A \to A$ is called unary (or monary) operation on A.

Properties:

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Commutativity: If $\forall (x, y) \in A \times A$, f(x, y) = f(y, x) then f is commutative.

Associativity: If f is closed and $\forall x, y, z \in A$, f(f(x, y), z) = f(x, f(y, z)), then f is associative.

Example

- $g: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}$ defined as g(x, y) = x y, is a binary operation on \mathbb{Z} which is NOT closed as $g(1, 2) = -1 \notin \mathbb{Z}^+$, though $1, 2 \in \mathbb{Z}^+$.
- 2 $h: \mathbb{R}^+ \to \mathbb{R}^+$ defined as $h(x) = \frac{1}{x}$ is an unary operation on \mathbb{R}^+ .

I : Z × Z → Z defined as f(x, y) = x - y, is a closed binary operation on Z which is neither commutative nor associative. (Why?)

Definition

Binary Operation: For non-empty sets, \mathcal{A}, \mathcal{B} , any function $f : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is called a
binary operation on \mathcal{A} . If $\mathcal{B} \subseteq \mathcal{A}$ then the binary operation is closed on
 \mathcal{A} (also \mathcal{A} is closed under f).(Count: $|\mathcal{B}|^{|\mathcal{A}|^2}$)

Unary Operation: A function $g : A \to A$ is called unary (or monary) operation on A.

Properties:

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Commutativity: If $\forall (x, y) \in A \times A$, f(x, y) = f(y, x) then f is commutative.

Associativity: If f is closed and $\forall x, y, z \in A$, f(f(x, y), z) = f(x, f(y, z)), then f is associative.

Example

- $g: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}$ defined as g(x, y) = x y, is a binary operation on \mathbb{Z} which is NOT closed as $g(1, 2) = -1 \notin \mathbb{Z}^+$, though $1, 2 \in \mathbb{Z}^+$.
- 2 $h: \mathbb{R}^+ \to \mathbb{R}^+$ defined as $h(x) = \frac{1}{x}$ is an unary operation on \mathbb{R}^+ .

I : Z × Z → Z defined as f(x, y) = x - y, is a closed binary operation on Z which is neither commutative nor associative. (Why?)

• $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as f(a, b) = a + b - ab is both commutative and associative.

Properties:

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Identity: $x \in A$ is an identity (or identity element) for f if $f(a, x) = f(x, a) = a, \forall a \in A$.

Properties:

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Identity: $x \in A$ is an identity (or identity element) for f if $f(a, x) = f(x, a) = a, \forall a \in A$.

Property: If f has an identity, then that identity is unique.

Properties:

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Identity: $x \in A$ is an identity (or identity element) for f if $f(a, x) = f(x, a) = a, \forall a \in A$.

Property: If f has an identity, then that identity is *unique*. (Proof: Let two identities, $x_1, x_2 \in A$. Then, by definition $f(x_1, x_2) = x_1 = f(x_2, x_1) = x_2$, leading to contradiction!)

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Identity: $x \in A$ is an identity (or identity element) for f if $f(a, x) = f(x, a) = a, \forall a \in A$.

Property: If f has an identity, then that identity is *unique*. (Proof: Let two identities, $x_1, x_2 \in A$. Then, by definition $f(x_1, x_2) = x_1 = f(x_2, x_1) = x_2$, leading to contradiction!)

Example: $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as f(a, b) = a + b - ab has 0 as the unique identity, because $f(a, 0) = a + 0 + a \cdot 0 = a = 0 + a + 0 \cdot a = f(0, a)$.

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Identity: $x \in A$ is an identity (or identity element) for f if $f(a, x) = f(x, a) = a, \forall a \in A$.

Property: If f has an identity, then that identity is *unique*. (Proof: Let two identities, $x_1, x_2 \in A$. Then, by definition $f(x_1, x_2) = x_1 = f(x_2, x_1) = x_2$, leading to contradiction!)

Example: $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as f(a, b) = a + b - ab has 0 as the unique identity, because $f(a, 0) = a + 0 + a \cdot 0 = a = 0 + a + 0 \cdot a = f(0, a)$.

Projection: For sets \mathcal{A}, \mathcal{B} , if $\mathcal{C} \subseteq \mathcal{A} \times \mathcal{B}$, then – (i) $\pi_{\mathcal{A}} : \mathcal{C} \to \mathcal{A}$ defined by $\pi_{\mathcal{A}}(a, b) = a$, is called the projection on the first coordinate. (ii) $\pi_{\mathcal{B}} : \mathcal{C} \to \mathcal{B}$ defined by $\pi_{\mathcal{B}}(a, b) = b$, is called the projection on the second coordinate.

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Identity: $x \in A$ is an identity (or identity element) for f if $f(a, x) = f(x, a) = a, \forall a \in A$.

Property: If f has an identity, then that identity is *unique*. (Proof: Let two identities, $x_1, x_2 \in A$. Then, by definition $f(x_1, x_2) = x_1 = f(x_2, x_1) = x_2$, leading to contradiction!)

Example: $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as f(a, b) = a + b - ab has 0 as the unique identity, because $f(a, 0) = a + 0 + a \cdot 0 = a = 0 + a + 0 \cdot a = f(0, a)$.

Projection: For sets \mathcal{A}, \mathcal{B} , if $\mathcal{C} \subseteq \mathcal{A} \times \mathcal{B}$, then – (i) $\pi_{\mathcal{A}} : \mathcal{C} \to \mathcal{A}$ defined by $\pi_{\mathcal{A}}(a, b) = a$, is called the projection on the first coordinate. (ii) $\pi_{\mathcal{B}} : \mathcal{C} \to \mathcal{B}$ defined by $\pi_{\mathcal{B}}(a, b) = b$, is called the projection on the second coordinate.

Property: If $C = A \times B$, then π_A and π_B both are *onto* functions.

Let $f : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a binary operation.

Identity: $x \in A$ is an identity (or identity element) for f if $f(a, x) = f(x, a) = a, \forall a \in A$.

Property: If f has an identity, then that identity is *unique*. (Proof: Let two identities, $x_1, x_2 \in A$. Then, by definition $f(x_1, x_2) = x_1 = f(x_2, x_1) = x_2$, leading to contradiction!)

Example: $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as f(a, b) = a + b - ab has 0 as the unique identity, because $f(a, 0) = a + 0 + a \cdot 0 = a = 0 + a + 0 \cdot a = f(0, a)$.

Projection: For sets \mathcal{A}, \mathcal{B} , if $\mathcal{C} \subseteq \mathcal{A} \times \mathcal{B}$, then – (i) $\pi_{\mathcal{A}} : \mathcal{C} \to \mathcal{A}$ defined by $\pi_{\mathcal{A}}(a, b) = a$, is called the projection on the first coordinate. (ii) $\pi_{\mathcal{B}} : \mathcal{C} \to \mathcal{B}$ defined by $\pi_{\mathcal{B}}(a, b) = b$, is called the projection on the second coordinate.

Property: If $C = A \times B$, then π_A and π_B both are *onto* functions.

Example: Let $\mathcal{A} = \mathcal{B} = \mathbb{R}$ and $\mathcal{C} \subseteq \mathcal{A} \times \mathcal{B}$ where $\mathcal{C} = \{(x, y) \mid y = x^2, x, y \in \mathbb{R}\}$ representing the Euclidean plane that contains points on the parabola $y = x^2$. Here, $\pi_{\mathcal{A}}(3,9) = 3$ and $\pi_{\mathcal{B}}(3,9) = 9$. Note that, $\pi_{\mathcal{A}}(\mathcal{C}) = \mathbb{R}$ and hence $\pi_{\mathcal{A}}$ is onto (and one-to-one as well). Whereas, $\pi_{\mathcal{B}}(\mathcal{C}) = [0, +\infty] \subset \mathbb{R}$ and hence $\pi_{\mathcal{B}}$ is NOT onto (nor it is one-to-one as $\pi_{\mathcal{B}}(2,4) = 4 = \pi_{\mathcal{B}}(-2,4)$).

Identity Function: The function, $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ defined by $1_{\mathcal{A}}(a) = a$ ($\forall a \in \mathcal{A}$), is called the identity function for \mathcal{A} .

Identity Function: The function, $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ defined by $1_{\mathcal{A}}(a) = a$ ($\forall a \in \mathcal{A}$), is called the identity function for \mathcal{A} .

Equal Functions: Two functions $f, g : A \to B$ are said to be equal (denoted as f = g) if $f(a) = g(a), \forall a \in A$.

Note: Domain and Codomain of f, g must also be the same!

Identity Function: The function, $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ defined by $1_{\mathcal{A}}(a) = a$ ($\forall a \in \mathcal{A}$), is called the identity function for \mathcal{A} .

Equal Functions: Two functions $f, g : A \to B$ are said to be equal (denoted as f = g) if $f(a) = g(a), \ \forall a \in A$.

Note: Domain and Codomain of f, g must also be the same!

Example: $f, g : \mathbb{R} \to \mathbb{Z}$ are defined as, $f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Z} \\ \lfloor x \rfloor + 1, & \text{if } x \in \mathbb{R} - \mathbb{Z} \end{cases}$ and $g(x) = \lceil x \rceil$, then f(x) = g(x) for every $x \in \mathbb{R}$ (Why?). So, f = g.

Identity Function: The function, $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ defined by $1_{\mathcal{A}}(a) = a$ ($\forall a \in \mathcal{A}$), is called the identity function for \mathcal{A} .

Equal Functions: Two functions $f, g : A \to B$ are said to be equal (denoted as f = g) if $f(a) = g(a), \ \forall a \in A$.

Note: Domain and Codomain of f, g must also be the same!

Example: $f, g : \mathbb{R} \to \mathbb{Z}$ are defined as, $f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Z} \\ \lfloor x \rfloor + 1, & \text{if } x \in \mathbb{R} - \mathbb{Z} \end{cases}$ and $g(x) = \lceil x \rceil$, then f(x) = g(x) for every $x \in \mathbb{R}$ (Why?). So, f = g.

Composite Function: If $f : A \to B$ and $g : B \to C$, we define the composite function, $g \circ f : A \to C$ by $(g \circ f)(a) = g(f(a)), \forall a \in A$.

Identity Function: The function, $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ defined by $1_{\mathcal{A}}(a) = a$ ($\forall a \in \mathcal{A}$), is called the identity function for \mathcal{A} .

Equal Functions: Two functions $f, g : A \to B$ are said to be equal (denoted as f = g) if $f(a) = g(a), \ \forall a \in A$.

Note: Domain and Codomain of f, g must also be the same!

Example: $f, g : \mathbb{R} \to \mathbb{Z}$ are defined as, $f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Z} \\ \lfloor x \rfloor + 1, & \text{if } x \in \mathbb{R} - \mathbb{Z} \end{cases}$ and $g(x) = \lceil x \rceil$, then f(x) = g(x) for every $x \in \mathbb{R}$ (Why?). So, f = g.

Composite Function: If $f : A \to B$ and $g : B \to C$, we define the composite function, $g \circ f : A \to C$ by $(g \circ f)(a) = g(f(a)), \forall a \in A$.

• Range of $f \subseteq$ Domain of g – sufficient for Function Composition!

Identity Function: The function, $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ defined by $1_{\mathcal{A}}(a) = a \ (\forall a \in \mathcal{A})$, is called the identity function for \mathcal{A} . Equal Functions: Two functions $f, g : \mathcal{A} \to \mathcal{B}$ are said to be equal (denoted as f = g) if $f(a) = g(a), \ \forall a \in \mathcal{A}$. Note: Domain and Codomain of f, g must also be the same! Example: $f, g : \mathbb{R} \to \mathbb{Z}$ are defined as, $f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Z} \\ \lfloor x \rfloor + 1, & \text{if } x \in \mathbb{R} - \mathbb{Z} \end{cases}$ and $g(x) = \lceil x \rceil$, then f(x) = g(x) for every $x \in \mathbb{R}$ (Why?). So, f = g. Composite Function: If $f : \mathcal{A} \to \mathcal{B}$ and $g : \mathcal{B} \to \mathcal{C}$, we define the composite function,

 $g \circ f : \mathcal{A}
ightarrow \mathcal{C}$ by $(g \circ f)(a) = g(f(a)), \; orall a \in \mathcal{A}.$

- Range of $f \subseteq$ Domain of g sufficient for Function Composition!
- For two identity functions $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ and $1_{\mathcal{B}} : \mathcal{B} \to \mathcal{B}$,

$$f \circ 1_{\mathcal{A}} = f = 1_{\mathcal{B}} \circ f.$$

Identity Function: The function, $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ defined by $1_{\mathcal{A}}(a) = a$ ($\forall a \in \mathcal{A}$), is called the identity function for \mathcal{A} . Equal Functions: Two functions $f, g: \mathcal{A} \to \mathcal{B}$ are said to be equal (denoted as f = g) if $f(a) = g(a), \forall a \in \mathcal{A}.$ *Note*: Domain and Codomain of f, g must also be the same! Example: $f, g : \mathbb{R} \to \mathbb{Z}$ are defined as, $f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Z} \\ |x|+1, & \text{if } x \in \mathbb{R} - \mathbb{Z} \end{cases}$ and $g(x) = \lceil x \rceil$, then f(x) = g(x) for every $x \in \mathbb{R}$ (Why?). So, f = g. Composite Function: If $f : \mathcal{A} \to \mathcal{B}$ and $g : \mathcal{B} \to \mathcal{C}$, we define the composite function, $g \circ f : \mathcal{A} \to \mathcal{C}$ by $(g \circ f)(a) = g(f(a)), \forall a \in \mathcal{A}.$ • Range of $f \subseteq$ Domain of g – sufficient for Function Composition! • For two identity functions $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ and $1_{\mathcal{B}} : \mathcal{B} \to \mathcal{B}$, $f \circ 1_A = f = 1_B \circ f$ **Example:** Let $f, g : \mathbb{R} \to \mathbb{R}$ defined as, $f(x) = x^2$ and g(x) = x + 1. Then, $(f \circ g)(x) = x^2 + 2x + 1$ and $(g \circ f)(x) = x^2 + 1$. So, $(f \circ g)(x) \neq (g \circ f)(x)$.

ヘロト 人間 とくほとく ほど

Identity Function: The function, $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ defined by $1_{\mathcal{A}}(a) = a$ ($\forall a \in \mathcal{A}$), is called the identity function for \mathcal{A} . Equal Functions: Two functions $f, g: \mathcal{A} \to \mathcal{B}$ are said to be equal (denoted as f = g) if $f(a) = g(a), \forall a \in \mathcal{A}.$ *Note*: Domain and Codomain of f, g must also be the same! Example: $f, g : \mathbb{R} \to \mathbb{Z}$ are defined as, $f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Z} \\ |x|+1, & \text{if } x \in \mathbb{R} - \mathbb{Z} \end{cases}$ and $g(x) = \lceil x \rceil$, then f(x) = g(x) for every $x \in \mathbb{R}$ (Why?). So, f = g. Composite Function: If $f : \mathcal{A} \to \mathcal{B}$ and $g : \mathcal{B} \to \mathcal{C}$, we define the composite function, $g \circ f : \mathcal{A} \to \mathcal{C}$ by $(g \circ f)(a) = g(f(a)), \forall a \in \mathcal{A}.$ • Range of $f \subseteq$ Domain of g – sufficient for Function Composition! • For two identity functions $1_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$ and $1_{\mathcal{B}} : \mathcal{B} \to \mathcal{B}$, $f \circ 1_A = f = 1_B \circ f$ **Example:** Let $f, g : \mathbb{R} \to \mathbb{R}$ defined as, $f(x) = x^2$ and g(x) = x + 1. Then, $(f \circ g)(x) = x^2 + 2x + 1$ and $(g \circ f)(x) = x^2 + 1$. So, $(f \circ g)(x) \neq (g \circ f)(x)$. Does NOT Hold! Commutativity of Function Compositions:

Function Composition is NOT Commutative, that is, we shall NOT always have $f \circ g(x) \neq g \circ f(x)$ for any two functions, $f, g : A \to A$ (and $x \in A$).

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

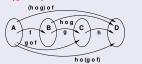
Associativity of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$, $g : \mathcal{B} \to \mathcal{C}$ and $h : \mathcal{C} \to \mathcal{D}$, then $(h \circ g) \circ f = h \circ (g \circ f)$.

Associativity of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$, $g : \mathcal{B} \to \mathcal{C}$ and $h : \mathcal{C} \to \mathcal{D}$, then $(h \circ g) \circ f = h \circ (g \circ f)$.

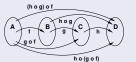
Proof: For every $x \in A$, we can show, $(h \circ g \circ f)(x) = (h \circ g) \circ f(x) = (h \circ g)(f(x))$ $= h(g(f(x))) = h(g \circ f(x)) = h \circ (g \circ f)(x).$



Associativity of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$, $g : \mathcal{B} \to \mathcal{C}$ and $h : \mathcal{C} \to \mathcal{D}$, then $(h \circ g) \circ f = h \circ (g \circ f)$.

Proof: For every $x \in A$, we can show, $(h \circ g \circ f)(x) = (h \circ g) \circ f(x) = (h \circ g)(f(x))$ $= h(g(f(x))) = h(g \circ f(x)) = h \circ (g \circ f)(x).$



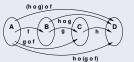
Recursive Compositions of Functions

Let
$$f : \mathcal{A} \to \mathcal{A}$$
. Then, $f^1 = f$, and for $n \in \mathbb{Z}^+$, $f^{n+1} = f \circ (f^n) = (f^n) \circ f$.

Associativity of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$, $g : \mathcal{B} \to \mathcal{C}$ and $h : \mathcal{C} \to \mathcal{D}$, then $(h \circ g) \circ f = h \circ (g \circ f)$.

Proof: For every $x \in A$, we can show, $(h \circ g \circ f)(x) = (h \circ g) \circ f(x) = (h \circ g)(f(x))$ $= h(g(f(x))) = h(g \circ f(x)) = h \circ (g \circ f)(x).$



Recursive Compositions of Functions

Let
$$f:\mathcal{A}\to\mathcal{A}$$
. Then, $f^1=f$, and for $n\in\mathbb{Z}^+$, $f^{n+1}=f\circ(f^n)=(f^n)\circ f$.

Bijective Nature of Function Compositions

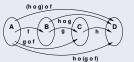
If $f : \mathcal{A} \to \mathcal{B}$ and $g : \mathcal{B} \to \mathcal{C}$ both are one-to-one , then $g \circ f : \mathcal{A} \to \mathcal{C}$ is one-to-one.

Aritra Hazra (CSE, IITKGP)

Associativity of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$, $g : \mathcal{B} \to \mathcal{C}$ and $h : \mathcal{C} \to \mathcal{D}$, then $(h \circ g) \circ f = h \circ (g \circ f)$.

Proof: For every $x \in A$, we can show, $(h \circ g \circ f)(x) = (h \circ g) \circ f(x) = (h \circ g)(f(x))$ $= h(g(f(x))) = h(g \circ f(x)) = h \circ (g \circ f)(x).$



Recursive Compositions of Functions

Let
$$f: \mathcal{A} \to \mathcal{A}$$
. Then, $f^1 = f$, and for $n \in \mathbb{Z}^+$, $f^{n+1} = f \circ (f^n) = (f^n) \circ f$.

Bijective Nature of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$ and $g : \mathcal{B} \to \mathcal{C}$ both are one-to-one, then $g \circ f : \mathcal{A} \to \mathcal{C}$ is one-to-one. **Proof:** Let $a_1, a_2 \in \mathcal{A}$. $(g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow g(f(a_1)) = g(f(a_2)) \Rightarrow f(a_1) = f(a_2)$ (as g is one-to-one). Again, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ (as f is one-to-one). Hence, $g \circ f$ is one-to-one.

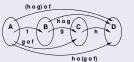
Aritra Hazra (CSE, IITKGP)

(日) (四) (日) (日)

Associativity of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$, $g : \mathcal{B} \to \mathcal{C}$ and $h : \mathcal{C} \to \mathcal{D}$, then $(h \circ g) \circ f = h \circ (g \circ f)$.

Proof: For every $x \in A$, we can show, $(h \circ g \circ f)(x) = (h \circ g) \circ f(x) = (h \circ g)(f(x))$ $= h(g(f(x))) = h(g \circ f(x)) = h \circ (g \circ f)(x).$



Recursive Compositions of Functions

Let
$$f: \mathcal{A} \to \mathcal{A}$$
. Then, $f^1 = f$, and for $n \in \mathbb{Z}^+$, $f^{n+1} = f \circ (f^n) = (f^n) \circ f$.

Bijective Nature of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$ and $g : \mathcal{B} \to \mathcal{C}$ both are one-to-one, then $g \circ f : \mathcal{A} \to \mathcal{C}$ is one-to-one. **Proof:** Let $a_1, a_2 \in \mathcal{A}$. $(g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow g(f(a_1)) = g(f(a_2)) \Rightarrow f(a_1) = f(a_2)$ (as g is one-to-one). Again, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ (as f is one-to-one). Hence, $g \circ f$ is one-to-one.

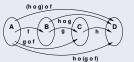
If $f : A \to B$ and $g : B \to C$ both are onto, then $g \circ f : A \to C$ is onto.

Aritra Hazra (CSE, IITKGP)

Associativity of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$, $g : \mathcal{B} \to \mathcal{C}$ and $h : \mathcal{C} \to \mathcal{D}$, then $(h \circ g) \circ f = h \circ (g \circ f)$.

Proof: For every $x \in A$, we can show, $(h \circ g \circ f)(x) = (h \circ g) \circ f(x) = (h \circ g)(f(x))$ $= h(g(f(x))) = h(g \circ f(x)) = h \circ (g \circ f)(x).$



Recursive Compositions of Functions

Let
$$f:\mathcal{A}\to\mathcal{A}$$
. Then, $f^1=f$, and for $n\in\mathbb{Z}^+$, $f^{n+1}=f\circ(f^n)=(f^n)\circ f$.

Bijective Nature of Function Compositions

If $f : \mathcal{A} \to \mathcal{B}$ and $g : \mathcal{B} \to \mathcal{C}$ both are one-to-one, then $g \circ f : \mathcal{A} \to \mathcal{C}$ is one-to-one. **Proof:** Let $a_1, a_2 \in \mathcal{A}$. $(g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow g(f(a_1)) = g(f(a_2)) \Rightarrow f(a_1) = f(a_2)$ (as g is one-to-one). Again, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ (as f is one-to-one). Hence, $g \circ f$ is one-to-one.

If $f : A \to B$ and $g : B \to C$ both are onto, then $g \circ f : A \to C$ is onto. **Proof:** For any $z \in C$, $\exists y \in B$ (as g is onto) and $y \in B$, $\exists x \in A$ (as f is onto). So, $z = g(y) = g(f(x)) = (g \circ f)(x)$ and Range of $(g \circ f) = C$ = Codomain of $(g \circ f)$.

Bijective Nature of Function Compositions

Let $f : A \to B$ and $g : B \to C$ and the composition $g \circ f : A \to C$ is a one-to-one (injective) function. Then, f is one-to-one (however, g need NOT be one-to-one).

Bijective Nature of Function Compositions

Let $f : A \to B$ and $g : B \to C$ and the composition $g \circ f : A \to C$ is a one-to-one (injective) function. Then, f is one-to-one (however, g need NOT be one-to-one). **Explanation:**

f is one-to-one (Proof): Assuming *f* is NOT one-to-one, implies $\exists x_1, x_2 \in \mathcal{A}$ such that $f(x_1) = f(x_2)$. So, $g \circ f(x_1) = g \circ f(x_2)$, contradicting $g \circ f$ is injective!

Bijective Nature of Function Compositions

Let $f : A \to B$ and $g : B \to C$ and the composition $g \circ f : A \to C$ is a one-to-one (injective) function. Then, f is one-to-one (however, g need NOT be one-to-one). **Explanation:**

f is one-to-one (Proof): Assuming *f* is NOT one-to-one, implies $\exists x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$. So, $g \circ f(x_1) = g \circ f(x_2)$, contradicting $g \circ f$ is injective!

g is not one-to-one (Example): $f, g : \mathbb{R} \to \mathbb{R}$ are defined as, $f(x) = e^x$ and $g(x) = x^2$ $(x \in \mathbb{R})$. Here, $g \circ f : \mathbb{R} \to \mathbb{R}$ is defined as, $g \circ f(x) = e^{2x}$. So, $(g \circ f)$ is one-to-one, but g is NOT (note that, f is one-to-one as proven)!

Bijective Nature of Function Compositions

Let $f : A \to B$ and $g : B \to C$ and the composition $g \circ f : A \to C$ is a one-to-one (injective) function. Then, f is one-to-one (however, g need NOT be one-to-one). **Explanation:**

f is one-to-one (Proof): Assuming *f* is NOT one-to-one, implies $\exists x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$. So, $g \circ f(x_1) = g \circ f(x_2)$, contradicting $g \circ f$ is injective!

g is not one-to-one (Example): $f, g : \mathbb{R} \to \mathbb{R}$ are defined as, $f(x) = e^x$ and $g(x) = x^2$ $(x \in \mathbb{R})$. Here, $g \circ f : \mathbb{R} \to \mathbb{R}$ is defined as, $g \circ f(x) = e^{2x}$. So, $(g \circ f)$ is one-to-one, but g is NOT (note that, f is one-to-one as proven)!

Let $f : A \to B$ and $g : B \to C$ and the composition $g \circ f : A \to C$ is a onto (surjective) function. Then, g is onto (however, f need NOT be onto).

Bijective Nature of Function Compositions

Let $f : A \to B$ and $g : B \to C$ and the composition $g \circ f : A \to C$ is a one-to-one (injective) function. Then, f is one-to-one (however, g need NOT be one-to-one). **Explanation:**

f is one-to-one (Proof): Assuming *f* is NOT one-to-one, implies $\exists x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$. So, $g \circ f(x_1) = g \circ f(x_2)$, contradicting $g \circ f$ is injective!

g is not one-to-one (Example): $f, g : \mathbb{R} \to \mathbb{R}$ are defined as, $f(x) = e^x$ and $g(x) = x^2$ $(x \in \mathbb{R})$. Here, $g \circ f : \mathbb{R} \to \mathbb{R}$ is defined as, $g \circ f(x) = e^{2x}$. So, $(g \circ f)$ is one-to-one, but g is NOT (note that, f is one-to-one as proven)!

Let $f : A \to B$ and $g : B \to C$ and the composition $g \circ f : A \to C$ is a onto (surjective) function. Then, g is onto (however, f need NOT be onto). Explanation:

g is onto (Proof): As $(g \circ f)$ is onto, for any $z \in C$, $\exists x \in A$ such that, $z = g \circ f(x) = g(f(x))$, implying that z has a pre-image defined as $f(x) \in B$ – thus making g onto.

Bijective Nature of Function Compositions

Let $f : A \to B$ and $g : B \to C$ and the composition $g \circ f : A \to C$ is a one-to-one (injective) function. Then, f is one-to-one (however, g need NOT be one-to-one). **Explanation:**

f is one-to-one (Proof): Assuming *f* is NOT one-to-one, implies $\exists x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$. So, $g \circ f(x_1) = g \circ f(x_2)$, contradicting $g \circ f$ is injective!

g is not one-to-one (Example): $f, g : \mathbb{R} \to \mathbb{R}$ are defined as, $f(x) = e^x$ and $g(x) = x^2$ $(x \in \mathbb{R})$. Here, $g \circ f : \mathbb{R} \to \mathbb{R}$ is defined as, $g \circ f(x) = e^{2x}$. So, $(g \circ f)$ is one-to-one, but g is NOT (note that, f is one-to-one as proven)!

Let $f : A \to B$ and $g : B \to C$ and the composition $g \circ f : A \to C$ is a onto (surjective) function. Then, g is onto (however, f need NOT be onto). Explanation:

g is onto (Proof): As $(g \circ f)$ is onto, for any $z \in C$, $\exists x \in A$ such that, $z = g \circ f(x) = g(f(x))$, implying that z has a pre-image defined as $f(x) \in B$ – thus making g onto.

f is not onto (Example): $f, g: \mathbb{Z} \to \mathbb{Z}$ are defined as, f(x) = 2x and $g(x) = \lfloor \frac{x}{2} \rfloor$ $(x \in \mathbb{Z})$. Here, $g \circ f: \mathbb{Z} \to \mathbb{Z}$ is defined as, $g \circ f(x) = x$. So, $(g \circ f)$ is onto, but *f* is NOT (note that, *g* is onto as proven)!

Aritra Hazra (CSE, IITKGP)

Inverse Functions: For a function $f : \mathcal{A} \to \mathcal{B}$, if $f_L^{-1}, f_R^{-1} : \mathcal{B} \to \mathcal{A}$ are defined such that $f_L^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f_R^{-1} = 1_{\mathcal{B}}$, then f_L^{-1} and f_R^{-1} are called the left inverse and right inverse of f, respectively.

Inverse Functions: For a function $f : \mathcal{A} \to \mathcal{B}$, if $f_L^{-1}, f_R^{-1} : \mathcal{B} \to \mathcal{A}$ are defined such that $f_L^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f_R^{-1} = 1_{\mathcal{B}}$, then f_L^{-1} and f_R^{-1} are called the left inverse and right inverse of f, respectively.

Invertible Functions: A function $f : \mathcal{A} \to \mathcal{B}$ is said to be invertible if there exist a function $f^{-1} : \mathcal{B} \to \mathcal{A}$ such that $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}}$. f^{-1} is called the inverse function of f.

Inverse Functions: For a function $f : \mathcal{A} \to \mathcal{B}$, if $f_L^{-1}, f_R^{-1} : \mathcal{B} \to \mathcal{A}$ are defined such that $f_L^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f_R^{-1} = 1_{\mathcal{B}}$, then f_L^{-1} and f_R^{-1} are called the left inverse and right inverse of f, respectively.

Invertible Functions: A function $f : \mathcal{A} \to \mathcal{B}$ is said to be invertible if there exist a function $f^{-1} : \mathcal{B} \to \mathcal{A}$ such that $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}}$. f^{-1} is called the inverse function of f.

Unique Inverse: An invertible function $f : A \to B$ has a unique inverse $f^{-1} : B \to A$.

Inverse Functions: For a function $f : \mathcal{A} \to \mathcal{B}$, if $f_L^{-1}, f_R^{-1} : \mathcal{B} \to \mathcal{A}$ are defined such that $f_L^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f_R^{-1} = 1_{\mathcal{B}}$, then f_L^{-1} and f_R^{-1} are called the left inverse and right inverse of f, respectively.

Invertible Functions: A function $f : \mathcal{A} \to \mathcal{B}$ is said to be invertible if there exist a function $f^{-1} : \mathcal{B} \to \mathcal{A}$ such that $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}}$. f^{-1} is called the inverse function of f.

Unique Inverse: An invertible function $f : \mathcal{A} \to \mathcal{B}$ has a unique inverse $f^{-1} : \mathcal{B} \to \mathcal{A}$. (**Proof:** Assume two inverses f^{-1} and f^{-1} . Using the definition, we get

$$f_1^{-1} = f_1^{-1} \circ 1_{\mathcal{B}} = f_1^{-1} \circ (f \circ f_2^{-1}) = (f_1^{-1} \circ f) \circ f_2^{-1} = 1_{\mathcal{A}} \circ f_2^{-1} = f_2^{-1}.)$$

Inverse Functions: For a function $f : A \to B$, if $f_L^{-1}, f_R^{-1} : B \to A$ are defined such that $f_L^{-1} \circ f = 1_A$ and $f \circ f_R^{-1} = 1_B$, then f_L^{-1} and f_R^{-1} are called the left inverse and right inverse of f, respectively.

Invertible Functions: A function $f : \mathcal{A} \to \mathcal{B}$ is said to be invertible if there exist a function $f^{-1} : \mathcal{B} \to \mathcal{A}$ such that $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}}$. f^{-1} is called the inverse function of f.

Unique Inverse: An invertible function $f : A \to B$ has a unique inverse $f^{-1} : B \to A$.

(**Proof:** Assume two inverses, f_1^{-1} and f_2^{-1} . Using the definition, we get, $f_1^{-1} = f_1^{-1} \circ 1_{\mathcal{B}} = f_1^{-1} \circ (f \circ f_2^{-1}) = (f_1^{-1} \circ f) \circ f_2^{-1} = 1_{\mathcal{A}} \circ f_2^{-1} = f_2^{-1}$.)

Examples: (1) Let $f, g : \mathbb{Z} \to \mathbb{Z}$ are defined as f(x) = 2x and $g(x) = \lfloor \frac{x+1}{2} \rfloor$ $(x \in \mathbb{Z})$. So, $g \circ f, f \circ g : \mathbb{Z} \to \mathbb{Z}$ are defined by, $g \circ f(x) = g(2x) = x$ and $f \circ g(x) = f(\lfloor \frac{x+1}{2} \rfloor) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x, & \text{if } x \text{ is even} \end{cases}$. So, $g \circ f = 1_{\mathbb{Z}}$ meaning g is the left inverse of f, but $f \circ g \neq 1_{\mathbb{Z}}$ meaning g is NOT the right inverse of f.

Inverse Functions: For a function $f : A \to B$, if $f_L^{-1}, f_R^{-1} : B \to A$ are defined such that $f_L^{-1} \circ f = 1_A$ and $f \circ f_R^{-1} = 1_B$, then f_L^{-1} and f_R^{-1} are called the left inverse and right inverse of f, respectively.

Invertible Functions: A function $f : \mathcal{A} \to \mathcal{B}$ is said to be invertible if there exist a function $f^{-1} : \mathcal{B} \to \mathcal{A}$ such that $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}}$. f^{-1} is called the inverse function of f.

Unique Inverse: An invertible function $f : A \to B$ has a unique inverse $f^{-1} : B \to A$.

(**Proof:** Assume two inverses, f_1^{-1} and f_2^{-1} . Using the definition, we get, $f_1^{-1} = f_1^{-1} \circ 1_{\mathcal{B}} = f_1^{-1} \circ (f \circ f_2^{-1}) = (f_1^{-1} \circ f) \circ f_2^{-1} = 1_{\mathcal{A}} \circ f_2^{-1} = f_2^{-1}$.)

Examples: (1) Let $f, g : \mathbb{Z} \to \mathbb{Z}$ are defined as f(x) = 2x and $g(x) = \lfloor \frac{x+1}{2} \rfloor$ $(x \in \mathbb{Z})$. So, $g \circ f, f \circ g : \mathbb{Z} \to \mathbb{Z}$ are defined by, $g \circ f(x) = g(2x) = x$ and $f \circ g(x) = f(\lfloor \frac{x+1}{2} \rfloor) = \begin{cases} x+1, & \text{if } x \text{ is odd} \\ x, & \text{if } x \text{ is even} \end{cases}$. So, $g \circ f = 1_{\mathbb{Z}}$ meaning g is the left inverse of f, but $f \circ g \neq 1_{\mathbb{Z}}$ meaning g is NOT the right inverse of f.

(2) Let $f, g : \mathbb{R} \to \mathbb{R}$ are defined as f(x) = 2x and $g(x) = \frac{x}{2}$ ($x \in \mathbb{R}$). So, $g \circ f, f \circ g : \mathbb{R} \to \mathbb{R}$ are defined by, $g \circ f(x) = g(2x) = x$ and $f \circ g(x) = f(\frac{x}{2}) = x$. So, $g \circ f = f \circ g = 1_{\mathbb{R}}$ meaning g is inverse of f.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Properties of Invertible Functions

Properties

• $f : A \to B$ is invertible if and only if it is bijective (one-to-one + onto).

Properties of Invertible Functions

Properties

• $f : A \to B$ is invertible if and only if it is bijective (one-to-one + onto).

Proof: [If] f is invertible means inverse function $f^{-1} : \mathcal{B} \to \mathcal{A}$ exists. $f^{-1} \circ f = 1_{\mathcal{A}}$ and $1_{\mathcal{A}}$ is injective, so f is injective. $f \circ f^{-1} = 1_{\mathcal{B}}$ and $1_{\mathcal{B}}$ is surjective, so f is surjective.

Properties

• $f : A \to B$ is invertible if and only if it is bijective (one-to-one + onto).

Proof: [If] f is invertible means inverse function $f^{-1} : \mathcal{B} \to \mathcal{A}$ exists. $f^{-1} \circ f = 1_{\mathcal{A}}$ and $1_{\mathcal{A}}$ is injective, so f is injective. $f \circ f^{-1} = 1_{\mathcal{B}}$ and $1_{\mathcal{B}}$ is surjective, so f is surjective. [Only-If] Since f is bijective, $y \in \mathcal{B}$ has one and only one pre-image $x \in \mathcal{A}$. We define $f^{-1} : \mathcal{B} \to \mathcal{A}$ as $f^{-1}(y) = x$ (pre-image of y under f), $y \in \mathcal{B}$. So, $f^{-1} \circ f(x) = f^{-1}(y) = x$ and $f \circ f^{-1}(y) = f(x) = y$, implying $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}} \Rightarrow f$ is invertible.

Properties

• $f : A \to B$ is invertible if and only if it is bijective (one-to-one + onto).

Proof: [If] f is invertible means inverse function $f^{-1} : \mathcal{B} \to \mathcal{A}$ exists. $f^{-1} \circ f = 1_{\mathcal{A}}$ and $1_{\mathcal{A}}$ is injective, so f is injective. $f \circ f^{-1} = 1_{\mathcal{B}}$ and $1_{\mathcal{B}}$ is surjective, so f is surjective. [Only-If] Since f is bijective, $y \in \mathcal{B}$ has one and only one pre-image $x \in \mathcal{A}$. We define $f^{-1} : \mathcal{B} \to \mathcal{A}$ as $f^{-1}(y) = x$ (pre-image of y under f), $y \in \mathcal{B}$. So, $f^{-1} \circ f(x) = f^{-1}(y) = x$ and $f \circ f^{-1}(y) = f(x) = y$, implying $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}} \Rightarrow f$ is invertible.

• If $f : A \to B$, $g : B \to C$ are invertible, then $g \circ f : A \to C$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Properties

• $f : A \to B$ is invertible if and only if it is bijective (one-to-one + onto).

Proof: [If] f is invertible means inverse function $f^{-1} : \mathcal{B} \to \mathcal{A}$ exists. $f^{-1} \circ f = 1_{\mathcal{A}}$ and $1_{\mathcal{A}}$ is injective, so f is injective. $f \circ f^{-1} = 1_{\mathcal{B}}$ and $1_{\mathcal{B}}$ is surjective, so f is surjective. [Only-If] Since f is bijective, $y \in \mathcal{B}$ has one and only one pre-image $x \in \mathcal{A}$. We define $f^{-1} : \mathcal{B} \to \mathcal{A}$ as $f^{-1}(y) = x$ (pre-image of y under f), $y \in \mathcal{B}$. So, $f^{-1} \circ f(x) = f^{-1}(y) = x$ and $f \circ f^{-1}(y) = f(x) = y$, implying $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}} \Rightarrow f$ is invertible.

• If $f : A \to B$, $g : B \to C$ are invertible, then $g \circ f : A \to C$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof: f, g are invertible implies that f, g are bijective functions. So, $(g \circ f)$ is also bijective and hence invertible (using above property).

Properties

• $f : A \to B$ is invertible if and only if it is bijective (one-to-one + onto).

Proof: [If] f is invertible means inverse function $f^{-1} : \mathcal{B} \to \mathcal{A}$ exists. $f^{-1} \circ f = 1_{\mathcal{A}}$ and $1_{\mathcal{A}}$ is injective, so f is injective. $f \circ f^{-1} = 1_{\mathcal{B}}$ and $1_{\mathcal{B}}$ is surjective, so f is surjective. [Only-If] Since f is bijective, $y \in \mathcal{B}$ has one and only one pre-image $x \in \mathcal{A}$. We define $f^{-1} : \mathcal{B} \to \mathcal{A}$ as $f^{-1}(y) = x$ (pre-image of y under f), $y \in \mathcal{B}$. So, $f^{-1} \circ f(x) = f^{-1}(y) = x$ and $f \circ f^{-1}(y) = f(x) = y$, implying $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}} \Rightarrow f$ is invertible.

• If $f : A \to B$, $g : B \to C$ are invertible, then $g \circ f : A \to C$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof: f, g are invertible implies that f, g are bijective functions. So, $(g \circ f)$ is also bijective and hence invertible (using above property). $(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ 1_{\mathcal{B}} \circ f = f^{-1} \circ f = 1_{\mathcal{A}}.$ $(g \circ f) \circ (f^{-1} \circ g^{-1}) = 1_{\mathcal{B}}.$ So, $(f^{-1} \circ g^{-1})$ is the inverse of $(g \circ f)$.

• • = • • = •

Properties

• $f : A \to B$ is invertible if and only if it is bijective (one-to-one + onto).

Proof: [If] f is invertible means inverse function $f^{-1} : \mathcal{B} \to \mathcal{A}$ exists. $f^{-1} \circ f = 1_{\mathcal{A}}$ and $1_{\mathcal{A}}$ is injective, so f is injective. $f \circ f^{-1} = 1_{\mathcal{B}}$ and $1_{\mathcal{B}}$ is surjective, so f is surjective. [Only-If] Since f is bijective, $y \in \mathcal{B}$ has one and only one pre-image $x \in \mathcal{A}$. We define $f^{-1} : \mathcal{B} \to \mathcal{A}$ as $f^{-1}(y) = x$ (pre-image of y under f), $y \in \mathcal{B}$. So, $f^{-1} \circ f(x) = f^{-1}(y) = x$ and $f \circ f^{-1}(y) = f(x) = y$, implying $f^{-1} \circ f = 1_{\mathcal{A}}$ and $f \circ f^{-1} = 1_{\mathcal{B}} \Rightarrow f$ is invertible.

- If $f : A \to B$, $g : B \to C$ are invertible, then $g \circ f : A \to C$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
 - **Proof:** f, g are invertible implies that f, g are bijective functions. So, $(g \circ f)$ is also bijective and hence invertible (using above property). $(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ 1_{\mathcal{B}} \circ f = f^{-1} \circ f = 1_{\mathcal{A}}.$ $(g \circ f) \circ (f^{-1} \circ g^{-1}) = 1_{\mathcal{B}}.$ So, $(f^{-1} \circ g^{-1})$ is the inverse of $(g \circ f)$.

Example

 $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x + 1 ($x \in \mathbb{R}$). Note that, f is bijective (Why?) and hence invertible. Now, $f^{-1}: \mathbb{R} \to \mathbb{R}$ defined by $f^{-1}(y) = \frac{y-1}{3}$, $y \in \mathbb{R}$.

Aritra Hazra (CSE, IITKGP)

Direct Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{A}' \subseteq \mathcal{A}$. The direct image of \mathcal{A}' under f is $f(\mathcal{A}') \subseteq \mathcal{B}$ given by, $f(\mathcal{A}') = \{f(x) \mid x \in \mathcal{A}'\}$.

Direct Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{A}' \subseteq \mathcal{A}$. The direct image of \mathcal{A}' under f is $f(\mathcal{A}') \subseteq \mathcal{B}$ given by, $f(\mathcal{A}') = \{f(x) \mid x \in \mathcal{A}'\}$.

Inverse Image: Let $f : A \to B$ and (non-empty) $\mathcal{B}' \subseteq \mathcal{B}$. The inverse image (pre-image) of \mathcal{B}' under f is $f^{-1}(\mathcal{B}') \subseteq A$ given by, $f^{-1}(\mathcal{B}') = \{x \mid f(x) \in \mathcal{B}'\}$.

Direct Image: Let $f : A \to B$ and (non-empty) $A' \subseteq A$. The direct image of A' under f is $f(A') \subseteq B$ given by, $f(A') = \{f(x) \mid x \in A'\}$.

Inverse Image: Let $f : A \to B$ and (non-empty) $\mathcal{B}' \subseteq \mathcal{B}$. The inverse image (pre-image) of \mathcal{B}' under f is $f^{-1}(\mathcal{B}') \subseteq A$ given by, $f^{-1}(\mathcal{B}') = \{x \mid f(x) \in \mathcal{B}'\}$.

Example: $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$ ($x \in \mathbb{R}$). Let $\mathcal{P} = \{x \in \mathbb{R} \mid x \in [0, 2]\}$. The direct image $f(\mathcal{P}) = \{y \mid y \in [0, 4]\}$ ($y \in \mathbb{R}$) and the inverse image of set $f(\mathcal{P})$ is $f^{-1}(f(\mathcal{P})) = \{x \mid x \in [-2, 2]\}$. So, $f^{-1}(f(\mathcal{P})) \neq \mathcal{P}$ and f is not a bijection / invertible.

Direct Image: Let $f : A \to B$ and (non-empty) $A' \subseteq A$. The direct image of A' under f is $f(A') \subseteq B$ given by, $f(A') = \{f(x) \mid x \in A'\}$.

Inverse Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{B}' \subseteq \mathcal{B}$. The inverse image (pre-image) of \mathcal{B}' under f is $f^{-1}(\mathcal{B}') \subseteq \mathcal{A}$ given by, $f^{-1}(\mathcal{B}') = \{x \mid f(x) \in \mathcal{B}'\}$.

Example: $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$ $(x \in \mathbb{R})$. Let $\mathcal{P} = \{x \in \mathbb{R} \mid x \in [0, 2]\}$. The direct image $f(\mathcal{P}) = \{y \mid y \in [0, 4]\}$ $(y \in \mathbb{R})$ and the inverse image of set $f(\mathcal{P})$ is $f^{-1}(f(\mathcal{P})) = \{x \mid x \in [-2, 2]\}$. So, $f^{-1}(f(\mathcal{P})) \neq \mathcal{P}$ and f is not a bijection / invertible.

Properties: • (RECAP) Let $f : \mathcal{A} \to \mathcal{B}$, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then, (i) If $\mathcal{A}_1 \subset \mathcal{A}_2 \Rightarrow f(\mathcal{A}_1) \subset f(\mathcal{A}_2)$, (ii) $f(\mathcal{A}_1 \cup \mathcal{A}_2) = f(\mathcal{A}_1) \cup f(\mathcal{A}_2)$, and (iii) $f(\mathcal{A}_1 \cap \mathcal{A}_2) \subset f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$.

Direct Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{A}' \subseteq \mathcal{A}$. The direct image of \mathcal{A}' under f is $f(\mathcal{A}') \subseteq \mathcal{B}$ given by, $f(\mathcal{A}') = \{f(x) \mid x \in \mathcal{A}'\}$.

Inverse Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{B}' \subseteq \mathcal{B}$. The inverse image (pre-image) of \mathcal{B}' under f is $f^{-1}(\mathcal{B}') \subseteq \mathcal{A}$ given by, $f^{-1}(\mathcal{B}') = \{x \mid f(x) \in \mathcal{B}'\}$.

Example: $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$ ($x \in \mathbb{R}$). Let $\mathcal{P} = \{x \in \mathbb{R} \mid x \in [0, 2]\}$. The direct image $f(\mathcal{P}) = \{y \mid y \in [0, 4]\}$ ($y \in \mathbb{R}$) and the inverse image of set $f(\mathcal{P})$ is $f^{-1}(f(\mathcal{P})) = \{x \mid x \in [-2, 2]\}$. So, $f^{-1}(f(\mathcal{P})) \neq \mathcal{P}$ and f is not a bijection / invertible.

Properties:

5: • (RECAP) Let
$$f : \mathcal{A} \to \mathcal{B}$$
, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then,
(i) If $\mathcal{A}_1 \subset \mathcal{A}_2 \Rightarrow f(\mathcal{A}_1) \subset f(\mathcal{A}_2)$, (ii) $f(\mathcal{A}_1 \cup \mathcal{A}_2) = f(\mathcal{A}_1) \cup f(\mathcal{A}_2)$,
and (iii) $f(\mathcal{A}_1 \cap \mathcal{A}_2) \subset f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$.
Note: In general, $f(\mathcal{A}_1 \cap \mathcal{A}_2) \neq f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$. Consider, $f : \mathbb{R} \to \mathbb{R}$ as
 $f(x) = x^2$ and $\mathcal{A}_1 = \{0, 1, \frac{1}{2}, \frac{1}{3}, \ldots\}$, $\mathcal{A}_2 = \{0, -1, -\frac{1}{2}, -\frac{1}{3}, \ldots\}$. Here,
 $f(\mathcal{A}_1 \cap \mathcal{A}_2) = \{0\} \neq \{0, 1, \frac{1}{2^2}, \frac{1}{3^2}\} = f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$.

Direct Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{A}' \subseteq \mathcal{A}$. The direct image of \mathcal{A}' under f is $f(\mathcal{A}') \subset \mathcal{B}$ given by, $f(\mathcal{A}') = \{f(x) \mid x \in \mathcal{A}'\}.$

Inverse Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{B}' \subseteq \mathcal{B}$. The inverse image (pre-image) of \mathcal{B}' under f is $f^{-1}(\mathcal{B}') \subseteq \mathcal{A}$ given by, $f^{-1}(\mathcal{B}') = \{x \mid f(x) \in \mathcal{B}'\}$.

Example: $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$ ($x \in \mathbb{R}$). Let $\mathcal{P} = \{x \in \mathbb{R} \mid x \in [0, 2]\}$. The direct image $f(\mathcal{P}) = \{y \mid y \in [0, 4]\}$ $(y \in \mathbb{R})$ and the inverse image of set $f(\mathcal{P})$ is $f^{-1}(f(\mathcal{P})) = \{x \mid x \in [-2, 2]\}$. So, $f^{-1}(f(\mathcal{P})) \neq \mathcal{P}$ and f is not a bijection / invertible.

Properties: • (RECAP) Let $f : \mathcal{A} \to \mathcal{B}$, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then, (i) If $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$, (ii) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$, and (iii) $f(\mathcal{A}_1 \cap \mathcal{A}_2) \subset f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$. **Note:** In general, $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$. Consider, $f : \mathbb{R} \to \mathbb{R}$ as $f(x) = x^2$ and $\mathcal{A}_1 = \{0, 1, \frac{1}{2}, \frac{1}{2}, \ldots\}, \ \mathcal{A}_2 = \{0, -1, -\frac{1}{2}, -\frac{1}{2}, \ldots\}.$ Here, $f(\mathcal{A}_1 \cap \mathcal{A}_2) = \{0\} \neq \{0, 1, \frac{1}{2^2}, \frac{1}{2^2}\} = f(\mathcal{A}_1) \cap f(\mathcal{A}_2).$

> • Let $f : \mathcal{A} \to \mathcal{B}$ be an onto mapping, with $\mathcal{B}_1, \mathcal{B}_2 \subseteq \mathcal{B}$. Then, (i) If $\mathcal{B}_1 \subset \mathcal{B}_2 \Rightarrow f^{-1}(\mathcal{B}_1) \subset f^{-1}(\mathcal{B}_2)$, (ii) $\overline{f^{-1}(\mathcal{B}_1)} = f^{-1}(\overline{\mathcal{B}_1})$, (iii) $f^{-1}(\mathcal{B}_1 \cup \mathcal{B}_2) = f^{-1}(\mathcal{B}_1) \cup f^{-1}(\mathcal{B}_2)$, and (iv) $f^{-1}(\mathcal{B}_1 \cap \mathcal{B}_2) = f^{-1}(\mathcal{B}_1) \cap f^{-1}(\mathcal{B}_2)$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Direct Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{A}' \subseteq \mathcal{A}$. The direct image of \mathcal{A}' under f is $f(\mathcal{A}') \subset \mathcal{B}$ given by, $f(\mathcal{A}') = \{f(x) \mid x \in \mathcal{A}'\}.$

Inverse Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{B}' \subseteq \mathcal{B}$. The inverse image (pre-image) of \mathcal{B}' under f is $f^{-1}(\mathcal{B}') \subseteq \mathcal{A}$ given by, $f^{-1}(\mathcal{B}') = \{x \mid f(x) \in \mathcal{B}'\}$.

Example: $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$ ($x \in \mathbb{R}$). Let $\mathcal{P} = \{x \in \mathbb{R} \mid x \in [0, 2]\}$. The direct image $f(\mathcal{P}) = \{y \mid y \in [0, 4]\}$ $(y \in \mathbb{R})$ and the inverse image of set $f(\mathcal{P})$ is $f^{-1}(f(\mathcal{P})) = \{x \mid x \in [-2,2]\}$. So, $f^{-1}(f(\mathcal{P})) \neq \mathcal{P}$ and f is not a bijection / invertible.

Properties: • (RECAP) Let $f : \mathcal{A} \to \mathcal{B}$, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then, (i) If $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$, (ii) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$, and (iii) $f(\mathcal{A}_1 \cap \mathcal{A}_2) \subset f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$. **Note:** In general, $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$. Consider, $f : \mathbb{R} \to \mathbb{R}$ as $f(x) = x^2$ and $\mathcal{A}_1 = \{0, 1, \frac{1}{2}, \frac{1}{2}, \ldots\}, \ \mathcal{A}_2 = \{0, -1, -\frac{1}{2}, -\frac{1}{2}, \ldots\}.$ Here, $f(\mathcal{A}_1 \cap \mathcal{A}_2) = \{0\} \neq \{0, 1, \frac{1}{2^2}, \frac{1}{2^2}\} = f(\mathcal{A}_1) \cap f(\mathcal{A}_2).$

> • Let $f : \mathcal{A} \to \mathcal{B}$ be an onto mapping, with $\mathcal{B}_1, \mathcal{B}_2 \subseteq \mathcal{B}$. Then, (i) If $\mathcal{B}_1 \subset \mathcal{B}_2 \Rightarrow f^{-1}(\mathcal{B}_1) \subset f^{-1}(\mathcal{B}_2)$, (ii) $\overline{f^{-1}(\mathcal{B}_1)} = f^{-1}(\overline{\mathcal{B}_1})$. (iii) $f^{-1}(\mathcal{B}_1 \cup \mathcal{B}_2) = f^{-1}(\mathcal{B}_1) \cup f^{-1}(\mathcal{B}_2)$, and (iv) $f^{-1}(\mathcal{B}_1 \cap \mathcal{B}_2) = f^{-1}(\mathcal{B}_1) \cap f^{-1}(\mathcal{B}_2).$ **Proof:** (i) Let $x \in f^{-1}(\mathcal{B}_1) \Rightarrow f(x) \in \mathcal{B}_1$. Since $\mathcal{B}_1 \subset \mathcal{B}_2$, therefore $f(x) \in \mathcal{B}_1 \Rightarrow f(x) \in \mathcal{B}_2$. So, $x \in f^{-1}(\mathcal{B}_2)$ implying $f^{-1}(\mathcal{B}_1) \subset f^{-1}(\mathcal{B}_2)$.

Direct Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{A}' \subseteq \mathcal{A}$. The direct image of \mathcal{A}' under f is $f(\mathcal{A}') \subset \mathcal{B}$ given by, $f(\mathcal{A}') = \{f(x) \mid x \in \mathcal{A}'\}.$

Inverse Image: Let $f : \mathcal{A} \to \mathcal{B}$ and (non-empty) $\mathcal{B}' \subseteq \mathcal{B}$. The inverse image (pre-image) of \mathcal{B}' under f is $f^{-1}(\mathcal{B}') \subseteq \mathcal{A}$ given by, $f^{-1}(\mathcal{B}') = \{x \mid f(x) \in \mathcal{B}'\}$.

Example: $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$ ($x \in \mathbb{R}$). Let $\mathcal{P} = \{x \in \mathbb{R} \mid x \in [0, 2]\}$. The direct image $f(\mathcal{P}) = \{y \mid y \in [0, 4]\}$ $(y \in \mathbb{R})$ and the inverse image of set $f(\mathcal{P})$ is $f^{-1}(f(\mathcal{P})) = \{x \mid x \in [-2,2]\}$. So, $f^{-1}(f(\mathcal{P})) \neq \mathcal{P}$ and f is not a bijection / invertible.

Properties: • (RECAP) Let $f : \mathcal{A} \to \mathcal{B}$, with $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$. Then, (i) If $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$, (ii) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$, and (iii) $f(\mathcal{A}_1 \cap \mathcal{A}_2) \subset f(\mathcal{A}_1) \cap f(\mathcal{A}_2)$. **Note:** In general, $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$. Consider, $f : \mathbb{R} \to \mathbb{R}$ as $f(x) = x^2$ and $\mathcal{A}_1 = \{0, 1, \frac{1}{2}, \frac{1}{2}, \ldots\}, \ \mathcal{A}_2 = \{0, -1, -\frac{1}{2}, -\frac{1}{2}, \ldots\}.$ Here, $f(\mathcal{A}_1 \cap \mathcal{A}_2) = \{0\} \neq \{0, 1, \frac{1}{2^2}, \frac{1}{2^2}\} = f(\mathcal{A}_1) \cap f(\mathcal{A}_2).$

> • Let $f : \mathcal{A} \to \mathcal{B}$ be an onto mapping, with $\mathcal{B}_1, \mathcal{B}_2 \subseteq \mathcal{B}$. Then, (i) If $\mathcal{B}_1 \subset \mathcal{B}_2 \Rightarrow f^{-1}(\mathcal{B}_1) \subset f^{-1}(\mathcal{B}_2)$, (ii) $\overline{f^{-1}(\mathcal{B}_1)} = f^{-1}(\overline{\mathcal{B}_1})$. (iii) $f^{-1}(\mathcal{B}_1 \cup \mathcal{B}_2) = f^{-1}(\mathcal{B}_1) \cup f^{-1}(\mathcal{B}_2)$, and (iv) $f^{-1}(\mathcal{B}_1 \cap \mathcal{B}_2) = f^{-1}(\mathcal{B}_1) \cap f^{-1}(\mathcal{B}_2).$ **Proof:** (i) Let $x \in f^{-1}(\mathcal{B}_1) \Rightarrow f(x) \in \mathcal{B}_1$. Since $\mathcal{B}_1 \subset \mathcal{B}_2$, therefore $f(x) \in \mathcal{B}_1 \Rightarrow f(x) \in \mathcal{B}_2$. So, $x \in f^{-1}(\mathcal{B}_2)$ implying $f^{-1}(\mathcal{B}_1) \subset f^{-1}(\mathcal{B}_2)$. (ii), (iii) and (iv) Left for You as an Exercise!

Aritra Hazra (CSE, IITKGP)

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0

If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0

If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1

If $|\mathcal{A}| = m \ge n = 2 = |\mathcal{B}|$, how many Onto functions? $= 2^m - 2$

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m \ge n = 2 = |\mathcal{B}|$, how many Onto functions? = $2^m - 2$ If $\mathcal{A} = \{x, y, z\}$, $\mathcal{B} = \{1, 2\}$, then all possible functions = $|\mathcal{B}|^{|\mathcal{A}|} = 2^3$;

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m \ge n = 2 = |\mathcal{B}|$, how many Onto functions? = $2^m - 2$ If $\mathcal{A} = \{x, y, z\}$, $\mathcal{B} = \{1, 2\}$, then all possible functions = $|\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions = $2^3 - 2 = 6$.

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m \ge n = 2 = |\mathcal{B}|$, how many Onto functions? = $2^m - 2$ If $\mathcal{A} = \{x, y, z\}$, $\mathcal{B} = \{1, 2\}$, then all possible functions = $|\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions = $2^3 - 2 = 6$.

If $|\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|$, how many Onto functions? $= \binom{3}{3}3^m - \binom{3}{2}2^m + \binom{3}{1}1^m$

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m \ge n = 2 = |\mathcal{B}|$, how many Onto functions? = $2^m - 2$ If $\mathcal{A} = \{x, y, z\}$, $\mathcal{B} = \{1, 2\}$, then all possible functions = $|\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions = $2^3 - 2 = 6$. If $|\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|$, how many Onto functions? = $\binom{3}{3}3^m - \binom{3}{2}2^m + \binom{3}{1}1^m$ If $\mathcal{A} = \{w, x, y, z\}$, $\mathcal{B} = \{1, 2, 3\}$, then all possible functions = 3^4 ;

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m \ge n = 2 = |\mathcal{B}|$, how many Onto functions? = $2^m - 2$ If $\mathcal{A} = \{x, y, z\}$, $\mathcal{B} = \{1, 2\}$, then all possible functions = $|\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions = $2^3 - 2 = 6$. If $|\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|$, how many Onto functions? = $\binom{3}{3}3^m - \binom{3}{2}2^m + \binom{3}{1}1^m$ If $\mathcal{A} = \{w, x, y, z\}$, $\mathcal{B} = \{1, 2, 3\}$, then all possible functions = 3^4 ; this includes 2^4 non-onto functions each from $\mathcal{A} \to \{1, 2\}$, $\mathcal{A} \to \{1, 3\}$ and $\mathcal{A} \to \{2, 3\}$. Now, the running count for onto functions = $3^4 - 3.2^4$.

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m > n = 2 = |\mathcal{B}|$, how many Onto functions? $= 2^m - 2$ If $\mathcal{A} = \{x, y, z\}, \ \mathcal{B} = \{1, 2\}$, then all possible functions $= |\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions $= 2^3 - 2 = 6$. If $|\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|$, how many Onto functions? $= \binom{3}{2}3^m - \binom{3}{2}2^m + \binom{3}{2}1^m$ If $\mathcal{A} = \{w, x, y, z\}$, $\mathcal{B} = \{1, 2, 3\}$, then all possible functions = 3^4 ; this includes 2⁴ non-onto functions each from $\mathcal{A} \to \{1,2\}, \ \mathcal{A} \to \{1,3\}$ and $\mathcal{A} \to \{2,3\}$. Now, the running count for onto functions = $3^4 - 3.2^4$. But, we removed the constant function $\{(w, 2), (x, 2), (y, 2), (z, 2)\}$ twice – both during function removal from $\mathcal{A} \to \{1, 2\}$, $\mathcal{A} \to \{2, 3\}$.

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m > n = 2 = |\mathcal{B}|$, how many Onto functions? $= 2^m - 2$ If $\mathcal{A} = \{x, y, z\}, \ \mathcal{B} = \{1, 2\}$, then all possible functions $= |\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions $= 2^3 - 2 = 6$. If $|\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|$, how many Onto functions? $= \binom{3}{2}3^m - \binom{3}{2}2^m + \binom{3}{2}1^m$ If $\mathcal{A} = \{w, x, y, z\}$, $\mathcal{B} = \{1, 2, 3\}$, then all possible functions = 3^4 ; this includes 2⁴ non-onto functions each from $\mathcal{A} \to \{1,2\}, \ \mathcal{A} \to \{1,3\}$ and $\mathcal{A} \rightarrow \{2,3\}$. Now, the running count for onto functions = $3^4 - 3.2^4$. But, we removed the constant function $\{(w, 2), (x, 2), (y, 2), (z, 2)\}$ twice – both during function removal from $\mathcal{A} \to \{1,2\}$, $\mathcal{A} \to \{2,3\}$. So, the final onto functions count = $3^4 - 3.2^4 + 3 = \binom{3}{2}3^4 - \binom{3}{2}2^4 + \binom{3}{1}1^4$.

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m > n = 2 = |\mathcal{B}|$, how many Onto functions? $= 2^m - 2$ If $\mathcal{A} = \{x, y, z\}, \ \mathcal{B} = \{1, 2\}$, then all possible functions $= |\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions $= 2^3 - 2 = 6$. If $|\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|$, how many Onto functions? $= \binom{3}{2} 3^m - \binom{3}{2} 2^m + \binom{3}{1} 1^m$ If $\mathcal{A} = \{w, x, y, z\}$, $\mathcal{B} = \{1, 2, 3\}$, then all possible functions = 3^4 ; this includes 2⁴ non-onto functions each from $\mathcal{A} \to \{1,2\}, \mathcal{A} \to \{1,3\}$ and $\mathcal{A} \rightarrow \{2,3\}$. Now, the running count for onto functions = $3^4 - 3.2^4$. But, we removed the constant function $\{(w, 2), (x, 2), (y, 2), (z, 2)\}$ twice – both during function removal from $\mathcal{A} \to \{1,2\}$, $\mathcal{A} \to \{2,3\}$. So, the final onto functions count = $3^4 - 3.2^4 + 3 = {3 \choose 3} 3^4 - {3 \choose 2} 2^4 + {3 \choose 1} 1^4$.

If $|\mathcal{A}| = m \ge n = |\mathcal{B}|$, how many Onto functions? = O(m, n)

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m > n = 2 = |\mathcal{B}|$, how many Onto functions? $= 2^m - 2$ If $\mathcal{A} = \{x, y, z\}, \ \mathcal{B} = \{1, 2\}$, then all possible functions $= |\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions $= 2^3 - 2 = 6$. If $|\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|$, how many Onto functions? $= \binom{3}{2} 3^m - \binom{3}{2} 2^m + \binom{3}{1} 1^m$ If $\mathcal{A} = \{w, x, y, z\}$, $\mathcal{B} = \{1, 2, 3\}$, then all possible functions = 3^4 ; this includes 2⁴ non-onto functions each from $\mathcal{A} \to \{1,2\}, \mathcal{A} \to \{1,3\}$ and $\mathcal{A} \rightarrow \{2,3\}$. Now, the running count for onto functions = $3^4 - 3.2^4$. But, we removed the constant function $\{(w, 2), (x, 2), (y, 2), (z, 2)\}$ twice – both during function removal from $\mathcal{A} \to \{1,2\}$, $\mathcal{A} \to \{2,3\}$. So, the final onto functions count = $3^4 - 3.2^4 + 3 = {3 \choose 3} 3^4 - {3 \choose 2} 2^4 + {3 \choose 1} 1^4$. If $|\mathcal{A}| = m > n = |\mathcal{B}|$, how many Onto functions? = O(m, n)

What do the above steps reveal?

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m > n = 2 = |\mathcal{B}|$, how many Onto functions? $= 2^m - 2$ If $\mathcal{A} = \{x, y, z\}, \ \mathcal{B} = \{1, 2\}$, then all possible functions $= |\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions $= 2^3 - 2 = 6$. If $|\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|$, how many Onto functions? $= \binom{3}{2}3^m - \binom{3}{2}2^m + \binom{3}{2}1^m$ If $\mathcal{A} = \{w, x, y, z\}$, $\mathcal{B} = \{1, 2, 3\}$, then all possible functions = 3^4 ; this includes 2⁴ non-onto functions each from $\mathcal{A} \to \{1,2\}, \mathcal{A} \to \{1,3\}$ and $\mathcal{A} \rightarrow \{2,3\}$. Now, the running count for onto functions = $3^4 - 3.2^4$. But, we removed the constant function $\{(w, 2), (x, 2), (y, 2), (z, 2)\}$ twice – both during function removal from $\mathcal{A} \to \{1,2\}$, $\mathcal{A} \to \{2,3\}$. So, the final onto functions count = $3^4 - 3.2^4 + 3 = {3 \choose 3} 3^4 - {3 \choose 2} 2^4 + {3 \choose 1} 1^4$. If $|\mathcal{A}| = m \ge n = |\mathcal{B}|$, how many Onto functions? = O(m, n)What do the above steps reveal? \Rightarrow Principle of Inclusion-Exclusion!

If $0 < |\mathcal{A}| = m < n = |\mathcal{B}|$, how many Onto functions? = 0 If $|\mathcal{A}| = m = 1 = n = |\mathcal{B}|$, how many Onto functions? = 1 If $|\mathcal{A}| = m > n = 2 = |\mathcal{B}|$, how many Onto functions? $= 2^m - 2$ If $\mathcal{A} = \{x, y, z\}, \ \mathcal{B} = \{1, 2\}$, then all possible functions $= |\mathcal{B}|^{|\mathcal{A}|} = 2^3$; but $f_1 = \{(x, 1), (y, 1), (z, 1)\}$ and $f_2 = \{(x, 2), (y, 2), (z, 2)\}$ are NOT onto. Hence, number of onto functions $= 2^3 - 2 = 6$. If $|\mathcal{A}| = m \ge n = 3 = |\mathcal{B}|$, how many Onto functions? $= \binom{3}{2} 3^m - \binom{3}{2} 2^m + \binom{3}{1} 1^m$ If $\mathcal{A} = \{w, x, y, z\}$, $\mathcal{B} = \{1, 2, 3\}$, then all possible functions = 3^4 ; this includes 2⁴ non-onto functions each from $\mathcal{A} \to \{1,2\}, \ \mathcal{A} \to \{1,3\}$ and $\mathcal{A} \to \{2,3\}.$ Now, the running count for onto functions $= 3^4 - 3.2^4.$ But, we removed the constant function $\{(w, 2), (x, 2), (y, 2), (z, 2)\}$ twice – both during function removal from $\mathcal{A} \to \{1,2\}$, $\mathcal{A} \to \{2,3\}$. So, the final onto functions count = $3^4 - 3.2^4 + 3 = {3 \choose 3} 3^4 - {3 \choose 2} 2^4 + {3 \choose 1} 1^4$. If $|\mathcal{A}| = m > n = |\mathcal{B}|$, how many Onto functions? = O(m, n)

 $|A| = m \ge n = |B|$, now many Onto functions? = O(m, n)What do the above steps reveal? \Rightarrow Principle of Inclusion-Exclusion!

$$O(m,n) = \binom{n}{n}n^m - \binom{n}{n-1}(n-1)^m + \binom{n}{n-2}(n-2)^m - \dots + (-1)^{n-2}\binom{n}{2}2^m + (-1)^{n-1}\binom{n}{1}1^m$$

= $\sum_{i=0}^{n-1}(-1)^i\binom{n}{n-i}(n-i)^m = \sum_{i=0}^n(-1)^i\binom{n}{n-i}(n-i)^m$

Aritra Hazra (CSE, IITKGP)

Combinatorial Definition

For m≥ n, Number of ways to distribute m objects into n identical (but numbered) containers with no container empty = ∑ⁿ_{i=0}(-1)ⁱ (ⁿ_{n-i})(n-i)^m.

Combinatorial Definition

- For m≥ n, Number of ways to distribute m objects into n identical (but numbered) containers with no container empty = ∑ⁿ_{i=0}(-1)ⁱ (ⁿ_{n-i})(n-i)^m.
- Removing numbering in containers yields the number of ways to distribute *m* objects into *n* perfectly identical containers with no container empty $= \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} {n \choose n-i} (n-i)^{m} = S(m, n) = \text{Stirling Number of Second Kind.}$

Combinatorial Definition

- For m≥ n, Number of ways to distribute m objects into n identical (but numbered) containers with no container empty = ∑ⁿ_{i=0}(-1)ⁱ (ⁿ_{n-i})(n-i)^m.
- Removing numbering in containers yields the number of ways to distribute *m* objects into *n* perfectly identical containers with no container empty $= \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} {n \choose n-i} (n-i)^{m} = S(m, n) = \text{Stirling Number of Second Kind.}$
- Therefore, in $f : A \to B$, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Definition

- For m≥ n, Number of ways to distribute m objects into n identical (but numbered) containers with no container empty = ∑ⁿ_{i=0}(-1)ⁱ (ⁿ_{n-i})(n-i)^m.
- Removing numbering in containers yields the number of ways to distribute *m* objects into *n* perfectly identical containers with no container empty $= \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} {n \choose n-i} (n-i)^{m} = S(m, n) = \text{Stirling Number of Second Kind.}$
- Therefore, in $f : A \to B$, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to 'Principle of Inclusion-Exclusion'

Let $m, n \in \mathbb{Z}^+$ with $1 < n \le m$. Then, S(m+1, n) = S(m, n-1) + n.S(m, n).

Combinatorial Definition

- For m≥ n, Number of ways to distribute m objects into n identical (but numbered) containers with no container empty = ∑ⁿ_{i=0}(-1)ⁱ (ⁿ_{n-i})(n-i)^m.
- Removing numbering in containers yields the number of ways to distribute *m* objects into *n* perfectly identical containers with no container empty $= \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} {n \choose n-i} (n-i)^{m} = S(m, n) = \text{Stirling Number of Second Kind.}$
- Therefore, in $f : A \to B$, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to 'Principle of Inclusion-Exclusion'

Let $m, n \in \mathbb{Z}^+$ with $1 < n \le m$. Then, S(m+1, n) = S(m, n-1) + n.S(m, n).

Proof: • S(m, n-1) ways to distribute *m* objects into (n-1) identical containers with none left empty and putting the $(m+1)^{th}$ object into n^{th} container alone \Rightarrow contributing S(m, n-1) ways to S(m+1, n).

Combinatorial Definition

- For m≥ n, Number of ways to distribute m objects into n identical (but numbered) containers with no container empty = ∑ⁿ_{i=0}(-1)ⁱ (ⁿ_{n-i})(n-i)^m.
- Removing numbering in containers yields the number of ways to distribute *m* objects into *n* perfectly identical containers with no container empty $= \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} {n \choose n-i} (n-i)^{m} = S(m, n) = \text{Stirling Number of Second Kind.}$
- Therefore, in $f : A \to B$, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to 'Principle of Inclusion-Exclusion'

Let $m, n \in \mathbb{Z}^+$ with $1 < n \le m$. Then, S(m+1, n) = S(m, n-1) + n.S(m, n).

Proof:

- S(m, n-1) ways to distribute *m* objects into (n-1) identical containers with none left empty and putting the $(m+1)^{th}$ object into n^{th} container alone \Rightarrow contributing S(m, n-1) ways to S(m+1, n).
- S(m, n) ways to distribute m objects into n identical containers with none left empty and then placing (m + 1)th object in any of the already filled n containers ⇒ contributing n.S(m, n) ways to S(m + 1, n).

Combinatorial Definition

- For m≥ n, Number of ways to distribute m objects into n identical (but numbered) containers with no container empty = ∑ⁿ_{i=0}(-1)ⁱ (ⁿ_{n-i})(n-i)^m.
- Removing numbering in containers yields the number of ways to distribute *m* objects into *n* perfectly identical containers with no container empty $= \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} {n \choose n-i} (n-i)^{m} = S(m, n) = \text{Stirling Number of Second Kind.}$
- Therefore, in $f : A \to B$, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to 'Principle of Inclusion-Exclusion'

Let $m, n \in \mathbb{Z}^+$ with $1 < n \le m$. Then, S(m+1, n) = S(m, n-1) + n.S(m, n).

Proof: • S(m, n-1) ways to distribute *m* objects into (n-1) identical containers with none left empty and putting the $(m+1)^{th}$ object into

- n^{th} container alone \Rightarrow contributing S(m, n-1) ways to S(m+1, n). • S(m, n) ways to distribute *m* objects into *n* identical containers with
- S(m, n) ways to distribute *m* objects into *n* identical containers with none left empty and then placing $(m+1)^{th}$ object in any of the already filled *n* containers \Rightarrow contributing n.S(m, n) ways to S(m+1, n).

Corollary: $\frac{1}{n}[n!.S(m+1,n)] = [(n-1)!.S(m,n-1)] + [n!.S(m,n)]$ (multiply by (n-1)!)

Combinatorial Definition

- For m≥ n, Number of ways to distribute m objects into n identical (but numbered) containers with no container empty = ∑_{i=0}ⁿ(-1)ⁱ (ⁿ_{n-i})(n-i)^m.
- Removing numbering in containers yields the number of ways to distribute *m* objects into *n* perfectly identical containers with no container empty $= \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} {n \choose n-i} (n-i)^{m} = S(m, n) = \text{Stirling Number of Second Kind.}$
- Therefore, in $f : A \to B$, number of onto functions, O(m, n) = n!.S(m, n).

Combinatorial Derivation: A Primer to 'Principle of Inclusion-Exclusion'

Let $m, n \in \mathbb{Z}^+$ with $1 < n \le m$. Then, S(m+1, n) = S(m, n-1) + n.S(m, n).

S(m, n − 1) ways to distribute m objects into (n − 1) identical containers with none left empty and putting the (m + 1)th object into nth container alone ⇒ contributing S(m, n − 1) ways to S(m + 1, n).

• S(m, n) ways to distribute *m* objects into *n* identical containers with none left empty and then placing $(m + 1)^{th}$ object in any of the already filled *n* containers \Rightarrow contributing n.S(m, n) ways to S(m + 1, n).

Corollary: $\frac{1}{n}[n!.S(m+1,n)] = [(n-1)!.S(m,n-1)] + [n!.S(m,n)]$ (multiply by (n-1)!) $\Rightarrow \frac{1}{n}.O(m+1,n) = O(m,n-1) + O(m,n)$

Proof:

Suppose you set your computer password of length m from a fixed chosen set of n different characters available in the keyboard ($m \ge n$). How many different passwords can you set so that at least one occurrence of each symbol (from the n chosen set of keyboard symbols) will be present?

- Suppose you set your computer password of length m from a fixed chosen set of n different characters available in the keyboard ($m \ge n$). How many different passwords can you set so that at least one occurrence of each symbol (from the n chosen set of keyboard symbols) will be present?
- An m× n 2-dimensional (2-D) array, (a_{ij})_{m×n} having m rows and n columns, is filled up with only 0 and 1 values. How many different 2-D arrays you can construct so that exactly one 1 is present in each row and at least one 1 is present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)

- Suppose you set your computer password of length m from a fixed chosen set of n different characters available in the keyboard ($m \ge n$). How many different passwords can you set so that at least one occurrence of each symbol (from the n chosen set of keyboard symbols) will be present?
- An m× n 2-dimensional (2-D) array, (a_{ij})_{m×n} having m rows and n columns, is filled up with only 0 and 1 values. How many different 2-D arrays you can construct so that exactly one 1 is present in each row and at least one 1 is present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)

If different component manufacturing contracts of a high-security project is to be executed by *n* different companies so that every company works on some components of the project. How many possible ways these *m* contracts can get assigned to *n* companies?

- Suppose you set your computer password of length m from a fixed chosen set of n different characters available in the keyboard ($m \ge n$). How many different passwords can you set so that at least one occurrence of each symbol (from the n chosen set of keyboard symbols) will be present?
- An m× n 2-dimensional (2-D) array, (a_{ij})_{m×n} having m rows and n columns, is filled up with only 0 and 1 values. How many different 2-D arrays you can construct so that exactly one 1 is present in each row and at least one 1 is present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)

If different component manufacturing contracts of a high-security project is to be executed by *n* different companies so that every company works on some components of the project. How many possible ways these *m* contracts can get assigned to *n* companies?

9 For
$$m, n \in \mathbb{Z}^+$$
 with $m < n$, prove that, $\sum_{k=0}^n (-1)^k {n \choose n-k} (n-k)^m = 0$.

- Suppose you set your computer password of length m from a fixed chosen set of n different characters available in the keyboard ($m \ge n$). How many different passwords can you set so that at least one occurrence of each symbol (from the n chosen set of keyboard symbols) will be present?
- An m× n 2-dimensional (2-D) array, (a_{ij})_{m×n} having m rows and n columns, is filled up with only 0 and 1 values. How many different 2-D arrays you can construct so that exactly one 1 is present in each row and at least one 1 is present at each column?

(Such arrays / adjacency-matrices are used to represent graph data structures!)

If different component manufacturing contracts of a high-security project is to be executed by *n* different companies so that every company works on some components of the project. How many possible ways these *m* contracts can get assigned to *n* companies?

• For
$$m, n \in \mathbb{Z}^+$$
 with $m < n$, prove that, $\sum_{k=0}^n (-1)^k {n \choose n-k} (n-k)^m = 0$.

(a) For
$$n \in \mathbb{Z}^+$$
, verify that, $\sum_{k=0}^n (-1)^n {n \choose n-k} (n-k)^n = n!$.

Thank You!

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020 17 / 17