Divide and Conquer Recurrences

Aritra Hazra

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur,
Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Recurrent Problem Solving: The Divide and Conquer Way

Recurrent Problem Solving: Process of solving problems involving sub-problems:

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 Y

Recurrent Problem Solving: The Divide and Conquer Way

Recurrent Problem Solving: Process of solving problems involving sub-problems:

@ Base Case. Unit (n < b) problem instances solved in constant (c)
steps — b and ¢ are known constants

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2/34

Recurrent Problem Solving: The Divide and Conq

Recurrent Problem Solving: Process of solving problems involving sub-problems:

@ Base Case. Unit (n < b) problem instances solved in constant (c)
steps — b and ¢ are known constants

@ Decomposition. Problem of n instances partitioned (top-down)
into m sub-problems each with n; instances — takes d(n) steps

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2/34

Recurrent Problem Solving: The Divide and Conq

Recurrent Problem Solving: Process of solving problems involving sub-problems:

@ Base Case. Unit (n < b) problem instances solved in constant (c)
steps — b and ¢ are known constants

@ Decomposition. Problem of n instances partitioned (top-down)
into m sub-problems each with n; instances — takes d(n) steps

© Recursive Calls. All m sub-problems are recursively solved — takes
T(n;) steps for each sub-problem of n; instances

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2/34

Recurrent Problem Solving:

Recurrent Problem Solving: Process of solving problems involving sub-problems:

@ Base Case. Unit (n < b) problem instances solved in constant (c)
steps — b and ¢ are known constants

@ Decomposition. Problem of n instances partitioned (top-down)
into m sub-problems each with n; instances — takes d(n) steps

© Recursive Calls. All m sub-problems are recursively solved — takes
T(n;) steps for each sub-problem of n; instances

@ Recomposition. Solutions from sub-problems composed
(bottom-up) to produce solution of the problem — takes r(n) steps

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2/34

Recurrent Problem Solving:

Recurrent Problem Solving: Process of solving problems involving sub-problems:

@ Base Case. Unit (n < b) problem instances solved in constant (c)
steps — b and ¢ are known constants

@ Decomposition. Problem of n instances partitioned (top-down)
into m sub-problems each with n; instances — takes d(n) steps

© Recursive Calls. All m sub-problems are recursively solved — takes
T(n;) steps for each sub-problem of n; instances

@ Recomposition. Solutions from sub-problems composed
(bottom-up) to produce solution of the problem — takes r(n) steps

[T(nl) + T(m)+--+ T(nm)} + [d(n) + r(n)], n>b

Recurrence Format: T(n) = { < n<h

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2/34

Recurrent Problem Solving:

Recurrent Problem Solving: Process of solving problems involving sub-problems:

@ Base Case. Unit (n < b) problem instances solved in constant (c)
steps — b and ¢ are known constants

@ Decomposition. Problem of n instances partitioned (top-down)
into m sub-problems each with n; instances — takes d(n) steps

© Recursive Calls. All m sub-problems are recursively solved — takes
T(n;) steps for each sub-problem of n; instances

@ Recomposition. Solutions from sub-problems composed
(bottom-up) to produce solution of the problem — takes r(n) steps

[T(nl) + T(m)+--+ T(nm)} + [d(n) + r(n)], n>b

Recurrence Format: T(n) = { < n<h

uonisodwooday

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2/34

Recurrent Problem Solving:

Recurrent Problem Solving: Process of solving problems involving sub-problems:

@ Base Case. Unit (n < b) problem instances solved in constant (c)
steps — b and ¢ are known constants

@ Decomposition. Problem of n instances partitioned (top-down)
into m sub-problems each with n; instances — takes d(n) steps

© Recursive Calls. All m sub-problems are recursively solved — takes
T(n;) steps for each sub-problem of n; instances

@ Recomposition. Solutions from sub-problems composed
(bottom-up) to produce solution of the problem — takes r(n) steps

[T(nl) + T(m)+--+ T(nm)} + [d(n) + r(n)], n>b

Recurrence Format: T(n) = { < n<h

Formulation of Recurrence
Relations and their Solutions
depend on the Splitting and
Composing Mechanisms!

uonisodwooday

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2/34

Example-1: Find Maximum among n Elements

Strategy-1.1: @ Base Case. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two equal parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3/34

Example-1: Find Maximum among n Elements

Strategy-1.1: @ Base Case. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two equal parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Recurrence: Number of comparison required to find maximum element,

[2Tu(8)+1, ifn>1
Tl(”)_{ 0, ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 3/34

Example-1: Find Maximum among n Elements

Strategy-1.1: @ Base Case. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two equal parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Recurrence: Number of comparison required to find maximum element,

2.T +1, ifn>1
Tl(n) { 1() 0 ifn=1

Solution: Assume the existence of k, such that n = 2%
Ti(n) = 2.T1(f)+1 = 227
_ 93 2 _
- 2.T(23)+2 F241 = e
= 2"T1()+2"1+2k2 442t 20
= 2k042k—-1 = 2k—1 = n-1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-1: Find Maximum among n Elements

Strategy-1.2: @ Base Case. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts
having 1 element and (n — 1) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 4/34

Example-1: Find Maximum among n Elements

Strategy-1.2: @ Base Case. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts
having 1 element and (n — 1) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Recurrence: Number of comparison required to find maximum element,

To(1)+ Ta(n—1)+1, ifn>1
T2(”)_{ ey 0, ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 4/

Example-1: Find Maximum among n Elements

Strategy-1.2: @ Base Case. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts
having 1 element and (n — 1) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Recurrence: Number of comparison required to find maximum element,

To(1)+ Ta(n—1)+1, ifn>1
T2(”)_{ ey 0, ifn=1

Solution:

TQ(H)

\
o
=
4
o

S

|
=
4

—_

Il

=
S

|
Nav!
4

—_

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-1: Find Maximum among n Elements

Strategy-1.3: @ Base Cases. If n =1, Return that element as maximum
If n =2, Compare between these to get maximum
@ Decomposition. Split the set of elements into two parts
having 2 elements and (n — 2) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 5/34

Example-1: Find Maximum among n Elements

Strategy-1.3: @ Base Cases. If n =1, Return that element as maximum
If n =2, Compare between these to get maximum
@ Decomposition. Split the set of elements into two parts
having 2 elements and (n — 2) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Recurrence: Number of comparison required to find maximum element,
T3(2)—|— Tg(n—2)+1, ifn>2

T5(n) = 1, ifn=2
0, ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-1: Find Maximum among n Elements

Strategy-1.3: @ Base Cases. If n =1, Return that element as maximum
If n =2, Compare between these to get maximum
@ Decomposition. Split the set of elements into two parts
having 2 elements and (n — 2) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Recurrence: Number of comparison required to find maximum element,
T3(2)—|— Tg(n—2)+1, ifn>2

T5(n) = 1, ifn=2
0, ifn=1
Solution:
T3(n) = T3(2)+ T3(n—2)—|— 1 = T3(n—2)+2
= T3(—4)+4 = T3(n—6)+6 = s

_ {T3() (n—2) if niseven
Ts(1) + (n—1) if nis odd

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-1: Find Maximum among n Elements

Strategy-1.4:) Base Cases. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts having ¢
elements and (n — c) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6/34

Example-1: Find Maximum among n Elements

Strategy-1.4:) Base Cases. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts having ¢
elements and (n — c) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest

Recurrence: Number of comparison required to find maximum element,

Ta(c)+ Ta(n—c)+1, ifn>1
T4(n):{ a(e)+ Ta(n—¢) L ftn>1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-1: Find Maximum among n Elements

Strategy-1.4: @) Base Cases. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts having ¢
elements and (n — c) elements in respective parts

© Recursion. Select maximum element from both parts

@ Recomposition. Compare both maximum to find largest
Recurrence: Number of comparison required to find maximum element,
Ta(c)+ Ta(n—c +1, ifn>1
T“(”):{) "o 0, ifn=1

Solution: Assuming the choice of constant ¢ (1 <c<n- 1) is equally likely, the

) [T4(+ Ta(n—1i)+1]

average number of comparisons, T4(n) = (.-

implies, (n — 1).T4(n) = 2. 371 Ta(i) + (n — 1)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6/34

Example-1: Find Maximum among n Elements

Strategy-1.4: @) Base Cases. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts having ¢
elements and (n — c) elements in respective parts

© Recursion. Select maximum element from both parts

@ Recomposition. Compare both maximum to find largest
Recurrence: Number of comparison required to find maximum element,
Ta(c)+ Ta(n—c +1, ifn>1
T“(”):{) "o 0, ifn=1

Solution: Assuming the choice of constant ¢ (1 <c<n- 1) is equally likely, the

) [T4(+ Ta(n—1i)+1]

average number of comparisons, T4(n) = (.-

implies, (n — 1). Ta(n) = 2. 37 T4(') +(n—1)
Similarly, (n —2).Tg(n—1) =2.377° Ta(i) + (n — 2) [Put, n«—n—1]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6/34

Example-1: Find Maximum among n Elements

Strategy-1.4: @) Base Cases. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts having ¢
elements and (n — c) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest
Recurrence: Number of comparison required to find maximum element,
Ta(c)+ Ta(n—c +1, ifn>1
T“(”):{) "o 0, ifn=1
<n-— 1) is equally likely, the
1

Z [Ta(i) 4 Ta(n — i)+ 1]

Solution: Assuming the choice of constant ¢ (1 <

c
average number of comparisons, T4(n) = (=
implies, (n — 1). Ta(n) = 2. 37 T4(') +(n—1)

Similarly, (n —2).Tg(n—1) =2.377° Ta(i) + (n — 2) [Put, n«—n—1]
Subtracting, we get, (n —1).T4(n) — (n —2).Ta(n—1)=2.Tg(n—1)+1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6/34

Example-1: Find Maximum among n Elements

Strategy-1.4: @) Base Cases. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts having ¢
elements and (n — c) elements in respective parts

© Recursion. Select maximum element from both parts

@ Recomposition. Compare both maximum to find largest
Recurrence: Number of comparison required to find maximum element,
Ta(c)+ Ta(n—c +1, ifn>1
T“(”):{) "o 0, ifn=1

Solution: Assuming the choice of constant ¢ (1 <c<n- 1) is equally likely, the

) [T4(+ Ta(n—1i)+1]

average number of comparisons, T4(n) = (.-

implies, (n — 1). Ta(n) = 2. 37 T4(') +(n—1)

Similarly, (n —2).Tg(n—1) =2.377° Ta(i) + (n — 2) [Put, n«—n—1]
Subtracting, we get, (n —1).T4(n) — (n —2).Ta(n—1)=2.Tg(n—1)+1
Taln) _ Ta(p=1) _ 1 _ 1
n n—1 n—1 n

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6/34

Example-1: Find Maximum among n Elements

Strategy-1.4: @) Base Cases. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts having ¢
elements and (n — c) elements in respective parts

© Recursion. Select maximum element from both parts

@ Recomposition. Compare both maximum to find largest
Recurrence: Number of comparison required to find maximum element,
Ta(c)+ Ta(n—c +1, ifn>1
T“(”):{) "o 0, ifn=1

Solution: Assuming the choice of constant ¢ (1 <c<n- 1) is equally likely, the

) [T4(+ Ta(n—1i)+1]

average number of comparisons, T4(n) = (.-

implies, (n — 1). Ta(n) = 2. 37 T4(') +(n—1)

Similarly, (n —2).Tg(n—1) =2.377° Ta(i) + (n — 2) [Put, n«—n—1]
Subtracting, we get, (n —1).T4(n) — (n —2).Ta(n—1)=2.Tg(n—1)+1
Taln) _ Ta(p=1) _ 1 _ 1
. n n—1 n—1 n
Ta(n—1) Ta(n—=2) _ 1 _ 1
n—1 n—2 = n=2 n—1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6/34

Example-1: Find Maximum among n Elements

Strategy-1.4: @) Base Cases. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts having ¢
elements and (n — c) elements in respective parts

© Recursion. Select maximum element from both parts

@ Recomposition. Compare both maximum to find largest
Recurrence: Number of comparison required to find maximum element,
Ta(c)+ Ta(n—c +1, ifn>1
T“(”):{) "o 0, ifn=1

Solution: Assuming the choice of constant ¢ (1 <c<n- 1) is equally likely, the

) [T4(+ Ta(n—1i)+1]

average number of comparisons, T4(n) = (.-

implies, (n — 1). Ta(n) = 2. 37 T4(') +(n—1)

Similarly, (n —2).Tg(n—1) =2.377° Ta(i) + (n — 2) [Put, n«—n—1]
Subtracting, we get, (n —1).T4(n) — (n —2).Ta(n—1)=2.Tg(n—1)+1
Ta(n) _ Ta(n—1) 1 1

- Adding all these equations, we get,

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6/34

Example-1: Find Maximum among n Elements

Strategy-1.4: @) Base Cases. If n =1, Return that element as maximum
@ Decomposition. Split the set of elements into two parts having ¢
elements and (n — c) elements in respective parts
© Recursion. Select maximum element from both parts
@ Recomposition. Compare both maximum to find largest
Recurrence: Number of comparison required to find maximum element,
Ta(c)+ Ta(n—c +1, ifn>1
T“(”):{) "o 0, ifn=1
<n-— 1) is equally likely, the
1

Z [Ta(i) 4 Ta(n — i)+ 1]

Solution: Assuming the choice of constant ¢ (1 <

c
average number of comparisons, T4(n) = (=

implies, (n — 1). Ta(n) = 2. 37 T4(') +(n—1)

Similarly, (n —2).Tg(n—1) =2.377° Ta(i) + (n — 2) [Put, n«—n—1]
Subtracting, we get, (n —1).T4(n) — (n —2).Ta(n—1)=2.Tg(n—1)+1
Taln) T4,Si;1) = ,,il - % Adding all these equations, we get,

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 6/34

Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.1: @ Base Case. If n =1, Return that element as max & min
If n =2, Compare between these to get max & min
@ Decomposition. Split the set of elements into two equal parts
© Recursion. Select max & min elements from both parts
@ Recomposition. Compare both max to find largest
Compare both min to find smallest

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 7/

Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.1: @ Base Case. If n =1, Return that element as max & min
If n =2, Compare between these to get max & min
@ Decomposition. Split the set of elements into two equal parts
© Recursion. Select max & min elements from both parts
@ Recomposition. Compare both max to find largest
Compare both min to find smallest

Recurrence: Number of comparison required to find max & min elements,

2.Ti(2)+2, ifn>2
Tl(”)_{) 1, ifn=2

)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.1: @ Base Case. If n =1, Return that element as max & min
If n =2, Compare between these to get max & min
@ Decomposition. Split the set of elements into two equal parts
© Recursion. Select max & min elements from both parts
@ Recomposition. Compare both max to find largest
Compare both min to find smallest

Recurrence: Number of comparison required to find max & min elements,

2.Ti(2)+2, ifn>2
Tl(”)_{) 1, ifn=2

)

Solution: Assume the existence of k, such that n = 2k

Ti(n) = 2.T1(g)+2 = 22.T1(2£2)+22+2
= 23.T1(2—"3)+23+22+2 - .
- 2k_1.T1(2kr11)+2k_1+2k_2+"'+22+21
= 21422 = %.2k—2 = %.an

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 7/34

Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.2: @ Base Case. If n =1, Return that element as max & min
@ Decomposition. Split the set of elements into two parts
having 1 element and (n — 1) elements in respective parts
© Recursion. Select max & min elements from both parts
@ Recomposition. Compare both max to find largest
Compare both min to find smallest

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 8/34

Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.2: @ Base Case. If n =1, Return that element as max & min
@ Decomposition. Split the set of elements into two parts
having 1 element and (n — 1) elements in respective parts
© Recursion. Select max & min elements from both parts
@ Recomposition. Compare both max to find largest
Compare both min to find smallest

Recurrence: Number of comparison required to find max & min elements,

To(1)+ Ta(n—1)+2, ifn>1
T2(”)_{ ey 0, ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.2: @ Base Case. If n =1, Return that element as max & min
@ Decomposition. Split the set of elements into two parts
having 1 element and (n — 1) elements in respective parts
© Recursion. Select max & min elements from both parts
@ Recomposition. Compare both max to find largest
Compare both min to find smallest

Recurrence: Number of comparison required to find max & min elements,

To(n) = { To(1)+ To(n—1)+2, ifn>1

0, ifn=1
Solution:
Tg(n) = T2(1)+ T2(n—1)+2 = Tz(n— 1)+2
= T2(l1—2)+4 = T2(ﬂ-3)+6 = ceree
= T(1)+2(n-1) = 2n-2

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.3: @ Base Case. If n =1, Return that element as max & min
If n =2, Compare in between to get max & min
@ Decomposition. Split the set of elements into two parts
having 2 elements and (n — 2) elements in respective parts
© Recursion. Select max & min elements from both parts
@ Recomposition. Compare both max to find largest
Compare both min to find smallest

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 9/34

Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.3: @ Base Case. If n =1, Return that element as max & min
If n =2, Compare in between to get max & min
@ Decomposition. Split the set of elements into two parts
having 2 elements and (n — 2) elements in respective parts
© Recursion. Select max & min elements from both parts
@ Recomposition. Compare both max to find largest
Compare both min to find smallest

Recurrence: Number of comparison required to find max & min elements,
T3(2)—|— 7—:4’,(!7—2)—‘-27 ifn>2

T5(n) = 1, ifn=2
0, ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.3: @ Base Case. If n =1, Return that element as max & min
If n =2, Compare in between to get max & min
@ Decomposition. Split the set of elements into two parts
having 2 elements and (n — 2) elements in respective parts
© Recursion. Select max & min elements from both parts
@ Recomposition. Compare both max to find largest
Compare both min to find smallest

Recurrence: Number of comparison required to find max & min elements,

T3(2)—|— 7—:4’,(!7—2)—‘-27 ifn>2
T5(n) = 1, ifn=2
0, ifn=1

Solution: Let, 2m=n—2 (if niseven) or 2m=n—1 (if nis odd)

T3(n) = T3(2)+T3(n—2)+2 = T3(n—2)+3
— Tyn—-4)16 = T3(n—6)+9 = .-
T3(2)+3m:1+§(n—2):§.n—2, if nis even
T3(1)+3m=0+3(n—1)=3.n— 2, ifnisodd

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 9/34

Example-3: Search an Element within n Elements

Strategy-3.1: @ Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two equal parts
© Recursion. Search the element from both parts
@ Recomposition. Return found if element found in any part

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 10 /34

Example-3: Search an Element within n Elements

Strategy-3.1: @ Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two equal parts
© Recursion. Search the element from both parts
@ Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

2.T1(2), ifn>1
Tl(”)—{ G

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 10 /34

Example-3: Search an Element within n Elements

Strategy-3.1: @ Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two equal parts
© Recursion. Search the element from both parts
@ Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

2.T1(2), ifn>1
Tl(”)—{ G

Solution: Assume the existence of k, such that n = 2k

T = 2Ti(3) = 2T(xm) = o

- 2k.T1(2—"k) — ok~

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-3: Search an Element within n Elements

Strategy-3.2: @) Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two unequal
(fractional) parts (say, % elements in left and £ elements in right)
© Recursion. Search the element from both parts

@ Recomposition. Return found if element found in any part

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 11 /34

Example-3: Search an Element within n Elements

Strategy-3.2: @) Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two unequal
(fractional) parts (say, % elements in left and £ elements in right)
© Recursion. Search the element from both parts

@ Recomposition. Return found if element found in any part
Recurrence: Number of comparison required to search/find an element,

_f T(5)+ Ta(R), ifn>1
T3(”)_{ 1, ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 11 /34

Example-3: Search an Element within n Elements

Strategy-3.2: @) Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two unequal
(fractional) parts (say, % elements in left and £ elements in right)
© Recursion. Search the element from both parts

@ Recomposition. Return found if element found in any part
Recurrence: Number of comparison required to search/find an element,
rm ={ PETRER Ee2
Solution: Using strong mathematical induction, we can prove that (assume
Ts(k) = ak + b as induction hypothesis for all k < n), T3(1) =1 (Base
Case satisfied for all a=1— b) and T3(n) = 222 + Q(L;b) =an+ b.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 11 /34

Example-3: Search an Element within n Elements

Strategy-3.2: @) Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two unequal
(fractional) parts (say, % elements in left and £ elements in right)
© Recursion. Search the element from both parts

@ Recomposition. Return found if element found in any part
Recurrence: Number of comparison required to search/find an element,
- T3()—|—T3(2")7 ifn>1
T3(”)_{ 1, ifn=1
Solution: Using strong mathematical induction, we can prove that (assume
Ts(k) = ak + b as induction hypothesis for all k < n), T3(1) =1 (Base

Case satisfied for all a=1— b) and T3(n) = 222 + Q(L;b) =an+ b.
It may be noted that,

T3(§)+T3(%)7T3()+T3(2n>+T3(§Z>+T3(g>
T3<)+2T3<)+7-3<32>

(o) () +OG)+Q)
= e — i()(/:)TG;kn)

=l

T3(n)

)+ G GE)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 11 /34

Example-3: Search an Element within n Elements

Strategy-3.3: @ Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two parts
having 1 element and (n — 1) elements in respective parts
© Recursion. Search the element from both parts
@ Recomposition. Return found if element found in any part

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 /34

Example-3: Search an Element within n Elements

Strategy-3.3: @ Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two parts
having 1 element and (n — 1) elements in respective parts
© Recursion. Search the element from both parts
@ Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T>(1)+ Ta(n—1), ifn>1
T2(”)_{ R i ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 /34

Example-3: Search an Element within n Elements

Strategy-3.3:

@ Base Case. If n=1, Compare and Return found / not-found

@ Decomposition. Split the set of elements into two parts
having 1 element and (n — 1) elements in respective parts

© Recursion. Search the element from both parts

@ Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

Solution:

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 12 /34

T>(1)+ Ta(n—1), ifn>1
T2(”)_{ R i ifn=1

[known as Linear Search |

T2(n) = T2(1)+ Tg(n—l) = T2(n_1)+1
To(n—2)+2 = Ty(n—3)+3 = -
To(1)+(n—1) = n

Example-3: Search an Element within n Elements

Strategy-3.4: @) Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two unequal
(constant-depth) parts (say, ¢ elements in left and (n — ¢)
elements in right), for an arbitrary constant (c)
© Recursion. Search the element from both parts
@ Recomposition. Return found if element found in any part

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-3: Search an Element within n Elements

Strategy-3.4: @) Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two unequal
(constant-depth) parts (say, ¢ elements in left and (n — ¢)
elements in right), for an arbitrary constant (c)
© Recursion. Search the element from both parts
@ Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

r = { T g

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

13 /34

Example-3: Search an Element within n Elements

Strategy-3.4:

Recurrence:

Solution:

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

@ Base Case. If n =1, Compare and Return found / not-found

@ Decomposition. Split the set of elements into two unequal
(constant-depth) parts (say, ¢ elements in left and (n — ¢)
elements in right), for an arbitrary constant (c)

© Recursion. Search the element from both parts

@ Recomposition. Return found if element found in any part

Number of comparison required to search/find an element,

r = { T g

Assuming the choice of constant ¢ (1 < ¢

(1)

implies, (n — 1).Ta(n) = 2. 377 Ta(i)

n— 1) is equally likely, the

n
average number of probes, T.(n) .
1

< n_
1
;[U(i) + Ta(n —1i)]

Autumn 2020 13 /34

Example-3: Search an Element within n Elements

Strategy-3.4: @) Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two unequal
(constant-depth) parts (say, ¢ elements in left and (n — ¢)
elements in right), for an arbitrary constant (c)
© Recursion. Search the element from both parts
@ Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

r = { T g

Solution: Assuming the choice of constant ¢ (1 < ¢ <
n
1

<n-—
g (Ta(i) + Ta(n— 1)

1) is equally likely, the

average number of probes, T,(n) = (nil)

implies, (n — 1).Ta(n) = 2. 377 Ta(i)
Similarly, (n —2).Ta(n—1) = 2. 27:_12 Ta(i) [Putting, n+ n—1]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

13 /34

Example-3: Search an Element within n Elements

Strategy-3.4: @) Base Case. If n =1, Compare and Return found / not-found
@ Decomposition. Split the set of elements into two unequal
(constant-depth) parts (say, ¢ elements in left and (n — ¢)
elements in right), for an arbitrary constant (c)
© Recursion. Search the element from both parts
@ Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

r = { T g

Solution: Assuming the choice of constant ¢ (1 < ¢ <
n
1
(nfl)'
1

<n-—
—1
;[U(i) + Ta(n —1i)]
implies, (n — 1).Ta(n) = 2. 377 Ta(i)

1) is equally likely, the

average number of probes, T4(n)

Similarly, (n —2).Ta(n—1) = 2. 27:_12 Ta(i) [Putting, n+ n—1]
Subtracting, we get, (n —1).Ta(n) — (n —2).Ta(n — 1) = 2. Ty(n — 1)
= Tu(n) = (725) Ta(n—1) = (nil).(%).ﬂ;(n— 2)=---=nT(1)=n

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 13 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.1: @) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at middle and Return found if matches
Otherwise, Split the set of elements into two equal parts
© Recursion. If query-element is lesser (or greater) than the middle
element, Search the elements from left (or right) part
@ Recomposition. Return found if query-element found in any part

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 14 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.1: @) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at middle and Return found if matches
Otherwise, Split the set of elements into two equal parts
© Recursion. If query-element is lesser (or greater) than the middle
element, Search the elements from left (or right) part
@ Recomposition. Return found if query-element found in any part

Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element,

Ti(5)+1, ifn>1
Tl(”):{ o 1, ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 14 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.1: @) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at middle and Return found if matches
Otherwise, Split the set of elements into two equal parts
© Recursion. If query-element is lesser (or greater) than the middle
element, Search the elements from left (or right) part
@ Recomposition. Return found if query-element found in any part

Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element,

Ti(5)+1, ifn>1
Tl(”):{ o 1, ifn=1

Solution: Assume the existence of k, such that n = 2%

T = T(3)+1 = Ti(g)+2 = Ti(y)+3
_ (D) ek = tek = 1ilms

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 14 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.2: @) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at arbitrary (fractional) position (say, 1rd)
and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e., %
elements in left part and % elements in right part)
© Recursion. If query-element is lesser (or greater) than the %rd
element, Search the elements from left (or right) part

@ Recomposition. Return found if query-element found in any part

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.2: @) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at arbitrary (fractional) position (say, 1rd)
and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e., %
elements in left part and % elements in right part)
© Recursion. If query-element is lesser (or greater) than the %rd
element, Search the elements from left (or right) part

@ Recomposition. Return found if query-element found in any part
Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element,

T2(2)+1, ifn>1
T2(”):{ o 1, ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.2: @) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at arbitrary (fractional) position (say, 1rd)
and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e., %
elements in left part and % elements in right part)
© Recursion. If query-element is lesser (or greater) than the %rd
element, Search the elements from left (or right) part

@ Recomposition. Return found if query-element found in any part

Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element,

To(2)+1, ifn>1
T2(n):{ AL
Solution: Assume the existence of k, such that n = (%)k
2n n n
T2(I‘l) = T(—)+1 = o(—=—)+2 = To(—=—=)+3
E)er = () = ()
n
= .. = TZ(—%)k) —|—k = 1—|—k = 1+|Og3 n

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 15 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.2: @) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at arbitrary (fractional) position (say, 1rd)
and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e., %
elements in left part and % elements in right part)
© Recursion. If query-element is lesser (or greater) than the %rd
element, Search the elements from left (or right) part

@ Recomposition. Return found if query-element found in any part

Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element,

To(2)+1, ifn>1
T2(”):{ o 1, ifn=1
Solution: Assume the existence of k, such that n = (%)k
2n n n
T2(I‘l) = T(—)+1 = o(—=—)+2 = To(—=—=)+3
E)er = () = ()
n
- ... = Tol=—=)+k = 14+k = 1+logsn
s z

Generalized Form: For an and (1 — a)n splits (3 <a < 1), Tx(n)=1+logsin
o
Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.3: @) Base Case. If n =1, Probe and Return found / not-found

@ Decomposition. Probe at two arbitrary (fractional) positions (say,
%rd and %rd) and Return found if matches
Otherwise, Split the set of elements into three equal parts (i.e., %
elements in each of left, middle and right parts)

© Recursion. If query-element is lesser than %rd (or greater than
2rd) element, Search the element from left (or right) part.
Otherwise, search the element from middle part.

@ Recomposition. Return found if element found in any part

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.3: @) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at two arbitrary (fractional) positions (say,
%rd and %rd) and Return found if matches
Otherwise, Split the set of elements into three equal parts (i.e., %
elements in each of left, middle and right parts)
© Recursion. If query-element is lesser than %rd (or greater than
2rd) element, Search the element from left (or right) part.
Otherwise, search the element from middle part.
@ Recomposition. Return found if element found in any part
Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element,

T5(2)+2, ifn>1
T3(”):{) 1, ifn=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.3: @) Base Case. If n =1, Probe and Return found / not-found

@ Decomposition. Probe at two arbitrary (fractional) positions (say,
%rd and %rd) and Return found if matches
Otherwise, Split the set of elements into three equal parts (i.e., %
elements in each of left, middle and right parts)

© Recursion. If query-element is lesser than %rd (or greater than
2rd) element, Search the element from left (or right) part.
Otherwise, search the element from middle part.

@ Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element,

o T3(§)+2, ifn>1
T3(”)_{ 1, ifn=1
Solution: Assume the existence of k, such that n = 3
n n n
T = T(5)+2 = T(g)+4 = Ta(g)+6
— - T3(3—"k)+2.k = 1+42k=1+2logyn

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.3: @) Base Case. If n =1, Probe and Return found / not-found

@ Decomposition. Probe at two arbitrary (fractional) positions (say,
%rd and %rd) and Return found if matches
Otherwise, Split the set of elements into three equal parts (i.e., %
elements in each of left, middle and right parts)

© Recursion. If query-element is lesser than %rd (or greater than
2rd) element, Search the element from left (or right) part.
Otherwise, search the element from middle part.

@ Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element,

o T3(§)+2, ifn>1
T3(”)_{ 1, ifn=1
Solution: Assume the existence of k, such that n = 3
n n n
T = T(5)+2 = T(g)+4 = Ta(g)+6
= = T3(3—"k)+2.k = 142k=1+2logsn

Generalized Form: For 3 equal-sized splits (2 < 8 <n), Ta(n)=1+(8—1)loggzn

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 16 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.4:) Base Case. If n =1, Probe and Return found / not-found

@ Decomposition. Probe at arbitrary (constant-depth) positions (say,
a constant ¢ element) and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e.,
(¢ — 1) elements in left part and (n — ¢) elements in right part)

© Recursion. If query-element is lesser (or greater) than the ¢’
element, Search the element from left (or right) part

@ Recomposition. Return found if element found in any part

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 17 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.4:) Base Case. If n =1, Probe and Return found / not-found

@ Decomposition. Probe at arbitrary (constant-depth) positions (say,
a constant ¢ element) and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e.,
(¢ — 1) elements in left part and (n — ¢) elements in right part)

© Recursion. If query-element is lesser (or greater) than the ¢’
element, Search the element from left (or right) part

@ Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element (let c < 3),

_f Ta(n—c)+1, ifn>c
T4(n)—{ n, ifl<n<c

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 17 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.4:) Base Case. If n =1, Probe and Return found / not-found

@ Decomposition. Probe at arbitrary (constant-depth) positions (say,
a constant ¢ element) and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e.,
(¢ — 1) elements in left part and (n — ¢) elements in right part)

© Recursion. If query-element is lesser (or greater) than the ¢’
element, Search the element from left (or right) part

@ Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element (let c < 3),

_f Ta(n—c)+1, ifn>c
T4(n)—{ n, ifl<n<c
Solution: Ty(n) = Ta(n—c)+1= Ta(n—2c)+2 =---< Ty(c)+ ¢ = (L).n+(c—1)
Ta(n) = Ta(n—c)+1=Ta(n—2c)+2="---> T4(1)+ =L = (I).n+ 1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 17 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.4:) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at arbitrary (constant-depth) positions (say,
a constant ¢ element) and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e.,
(¢ — 1) elements in left part and (n — ¢) elements in right part)
© Recursion. If query-element is lesser (or greater) than the ¢’
element, Search the element from left (or right) part
@ Recomposition. Return found if element found in any part
Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element (let c < 3),

_f Ta(n—c)+1, ifn>c
T4(n)—{ n, ifl<n<c
Solution: Ty(n) = Ta(n—c)+1= Ta(n—2c)+2 =---< Ty(c)+ ¢ = (L).n+(c—1)
Ta(n) = Ta(n—c)+1=Ta(n—2c)+2="---> T4(1)+ =L = (I).n+ 1

[Caution] It can be as bad as linear search (if ¢ = 1 is chosen)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 17 /34

Example-4: Binary Search from n (Sorted) Elements

Strategy-4.4:) Base Case. If n =1, Probe and Return found / not-found
@ Decomposition. Probe at arbitrary (constant-depth) positions (say,
a constant ¢ element) and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e.,
(¢ — 1) elements in left part and (n — ¢) elements in right part)
© Recursion. If query-element is lesser (or greater) than the ¢’
element, Search the element from left (or right) part
@ Recomposition. Return found if element found in any part
Recurrence: Number of probes (assume each probe can decide whether <, =,>)
required to search/find an element (let ¢ < 3),

_f Ta(n—c)+1, ifn>c
T4(n)—{ n, ifl<n<c
Solution: Ty(n) = Ta(n—c)+1= Ta(n—2c)+2 =---< Ty(c)+ ¢ = (L).n+(c—1)

Ta(n) = Ta(n—c)+1=Ta(n—2c)+2="---> T4(1)+ =L = (I).n+ 1
[Caution] It can be as bad as linear search (if ¢ = 1 is chosen)

Insights from Recurrence Relations: Why Binary Search needs to Split at Middle?

Since, log,n < Iog% nlie login] and log,n<2.logzn|[ie. (8—1)loggzn],
Therefore, Ti(n) < To(n) and Ti(n) < Tz(n). Also, Ti(n) < Ta(n)
(implying lowest number of probes when splitting at middle position)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 17 /34

Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.1A: @ Base Case. If n = 1, Return element
@ Decomposition. Find max element and 8§’ + S — {max}
© Recursion. Sort 8" with (n — 1) elements
@ Recomposition. Return max followed by sorted elements of S’

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 18 /34

ent Set S (in Descending Order)

Strategy-5.1A: @ Base Case. If n = 1, Return element
@ Decomposition. Find max element and 8§’ + S — {max}
© Recursion. Sort 8" with (n — 1) elements
@ Recomposition. Return max followed by sorted elements of S’

Recurrence: Number of element comparisons done for sorting, [Selection Sort |
[T(h—=1)+(n—-1), ifn>1
T(n) = { 0, n=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 18 /34

Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.1A: @ Base Case. If n = 1, Return element
@ Decomposition. Find max element and 8§’ + S — {max}
© Recursion. Sort 8" with (n — 1) elements
@ Recomposition. Return max followed by sorted elements of S’

Recurrence: Number of element comparisons done for sorting, [Selection Sort |
[T(h—=1)+(n—-1), ifn>1
T(n) = { 0, n=1
Solution: T(n) = Tn-1)+(n-1) = T(n-2)+(n—-2)+(n-1)
= = T)+142+--+(n-1) = Ln*—1n

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 18 /34

ent Set S (in Descending Order)

Strategy-5.1A: @ Base Case. If n = 1, Return element
@ Decomposition. Find max element and 8§’ + S — {max}
© Recursion. Sort 8" with (n — 1) elements
@ Recomposition. Return max followed by sorted elements of S’

Recurrence: Number of element comparisons done for sorting, [Selection Sort |
[T(h—=1)+(n—-1), ifn>1
T(n) = { 0, n=1
Solution: T(n) = Tn-1)+(n-1) = T(n-2)+(n—-2)+(n-1)
= = T)+142+--+(n-1) = Ln*—1n

Strategy-5.1B: @ Base Case. If n = 2 Return max followed by min elements
@ Decomposition. Find (max,min) elements and S’ + S — {max, min}
© Recursion. Sort 8" with (n — 2) elements
@ Recomposition. Return (max, sorted elements of S, min) in order

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 18 /34

Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.1A: @ Base Case. If n = 1, Return element
@ Decomposition. Find max element and 8§’ + S — {max}
© Recursion. Sort 8" with (n — 1) elements
@ Recomposition. Return max followed by sorted elements of S’

Recurrence: Number of element comparisons done for sorting, [Selection Sort |
[T(h—=1)+(n—-1), ifn>1
T(n) = { 0, n=1
Solution: T(n) = Tn-1)+(n-1) = T(n-2)+(n—-2)+(n-1)
= = T)+142+--+(n-1) = Ln*—1n

Strategy-5.1B: @ Base Case. If n = 2 Return max followed by min elements
@ Decomposition. Find (max,min) elements and S’ + S — {max, min}
© Recursion. Sort 8" with (n — 2) elements
@ Recomposition. Return (max, sorted elements of S, min) in order
Recurrence: Number of element comparisons done for sorting (assuming n as even),

3 .
T(n):{ T(”*2)+(§-"*131 :122

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 18 /34

Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.1A:

@ Base Case. If n =1, Return element

@ Decomposition. Find max element and 8§’ + S — {max}

© Recursion. Sort 8" with (n — 1) elements

@ Recomposition. Return max followed by sorted elements of S’

Recurrence: Number of element comparisons done for sorting, [Selection Sort |
[T(h—=1)+(n—-1), ifn>1
T(n) = { 0, n=1
Solution: T(n) = Tn-1)+(n-1) = T(n-2)+(n—-2)+(n-1)
= = T)+142+--+(n-1) = Ln*—1n

Strategy-5.1B:

Recurrence:

Solution:

@ Base Case. If n =2 Return max followed by min elements

@ Decomposition. Find (max,min) elements and S’ + S — {max, min}

© Recursion. Sort 8" with (n — 2) elements

@ Recomposition. Return (max, sorted elements of S, min) in order
Number of element comparisons done for sorting (assuming n as even),

_ [T(h—-2)+(3B.n-1), ifn>2
T(n) = { 1, n=2

T(n)=T(-2)+(3.n-1)= T(n—4)+g2,[(n_2)+n]_2:...

=TQ)+3[4+6+ -+(n—-1)]-"32 = 2p2—In- 1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 18 /34

Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.2: @) Base Case. If n =1, Return element
@ Decomposition. Split S into two non-empty sets, S1 and S»
© Recursion. Sort Si and S, set elements
@ Recomposition. Combine sorted elements of S with S,

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.2: Base Case. If n =1, Return element
Decomposition. Split S into two non-empty sets, S1 and Sz
Recursion. Sort 81 and S; set elements

Recomposition. Combine sorted elements of S; with S

Combine-Step: If S1 (or S2) is empty, Return elements of Sy (or S1)

Compare first elements, a; € S; with by € S

If a1 > b1, Return a; followed by combined sorted elements of
S1 —{a1} with Sz. Otherwise, Return b; followed by combined

sorted elements of S1 with S» — {b1}.

000 6000

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 19/34

ent Set S (in Descending Order)

Strategy-5.2: Base Case. If n =1, Return element
Decomposition. Split S into two non-empty sets, S1 and Sz
Recursion. Sort 81 and S; set elements

o
Q
(=]
@ Recomposition. Combine sorted elements of S with S,
o
Q
o

Combine-Step: If S1 (or S2) is empty, Return elements of Sy (or S1)

Compare first elements, a; € S; with by € S

If a1 > b1, Return a; followed by combined sorted elements of
S1 —{a1} with Sz. Otherwise, Return b; followed by combined

sorted elements of S1 with S» — {b1}.

Recurrence: Number of comparisons done for combining, [Merge |
[MAX[Te(—1,n—j), Telin—j—1)]+1, if1<j<n
Telyn—J) = { 0, otherwise

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 19/34

ent Set S (in Descending Order)

Strategy-5.2: @) Base Case. If n =1, Return element
@ Decomposition. Split S into two non-empty sets, S1 and S»
© Recursion. Sort Si and S, set elements
@ Recomposition. Combine sorted elements of S with S,
Combine-Step: @ If S1 (or S2) is empty, Return elements of S, (or St)
@ Compare first elements, a; € S1 with by € S»
© If a1 > b1, Return a; followed by combined sorted elements of
S1 —{a1} with Sz. Otherwise, Return b; followed by combined
sorted elements of S1 with S» — {b1}.

Recurrence: Number of comparisons done for combining, [Merge |

) N MAX[Te(G—1,n—j), Tc(on—j—DI+1, ifl1<j<n
Tc(,n—Jj)= { 0, otherwise

Number of comparisons done for overall sorting, [Merge-Sort]
[Arbitrary Split] T(n) = { T(i)+ T(n—i)+ Tc(i,n— ’37 :? Z i }

[Middle Split] T (n) = { T +T(E) +Te(3.5), ifn>1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 19/34

ent Set S (in Descending Order)

Strategy-5.3: @) Base Case. If n = 1, Return element
@ Decomposition. Choose a pivot element p € S. Partition S into
two non-empty sets, St ={a|a>p}and S ={a|a<p}
© Recursion. Sort Si and S, set elements
@ Recomposition. Return sorted elements of S; followed by S»

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 20 /34

ent Set S (in Descending Order)

Strategy-5.3: @) Base Case. If n = 1, Return element
@ Decomposition. Choose a pivot element p € S. Partition S into
two non-empty sets, St ={a|a>p}and S ={a|a<p}
© Recursion. Sort Si and S, set elements
@ Recomposition. Return sorted elements of S; followed by S»

Partition-Step: Linear scan elements of S and put into S; and S» sets.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 20 /34

ent Set S (in Descending Order)

Strategy-5.3: @) Base Case. If n = 1, Return element
@ Decomposition. Choose a pivot element p € S. Partition S into
two non-empty sets, St ={a|a>p}and S ={a|a<p}
© Recursion. Sort Si and S, set elements
@ Recomposition. Return sorted elements of S; followed by S»

Partition-Step: Linear scan elements of S and put into S; and S» sets.

Recurrence: Number of comparisons done for partitioning, [Partition]
To(my = { TPOFTOID 0 T =

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 20 /34

Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.3: @) Base Case. If n = 1, Return element
@ Decomposition. Choose a pivot element p € S. Partition S into
two non-empty sets, St ={a|a>p}and S ={a|a<p}
© Recursion. Sort Si and S, set elements
@ Recomposition. Return sorted elements of S; followed by S»

Partition-Step: Linear scan elements of S and put into S; and S» sets.

Recurrence: Number of comparisons done for partitioning, [Partition]
- Tp(l)—|— Tp(n—l)7 ifn>1 -
To(o) = { Pl ST =n
Number of comparisons done for overall sorting, [Quick-Sort |

[Arbitrary Split] T(n) = { T(i)+ T(n—i)+ Tp(n())7 :? n>1

[Middle Split] T(n) = { TE TR TP(n()): :: Z - 1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 20 /34

General Form of (Equal) Divide and Conquer Recerrence

Recurrence Relation: Let a > 1, b > 1 and ¢ be constants, and f(n) be a function,

- T(2)+f(n) n=b>1
T(n)i{a) ¢, n=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 21 /34

General Form of (Equal) Divide and Conquer Recerrence

Recurrence Relation: Let a > 1, b > 1 and ¢ be constants, and f(n) be a function,

/M o

T(n) = { aT(4)+

f(n) n=b>1
c, n=1
Recursion Tree: Step-wise unfolded form of computations from T(n) = a.T (%) + f(n)

[f/b) |

fn/b) |

a a

[rsd 5

sy

/A —|5|—|

|
Af\i‘ﬂa/ AN

)

/i\

f(n/b? |3

ﬁ—l

IR YR

/W\

VYA

s Ihl f(n/bL) Il /) |

I |
— == || ==
| T | e

§“
i 8
S
|~
[
11 ':?
| E-
<
s
=X
5
|~

fm)

4

a-f(n/b)

+

a’-f(n/b?)

oo o

+

a"-f(n/b")

A recursion tree for the recurrence T(n) =a T(n/b) + f(n)
Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Autumn 2020

21 /34

General Form of (Equal) Divide and Conquer Recerrence

Solution: Unfolding the computation steps as shown in the recursion tree, we get,

T(n) = a.T(g)+f(n) = a2.T(%)+a.f(%)+f(n) = ..
i—1 logj, n—1
= aT(2)+ (LY = conesa 4 (2 [as n = b']
() + L) > 2

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 22 /34

General Form of (Equal) Divide and Conquer Recerrence

Solution: Unfolding the computation steps as shown in the recursion tree, we get,

T(n) = a.T(%)+f(n) = a2.T(%)+a.f(g)+f(n) = ..
i—1 logj, n—1
= aT(2)+ (LY = conesa 4 (2 [as n = b']
() + L) > 2

Case-1: If f(n) < d.n'8°~< for some constant d,e > 0, then

log, n—1 log, n—1
i.on PN\ log, a—
gn) = > df(5) < d D A()™TT
j=0 j=0
log, n—1 . logp n—1
. a.b® \J _ o\
= At N (Gags) = Y ()
j=0 j=0
e (BRI g pesane (P21
) N |) \be —1
< D.nv? [for some constant D > 0]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 22 /34

General Form of (Equal) Divide and Conquer Recerrence

Solution: Unfolding the computation steps as shown in the recursion tree, we get,

T(n) = a.T(%)+f(n) = a2.T(%)+a.f(g)+f(n) = ..
i—1 logj, n—1
= aT(2)+ (LY = conesa 4 (2 [as n = b']
() + L) > 2

Case-1: If f(n) < d.n'8?~< for some constant d,e > 0, then

log, n—1 log, n—1
Pon N _
gn) = > df(5) < d D A()™TT
j=0 j=0
log, n—1 . logp n—1
. a.b® \J _ o\
- d'nlogba E Z (blogba) :d_nIOgba - Z (b)J
j=0 j=0
— d.nomsac (!’6' e — 1 1) — d.nloss o (”6 - 1)
) N |) \be —1
< D.nv? [for some constant D > 0]

So, T(n) < c.n'8? 4 D82 < C.n%2 [for some constant C > 0]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 22 /34

General Form of (Equal) Divide and Conquer Recerrence

ogp, n—1

Case-2: We had, T(n) = c.n"’gba—|— Z aff() = .82 4 g(n)

If dy.n'°8v2 < £(n) < db.n'"%? for some constant di, d» > 0, then

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 23 /34

General Form of (Equal) Divide and Conquer Recerrence

log, n—1
Case-2: We had, T(n) = c.n®?+ af.f(ﬁ) = c.n®? 4 g(n)
j=0
If dy.n'°8s? < f(n) < d>.n'°%> 2 for some constant di, d> > 0, then
log, n—1 n log, n—1 n
g(n) = Z af.f(g) < . Z a’.(g)logba
j=0 j=0
log, n—1 3 j log, n—1
_ | _ |
= dpn®®me Y <W) = dn®e Y 1
j=0 j=0

= dh.n'8? log,n < D,.n'"%2 log, n [for some constant Dy > 0]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 23 /34

General Form of (Equal) Divide and Conquer Recerrence

log, n—1
Case-2: We had, T(n) = c.n®?+ af.f(ﬁ) = c.n®? 4 g(n)
j=0
If dy.n'°8s? < f(n) < d>.n'°%> 2 for some constant di, d> > 0, then
log, n—1 n log, n—1 n
g(n) = Z af.f(g) < . Z a’.(g)logba
j=0 j=0
log, n—1 3 j log, n—1
_ | _ |
= dpn®®me Y <W) = dn®e Y 1
j=0 j=0

= dh.n'8? log,n < D,.n'"%2 log, n [for some constant Dy > 0]

Similarly, g(n) > Di.n'8v2 logy n [for some constant Dy > 0]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 23 /34

General Form of (Equal) Divide and Conquer Recerrence

logy, n—1

Case-2: We had, T(n) = c.n®?+ aff(ﬁ) = c.n®? 4 g(n)
j=0
If dy.n'°8v2 < £(n) < db.n'"%? for some constant di, d» > 0, then

log, n—1 log, n—1

gn) = > y.f(g) < b Y ;,J.(g)"’gba
j=0 j=0
log, n—1 3 j log, n—1
_ dg.nIOg"a. Z (W) _ dg.nIOg"a. Z 1
j=0 j=0

= dh.n'8? log,n < D,.n'"%2 log, n [for some constant Dy > 0]

Similarly, g(n) > Di.n'8v2 logy n [for some constant Dy > 0]

Therefore,
c.n®? 4 D;.n% log,n < T(n) < c.n'®%°+ Dy.n'%° log,n

= G.n%°log,n< T(n) < G.n%° log,n
[for some constants Ci, G > 0]

Autumn 2020 23 /34

CS21001 : Discrete Structures

Aritra Hazra (CSE, IITKGP)

General Form of (Equal) Divide and Conquer Recerrence

logy, n—1
Case-3: We had, T(n) = c.n'%? 4 Z a. f(g) = c.n'8? 4 g(n)
Jj=
If f(n) > d.n'85°"¢ for some constant d, e >0, and a.f(2) < k.f(n) for
some constant k < 1 and for all sufficiently large n > b, then

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 24 /34

General Form of (Equal) Divide and Conquer Recerrence

logy, n—1

Case-3: We had, T(n) = c.n®8? 4 Z a’f() = c.n®?+g(n)

J=

If f(n) > d.n'85°"¢ for some constant d, e >0, and a.f(2) < k.f(n) for
some constant k < 1 and for all sufficiently large n > b, then

a.f(g) < k.f(n) = f(g) <Zfn) = f(bz) < gf(%) < (5)2,f(n)

a
Iterating in this manner, we get, f(;) < (g)f.f(n). Hence,

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 24 /34

General Form of (Equal) Divide and Conquer Recerrence

logy, n—1

Case-3: We had, T(n) = c.n®?4 a’f() = c.n®?+g(n)

Jj=0
If f(n) > d.n'85°"¢ for some constant d, e >0, and a.f(2) < k.f(n) for
some constant k < 1 and for all sufficiently large n > b, then

a.f(g) < k.f(n) = f(g) <X fm= f(bz) < f.f(%) < (S)Z,f(n)

Iterating in this manner, we get, f(;) < (Y .f(n). Hence,
log, n—1 log, n—1 K log, n—1
. n . . .
gn) = > df(;) < d(ZYf(n) = > K.Af(n
j=0 b j=0 ? j=0

IN

£(n). i Ko o= (ﬁ) £(n)
j=0

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 24 /34

General Form of (Equal) Divide and Conquer Recerrence

logy, n—1
Case-3: We had, T(n) = c.n'%? 4 Z a. f(g) = c.n'8? 4 g(n)
Jj=
If f(n) > d.n'85°"¢ for some constant d, e >0, and a.f(2) < k.f(n) for
some constant k < 1 and for all sufficiently large n > b, then

n n k n k2
a.f(z) < kf(n) = f([—)) <Zfn) = f(bz) < ;.f(z) < (;) (n)
Iterating in this manner, we get, f(;) < (g)f.f(n). Hence,
logyn—1 logyn=1 logy n—1
gn) = >0 A5 < X YA = X KA
j=0 j=0 j=0

IN

n).;kj - (1ik)f(n)

Since k < 1 is a constant, for exact powers of b we can conclude that,

Dy.f(n) < g(n) < Ds.f(n) [for some constants Dy, D> > 0]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 24 /34

General Form of (Equal) Divide and Conquer Recerrence

logp, n—1
Case-3: We had, T(n) = c.n®8? 4 bZ a’f() = c.n®?+g(n)
Jj=

If f(n) > d.n'85°"¢ for some constant d, e >0, and a.f(2) < k.f(n) for
some constant k < 1 and for all sufficiently large n > b, then

a.f(g) < k.f(n) = f(g) <Zfn) = f(bz) < gf(%) < (S)Z,f(n)

Iterating in this manner, we get, f(;) < (g)f.f(n). Hence,
log, n—1 log, n—1 K log, n—1
. n . . .
gn) = >0 A5 < X YA = X KA
j=0 ~ 7 j=0
<

Since k < 1 is a constant, for exact powers of b we can conclude that,

Dy.f(n) < g(n) < Ds.f(n) [for some constants Dy, D> > 0]

Therefore, [for some constants Ci, G > 0]
c.n®? 4 Di.f(n) < T(n) < c.n'®?+ Dy.f(n)
= G.f(n)< T(n) < G.f(n) [withf(n)>d.n""]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 24 /34

Master Theorem

Let a> 1, b> 1 and c be constants, and f(n) be a non-negative function defined on
exact powers of b. We define T(n) on exact powers of b by the following recurrence,

T(n):{ a.T(5)+f(r(1:) Zz[lj >1 [where j € Z* |

Then, T(n) follows the following inequalities:

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 25 /34

Master Theorem

Let a> 1, b> 1 and c be constants, and f(n) be a non-negative function defined on
exact powers of b. We define T(n) on exact powers of b by the following recurrence,

T(n):{ a'T(5)+f(';) Zillj >1 [where j € Z* |

Then, T(n) follows the following inequalities:

@ If f(n) < d.n"8 2~ for some constant d,e > 0, then T(n) < C.n'%?, for some
constant C > 0.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 25 /34

Master Theorem

Let a> 1, b> 1 and c be constants, and f(n) be a non-negative function defined on
exact powers of b. We define T(n) on exact powers of b by the following recurrence,

T(n):{ a.T(5)+f(r(1:) Zz[lj >1 [where j € Z* |

Then, T(n) follows the following inequalities:
@ If f(n) < d.n"8 2~ for some constant d,e > 0, then T(n) < C.n'%?, for some
constant C > 0.
If f(n) = O(n'°®°~¢) for some constant ¢ > 0, then T(n) = O(n'*®>?)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 25 /34

Master Theorem

Let a> 1, b> 1 and c be constants, and f(n) be a non-negative function defined on
exact powers of b. We define T(n) on exact powers of b by the following recurrence,

T(n):{ a.T(5)+f(r(1:) Zz[lj >1 [where j € Z* |

Then, T(n) follows the following inequalities:

@ If f(n) < d.n"8 2~ for some constant d,e > 0, then T(n) < C.n'%?, for some
constant C > 0.
If f(n) = O(n'°®°~¢) for some constant ¢ > 0, then T(n) = O(n'*®>?)

Q If d1.n'8 < f(n) < db.n'"%? for some constant di, da, ¢ > 0, then
C1.n'°%2 log, n < T(n) < G.n'%?. log, n, for some constant Ci, C> > 0.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 25 /34

Master Theorem

Let a> 1, b> 1 and c be constants, and f(n) be a non-negative function defined on
exact powers of b. We define T(n) on exact powers of b by the following recurrence,

T(n):{ a.T(5)+f(r(1:) Zz[lj >1 [where j € Z* |

Then, T(n) follows the following inequalities:
@ If f(n) < d.n"8 2~ for some constant d,e > 0, then T(n) < C.n'%?, for some
constant C > 0.
If f(n) = O(n'°®°~¢) for some constant ¢ > 0, then T(n) = O(n'*®>?)
Q If d1.n'8 < f(n) < db.n'"%? for some constant di, da, ¢ > 0, then
C1.n'°%2 log, n < T(n) < G.n'%?. log, n, for some constant Ci, C> > 0.
If f(n) = ©(n'%?), then T(n) = ©(n'*%?.log, n)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 25 /34

Master Theorem

Let a> 1, b> 1 and c be constants, and f(n) be a non-negative function defined on
exact powers of b. We define T(n) on exact powers of b by the following recurrence,

T(n):{ a.T(5)+f(r(1:) Zz[lj >1 [where j € Z* |

Then, T(n) follows the following inequalities:
@ If f(n) < d.n"8 2~ for some constant d,e > 0, then T(n) < C.n'%?, for some

constant C > 0.
If f(n) = O(n'°®°~¢) for some constant ¢ > 0, then T(n) = O(n'*®>?)

Q If d1.n'8 < f(n) < db.n'"%? for some constant di, da, ¢ > 0, then
C1.n'°%2 log, n < T(n) < G.n'%?. log, n, for some constant Ci, C> > 0.
If f(n) = ©(n'%?), then T(n) = ©(n'*%?.log, n)

© If f(n) > d.n%°" for some constant d, e > 0, and a.f(2) < k.f(n) for some

constant k < 1 and for all sufficiently large n > b, then
Ci.f(n) < T(n) < G.f(n), for some constant C;, G; > 0.

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 25 /34

Master Theorem

Let a> 1, b> 1 and c be constants, and f(n) be a non-negative function defined on
exact powers of b. We define T(n) on exact powers of b by the following recurrence,

T(n):{ a.T(5)+f(r(1:) Zz[lj >1 [where j € Z* |

Then, T(n) follows the following inequalities:

@ If f(n) < d.n"8 2~ for some constant d,e > 0, then T(n) < C.n'%?, for some
constant C > 0.
If f(n) = O(n'°®°~¢) for some constant ¢ > 0, then T(n) = O(n'*®>?)

Q If d1.n'8 < f(n) < db.n'"%? for some constant di, da, ¢ > 0, then
C1.n'°%2 log, n < T(n) < G.n'%?. log, n, for some constant Ci, C> > 0.
If f(n) = ©(n'%?), then T(n) = ©(n'*%?.log, n)

© If f(n) > d.n%°" for some constant d, e > 0, and a.f(2) < k.f(n) for some

constant k < 1 and for all sufficiently large n > b, then
Ci.f(n) < T(n) < G.f(n), for some constant C;, G; > 0.

If f(n) = Q(n'*8°"¢) for some constant ¢ > 0, and a.f(2) < k.f(n) for some
constant k < 1 and for all sufficiently large n > b, then T(n) = ©(f(n))

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 25 /34

Example Applications of Master Theorem

+2n%, n>1

@ In the recurrence relation, T(n) = { oT(3) 1 p=q

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 26 /34

Example Applications of Master Theorem

n 3
@ In the recurrence relation, T(n) = { oT(3) + 2n1, :i 1 ,

we find that a =9, b =2, f(n) = 2n3. Now, f(n) = 2n3 < d.n'°&°~< for
some d = 3,¢ > 0. [Case-1]
Hence, T(n) < C.n'°&° = T(n) = O(n'"°&°)

Autumn 2020 26 /34

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

Example Applications of Master Theorem

n 3
© In the recurrence relation, T(n) = { oT(3)+ 2n1, :z 1 ,
we find that a =9, b = 2, f(n) = 2n®. Now, f(n) = 2n* < d.n'°82%=¢ for
some d = 3,¢ > 0. [Case-1]

Hence, T(n) < C.n'°&° = T(n) = O(n'"°&°)

8T(2)+2nm, n>1

© In the recurrence relation, T(n) = { o

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 26 /34

Example Applications of Master Theorem

9T(2)+2nm, n>1
1, n=1"

we find that a =9, b =2, f(n) = 2n3. Now, f(n) = 2n3 < d.n'°&°~< for
some d = 3,¢ > 0. [Case-1]
Hence, T(n) < C.n'°&° = T(n) = O(n'"°&°)

8T(2)+2nm, n>1

@ In the recurrence relation, T(n) = {

© In the recurrence relation, T(n) = {

1, n=1"
we find that a = 8,b = 2, f(n) = 2n®. Now, d;.n"°828 < 2.n3 = f(n) and
f(n) = 2n% < dp.n'"°828 for some d; = 1,d> = 3,¢ > 0. [Case-2]

Hence, Ci.n%.log, n < T(n) < Go.nd.logyn = T(n) = ©(n.log, n)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 26 /34

Example Applications of Master Theorem

9T(2)+2nm, n>1
1, n=1"

we find that a =9, b =2, f(n) = 2n3. Now, f(n) = 2n3 < d.n'°&°~< for
some d = 3,¢ > 0. [Case-1]
Hence, T(n) < C.n'°&° = T(n) = O(n'"°&°)

8T(2)+2nm, n>1

@ In the recurrence relation, T(n) = {

© In the recurrence relation, T(n) = {

1, n=1"
we find that a = 8,b = 2, f(n) = 2n®. Now, d;.n"°828 < 2.n3 = f(n) and
f(n) = 2n% < dp.n'"°828 for some d; = 1,d> = 3,¢ > 0. [Case-2]

Hence, Ci.n%.log, n < T(n) < Go.nd.logyn = T(n) = ©(n.log, n)

TT(3)+2m, n>1

© In the recurrence relation, T(n) = { o

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 26 /34

Example Applications of Master Theorem

9T(2)+2nm, n>1
1, n=1"

we find that a =9, b = 2, f(n) = 2n®. Now, f(n) = 2n* < d.n'°82%=¢ for
some d = 3,¢ > 0. [Case-1]

Hence, T(n) < C.n'°&° = T(n) = O(n'"°&°)
(){ 8T(2)+2nm, n>1

© In the recurrence relation, T(n) =

@ In the recurrence relation, T(n

1, n=1"
we find that a = 8,b = 2, f(n) = 2n®. Now, d;.n"°828 < 2.n3 = f(n) and
f(n) = 2n% < dp.n'"°828 for some d; = 1,d> = 3,¢ > 0. [Case-2]

Hence, Ci.n%.log, n < T(n) < Go.nd.logyn = T(n) = ©(n.log, n)

n 3
© In the recurrence relation, T(n) = { 7T(2) + 2n1, :i 1 '
2,f(n) = 2n%. Now, f(n) = 2.n3 > d.n'og27+e for

% n < k.2n3 for k < 1. [Case-3]

) =
< G2 = T(n)=06(n)

we find that a=7,b=
any d,e >0, and7f(§
)

Hence, C;.2n* < T(n

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 26 /34

General Form of (Unequal) Divide and Conquer Recurrence

Recurrence Relation: For all i (i € ZT), let a;, a, k, ¢ be constants where a;, k € Z*
and 0 < o < 1; and f(n) be a function.
We define T(n) by the following recurrence,

[a.T(ar.n)+ a.T(a2.n) + -+ ax. T(aw.n) + f(n) n>1
T(n) = ¢, n=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 27 /34

General Form of (Unequal) Divide and Conquer Recurrence

Recurrence Relation: For all i (i € ZT), let a;, a, k, ¢ be constants where a;, k € Z*

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

and 0 < o < 1; and f(n) be a function.
We define T(n) by the following recurrence,

[a.T(ar.n)+ a.T(a2.n) + -+ ax. T(aw.n) + f(n) n>1
T(n) = ¢, n=1

Let us solve for a simpler variant of this recurrence defined as,

T(n) = { a.T(a.n)+ b.T(B.n)+f(n) n>1

[a, b, c are constants |
c, n=1 '

Autumn 2020 27 /34

General Form of (Unequal) Divide and Conquer Recurrence

Recurrence Relation: For all i (i € ZT), let a;, a, k, ¢ be constants where a;, k € Z*
and 0 < o < 1; and f(n) be a function.
We define T(n) by the following recurrence,
T(n) = { ar. T(ca.n) +a.T(cw.n) + -+ ak. T(ak.n) + f(n) n>1
- c, n=1

Let us solve for a simpler variant of this recurrence defined as,

T(n) = { a.T(ewn) +b.T(B.n) +f(n) n>1 [a, b, c are constants |
c, n=1
Solution: By expansion we get,
T(n) = aT(a.n)+ b.T(B.n)+ f(n)

= az.T(az.n)Jr2.a.b.T(a.s3.n)+b2.T(62.n) + f(n)+[a.f(a.n)er.f(B.n)]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 27 /34

General Form of (Unequal) Divide and Conquer Recurrence

Recurrence Relation: For all i (i € ZT), let a;, a, k, ¢ be constants where a;, k € Z*
and 0 < o < 1; and f(n) be a function.
We define T(n) by the following recurrence,

[a.T(ar.n)+ a.T(a2.n) + -+ ax. T(aw.n) + f(n) n>1
T(n) = ¢, n=1

Let us solve for a simpler variant of this recurrence defined as,

T(n) = { a.T(a.n)+ b.T(B.n)+f(n) n>1

[a, b, c are constants |
c, n=1 '

Solution: By expansion we get,
T(n)

a.T(a.n) + b.T(B.n) + f(n)

= aZ.T(az.n)Jr2.a.b.T(a.s3.n)+b2.T(62.n) + f(n)+[a.f(a.n)er.f(B.n)]

- (3)33.7((23.") + (i),az4b4T(a2./in)+ C).a.bz T(a.8%n) + (z).b3.T(/53.n) + [(2).«")]

+ [(;)43‘)‘(@.") + (1).b.f(/in)} + {(i)az.f(az‘n) + <i>4a4b4f(a4[3.n)+ (2).a.b2f(/52.n)]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 27 /34

General Form of (Unequal) Divide and Conquer Recurrence

Recurrence Relation: For all i (i € ZT), let a;, a, k, ¢ be constants where a;, k € Z*
and 0 < o < 1; and f(n) be a function.
We define T(n) by the following recurrence,

{ ar. T(ca.n) +a.T(cw.n) + -+ ak. T(ak.n) + f(n) n>1

T(n) = c, n=1

Let us solve for a simpler variant of this recurrence defined as,

T(n) = { a.T(a.n)+ b.T(B.n)+f(n) n>1

[a, b, c are constants |
c, n=1 '

Solution: By expansion we get,
T(n)

a.T(a.n) + b.T(B.n) + f(n)

= aZ.T(az.n)Jr2.a.b.T(a.s3.n)+b2.T(62.n) + f(n)+[a.f(a.n)er.f(B.n)]

= (3)23»“&3»") + C)»az<b<T(a2./in)+ C).a.bz T(.8%n) + (z).b3.T(/53.n) + [(2).f(n)]
+ [(;)‘a‘f(a'") + (D»bf(/in)} + {(i)az.f(az‘n) + <i>4a4b4f(a4[3.n)+ (2).a.b2f(/52.n)]

- - Z[(H1).3“1*".b"T(a“1*'ﬂs".n) + Z().af*f.bff(a"*f.sf.n)}

i=0 Jj=0

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 27 /34

General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T(n) = ijl [(Lfl).aHl*f.b"T(aL“*’Za".n) + z G).ai’J.Hf((xi’J.Bj.n)]
i=0 j=0

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 28 /34

General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T(n) = ijl [(Lfl).aHl*f.b"T(aL“*’Za".n) + z G).ai’J.Hf((xi’J.Bj.n)]
i=0 j=0

Without loss of generality, let us assume that, 0 < f < a < 1 and
a™.n=1, 8™ .n=1 (Obviously, my > m>). Note that,

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 28 /34

General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T(n) = ijl [(Lfl).aHl*f.b"T(aL“*’Za".n) + z G).affi.uf(a"*f.af.n)]
i=0 j=0

Without loss of generality, let us assume that, 0 < f < a < 1 and
a™.n=1, 8™ .n=1 (Obviously, my > m>). Note that,

my m;—1 i
T(n) < T(mn) > [(M).am]+ 30 [S0 ().a b A8 |
i=0 =0 j=0
(Iog% n)fl ;
= c(a+ b)log%x ! + [(I).a"*f.b".f(a"*jﬂj.n)] las m = Iog% n)
=0 j=0

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 28 /34

General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T(n) = ijl [(Lfl).aHl*f.b"T(aL“*’Za".n) + z G).affi.uf(a"*f.af.n)]
j=0

T(n)

T(n)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 28 /34

IN

i=0
Without loss of generality, let us assume that, 0 < f < a < 1 and
a™.n=1, 8™ .n=1 (Obviously, my > m>). Note that,

rlam o) 3o (7)) + [3 () e)
i=0 =0~ j=0
(Iog% n)fl ;]
c.(a+ b)log(li ! + [(I.).a’;j.b".f(a"*jﬂj.n)] [as mi = log1 n]
i—0 j=0 Y °
rmm. 35 [(M)amib] £ S [30 ()b e |
iz ! i—0 — j=o J
(Iog% n)fl ;)
c.(a+ b)log% ’ + [(I,).a"*j.b".f(a"*jﬂj.n)] [as my = log 1 n]
i—0 =0 J .

General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T(n) = ijl [(Lfl).aHl*f.b"T(aL“*’Za".n) + z G).affi.uf(a"*f.af.n)]
i=0 j=0

Without loss of generality, let us assume that, 0 < f < a < 1 and
a™.n=1, f™.n=1 (Obviously, mi > m,). Note that,

my my—1 i

T(n) < T(@™.n).3 [(”;1).3""1*".1;'] +> [Z(J’:).a"*f.y.f(a"*fﬁ.n)]
i=0 =0 j=0
(Iog% n)fl ;]
= c(a+ b)log%x "4 [(I.).a"*f.b".f(a"*jﬂj.n)] [as m; = log 1 n]
i j=0 J -
my m-1_ i .
T > TEma) > [(T)am]+ Y [S0 (0) b el |
0! i~ j=0 J
(Iog% n)fl ;)
= c(a+ b)log% ! + [(I,).a"fj.b".f(a’;j.ﬁj.n)] [as my = log 1 n]
i—o j=o0 Y 7

Finding Closed-form Expressions under different Cases (like Master Theorem):
Left, for You to Explore!

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 28 /34

Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T+ T(2), n>1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 29 /34

Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T+ T(2), n>1

Here, f(n)=0and a=b=1, a =%,
B = % so unfolding the recurrence (or
draw the recursion tree) reveals the
following equation:

Autumn 2020

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T+ T(2), n>1

_ —ph = -2
Here'l f(n) =0 a_nd a=b= 1’ o= 3! Recursion Tree for T(n) = T(n/3) + T(2n/3)
B = 3, so unfolding the recurrence (or
draw the recursion tree) reveals the
following equation:

[Ti9)] [Tnig) | [T2ni9) | [T@ng) |
k .
k 2'.n
T(n) = Z <’> . T(3k) ‘T(n/E{HT;\/ﬂ)‘ ‘T(Zné‘ ‘T(\4:/27)‘ ‘T(Zn/’z{)‘ \T>:/z7)HT(4n/27)\ ‘T(\S:/T/)‘
AVANANATAWAYANS

Autumn 2020 29 /34

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T+ T(2), n>1

_ —ph = -2
Here'l f(n) =0 a_nd a=b= 1’ o= 3! Recursion Tree for T(n) = T(n/3) + T(2n/3)
B = 3, so unfolding the recurrence (or
draw the recursion tree) reveals the
following equation:

[Ti9)] [Tnig) | [T2ni9) | [T@ng) |
k .
k 2'.n
T(n) = Z <’> . T(3k) ‘T(n/E{HT;\/ﬂ)‘ ‘T(Zné‘ ‘T(\4:/27)‘ ‘T(Zn/’z{)‘ \T>:/z7)HT(4n/27)\ ‘T(\S:/T/)‘
AVANANATAWAYANS

Since in this case m; = Iog% n > log; n = my, hence we can find the inequalities (in

similar way as derived in the earlier slides),

log3 n log3 2 log3 2
3 37 and T(n) > 283" = plogs2 =82 T(n)<n 3

T(n)<2 =n

Autumn 2020 29 /34

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T+ T(2), n>1

_ —ph = -2
Here'l f(n) =0 a_nd a=b= 1’ o= 3! Recursion Tree for T(n) = T(n/3) + T(2n/3)
B = 3, so unfolding the recurrence (or
draw the recursion tree) reveals the
following equation:

[Ti9)] [Tnig) | [T2ni9) | [T@ng) |
k .
k 2'.n
T(n) = Z <’> . T(3k) ‘T(n/E{HT;\/ﬂ)‘ ‘T(Zné‘ ‘T(\4:/27)‘ ‘T(Zn/’z{)‘ \T>:/z7)HT(4n/27)\ ‘T(\S:/T/)‘
AVANANATAWAYANS

Since in this case m; = Iog% n > log; n = my, hence we can find the inequalities (in

similar way as derived in the earlier slides),

log3 n lo loj
T(n)<2 83" = n"%3 2 and T(n) > 283" = pl°es? =82 T(n)<n £3°
n 2n
Exercise: T(n) = { T(3)+ T(F) + log, ’1"’7 : i 1

Autumn 2020 29 /34

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and ¢ be constants, and f(n) be a function.
We define T(n) by the following recurrence,

T(n):{ T(a)+ T(n—a)—O—;‘"(/::)7 Zii

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 30/34

General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and ¢ be constants, and f(n) be a function.
We define T(n) by the following recurrence,

T(n):{ T(a)+ T(n—a)—O—;‘"(/::)7 Zii

Solution: Since the choice of constant a is equally likely (within [1, n — 1]),
therefore,

n—

T = (). S0+ T+ 70 = (). 5 T0) + (0

i=1

= (n—1).T(n) = 2. "j;l T(i) + (n — 1)f(n)

i=

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 30/34

General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and ¢ be constants, and f(n) be a function.
We define T(n) by the following recurrence,

T(n):{ T(a)+ T(n—a)—O—;‘"(/::)7 Zii

Solution: Since the choice of constant a is equally likely (within [1, n — 1]),
therefore,

n—

T = (). S0+ T+ 70 = (). 5 T0) + (0

i=1

= (n—1).T(n) = 2. "j;l T(i) + (n — 1)f(n)

i=

Similarly, (1—2).T(n—1) = 2.5 T() + (n—2).F(n— 1)
i=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 30/34

General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and ¢ be constants, and f(n) be a function.
We define T(n) by the following recurrence,

T(n):{ T(a) + T(n—a)—O—;‘"(/::)7 Zii

Solution: Since the choice of constant a is equally likely (within [1, n — 1]),

therefore,
T(n) = (nil)."g[r(f) + T i)+ F)] = () g T(i) + f(n)
= (n—=1).T(n)=2. :12::11 T(i)+ (n—1)f(n)
Similarly, (n—2).T(n—1)=2. ;2 T() + (n—2).f(n— 1)

Subtracting, ~ (n—1).T(n) —n.T(n—1) = (n—1).f(n) — (n—2).f(n—1)
SRR = O ORI = KR

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 30/34

General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and ¢ be constants, and f(n) be a function.
We define T(n) by the following recurrence,

T(n):{ T(a) + T(n—a)—O—;‘"(/::)7 Zii

Solution: Since the choice of constant a is equally likely (within [1, n — 1]),
therefore,

n—1

T(n) = (nil)."gl1 [T() + T(n— i)+ f()] = (%) £ TG) + F(n)

i=1

= (n—1).T(n) = 2. "j;l T(i) + (n — 1)f(n)

Similarly, (1—2).T(n—1) = 2.5 T() + (n—2).F(n— 1)
i=1
Subtracting, (n—1).T(n) —n.T(n—1)=(n—1).f(n) — (n—2).f(n—1)
= T - HEl = (1) £~ (542) = 1)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 30/34

General Form of (Constant) Divide & Conquer Recurrence

Solution (cont.):

Tin_—ll)_Tﬁn_—;) _ (nil)'f(n_1)+(ni2_nil).f(n_z)
=2 1029 — (I)sm-2+ (25— 20) -3
@_¥ - (%).f(3)—(%—§)-f(2)
0T () (-

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 31/34

General Form of (Constant) Divide & Conquer Recurrence

Solution (cont.):

Tin_—ll)_Tﬁn_—;) _ (nil)'f(n_l)—i_(niZ_nil).f(n_z)
=2 1029 — (I)sm-2+ (25— 20) -3
T (- (-
0T () (-

Adding all the above equations, we get,
—1

T T (L) a2 3 [{ A} or0)
i=2 ’

n 1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 31/34

General Form of (Constant) Divide & Conquer Recurrence

Solution (cont.):

Tin_—ll)_Tﬁn_—;) _ (nil)'f(n_l)—i_(niZ_nil).f(n_z)
Tin_—22)_Tf7n_—33) _ (niZ) f(n_2)+<$_n32) f(n—3)
OO (- (-2
1010 - (- (-

Adding all the above equations, we get,

n—1
@_@ - (1).f(n)+2.;[{ﬁ}-f(i)]
c+f(n +2n2[{l /+1} (I)]

i=2

= T(n)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 31/34

Example Application of (Constant) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Arbitrary Split in
Divide and Conquer Sorting Strategy (in Quick-Sort):

T(n)—{ T(a)—i—T(n—a)-l-g: Zii

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 32/34

Example Application of (Constant) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Arbitrary Split in
Divide and Conquer Sorting Strategy (in Quick-Sort):

T(n)—{ T(a)—i—T(n—a)-l-g: Zii

If we follow the derivation procedure in earlier slides, we get,

n—1

T(n) = 0+n+2.n.i§:; Hﬁ}/}
= n+2.n[%—|—%+-~%}:2.n[(1+%—|—%+"'+%)—1]
= 2.n.(|nn+7+%—l) ~ C.nlogy n

[v = 0.5772156649.. is the Euler-Mascheroni Constant and C > 0 is some constant |

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

Autumn 2020 32/34

Example Application of (Constant) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Arbitrary Split in
Divide and Conquer Sorting Strategy (in Quick-Sort):

T(n)—{ T(a)—i—T(n—a)-l-g: Zii

If we follow the derivation procedure in earlier slides, we get,

n—1

T(n) = 0+n+2.n.§{{ﬁ}.i}
= n+2.n[%—|—%+-~%}:2.n[(1+%—|—%+"'+%)—1]
= 2.n.(|nn+7+%—1)%(;.nlog2n

[v = 0.5772156649.. is the Euler-Mascheroni Constant and C > 0 is some constant |

T(a)+ T(n—a)+ k.n.logyn, n>1

Exercise: T(n) = { L n—1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 32/34

Some Variants of Divide and Conquer Recurrence: Changing Variables

Recurrence Relation: T(n) = { 2.T(y/n) + log, ;1, Z i g

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 33/34

Some Variants of Divide and Conquer Recurrence: Changing Variables

Recurrence Relation: T(n) = { 2.T(y/n) + log, ;1., Z i g

Solution: Let n = 22" implies log, n = 2™. So, we have

T(22") = 2.T7(2¥" ") +2m

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 33/34

Some Variants of Divide and Conquer Recurrence: Changing Variables

Recurrence Relation: T(n) = { 2.T(y/n) + log, ;1., Z i g

Solution: Let n = 22" implies log, n = 2™. So, we have

2m—1

T(2?") = 2.T(2*")+2™
= S(m) = 25(m—-1)+2" and S(0)=1

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020

Some Variants of Divide and Conquer Recurrence: Changing Variables

2.T(+v/n)+logyn, n>2

Recurrence Relation: T(n) = { 1 alo

Solution: Let n = 22" implies log, n = 2™. So, we have

T(27") = 2.T(2¥)+2m
= S(m) = 25(m—-1)+2" and S(0)=1
= 25(m—2)+22™ 1+ 2™ =25(m—2)+2.2"
= 25(m—3)+32" = ...
= S(0)+m2" = 14+ m2™

—

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 33/34

Some Variants of Divide and Conquer Recurrence: Changing Variables

2.T(+v/n)+logyn, n>2

Recurrence Relation: T(n) = { 1 alo

Solution: Let n = 22" implies log, n = 2™. So, we have

T(27") = 2.T(2¥)+2m
= S(m) = 25(m—-1)+2" and S(0)=1
= 25(m—2)+22™ 1+ 2™ =25(m—2)+2.2"
= 25(m—3)+32" = ...
= S(0)+m2" = 14+ m2™

—

Therefore,

T(2¥)=S(m) =1+ m2"
= 1+ log, n.(log, log, n)

\'
—~
3
~
I

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 33/34

Some Variants of Divide and Conquer Recurrence: Changing Variables

2.T(+v/n)+logyn, n>2

Recurrence Relation: T(n) = { 1 alo

Solution: Let n = 22" implies log, n = 2™. So, we have

T(27") = 2.T(2¥)+2m
= S(m) = 25(m—-1)+2" and S(0)=1
= 25(m—2)+22™ 1+ 2™ =25(m—2)+2.2"
= 25(m—3)+32" = ...
= S(0)+m2" = 14+ m2™

—

Therefore,

T(2¥)=S(m) =1+ m2"
= 1+ log, n.(log, log, n)

T(n)—{ Vn.T(y/n)+n n>2

T(n)

Exercise: 1 n_»o

)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 33/34

Thank You!

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 34 /34

