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Formulation of Recurrence
Relations and their Solutions
depend on the Splitting and
Composing Mechanisms!

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 2 / 34



Example-1: Find Maximum among n Elements

Strategy-1.1: 1 Base Case. If n = 1, Return that element as maximum
2 Decomposition. Split the set of elements into two equal parts
3 Recursion. Select maximum element from both parts
4 Recomposition. Compare both maximum to find largest
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{
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Solution:

T3(n) = T3(2) + T3(n − 2) + 1 = T3(n − 2) + 2

= T3(n − 4) + 4 = T3(n − 6) + 6 = · · · · · ·

=

{

T3(2) + (n − 2) if n is even
T3(1) + (n − 1) if n is odd

= n − 1
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Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.1: 1 Base Case. If n = 1, Return that element as max & min
If n = 2, Compare between these to get max & min

2 Decomposition. Split the set of elements into two equal parts
3 Recursion. Select max & min elements from both parts
4 Recomposition. Compare both max to find largest

Compare both min to find smallest
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Solution: Assume the existence of k , such that n = 2k
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Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.2: 1 Base Case. If n = 1, Return that element as max & min
2 Decomposition. Split the set of elements into two parts

having 1 element and (n − 1) elements in respective parts
3 Recursion. Select max & min elements from both parts
4 Recomposition. Compare both max to find largest

Compare both min to find smallest
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3 Recursion. Select max & min elements from both parts
4 Recomposition. Compare both max to find largest

Compare both min to find smallest

Recurrence: Number of comparison required to find max & min elements,

T2(n) =

{

T2(1) + T2(n − 1) + 2, if n > 1
0, if n = 1

Solution:

T2(n) = T2(1) + T2(n − 1) + 2 = T2(n − 1) + 2

= T2(n − 2) + 4 = T2(n − 3) + 6 = · · · · · ·
= T2(1) + 2(n− 1) = 2n− 2
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Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.3: 1 Base Case. If n = 1, Return that element as max & min
If n = 2, Compare in between to get max & min

2 Decomposition. Split the set of elements into two parts
having 2 elements and (n − 2) elements in respective parts

3 Recursion. Select max & min elements from both parts
4 Recomposition. Compare both max to find largest

Compare both min to find smallest
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Strategy-2.3: 1 Base Case. If n = 1, Return that element as max & min
If n = 2, Compare in between to get max & min

2 Decomposition. Split the set of elements into two parts
having 2 elements and (n − 2) elements in respective parts

3 Recursion. Select max & min elements from both parts
4 Recomposition. Compare both max to find largest

Compare both min to find smallest

Recurrence: Number of comparison required to find max & min elements,

T3(n) =







T3(2) + T3(n − 2) + 2, if n > 2
1, if n = 2
0, if n = 1
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Example-2: Find Max. & Min. (both) among n Elements

Strategy-2.3: 1 Base Case. If n = 1, Return that element as max & min
If n = 2, Compare in between to get max & min

2 Decomposition. Split the set of elements into two parts
having 2 elements and (n − 2) elements in respective parts

3 Recursion. Select max & min elements from both parts
4 Recomposition. Compare both max to find largest

Compare both min to find smallest

Recurrence: Number of comparison required to find max & min elements,

T3(n) =







T3(2) + T3(n − 2) + 2, if n > 2
1, if n = 2
0, if n = 1

Solution: Let, 2m = n − 2 (if n is even) or 2m = n − 1 (if n is odd)

T3(n) = T3(2) + T3(n − 2) + 2 = T3(n − 2) + 3

= T3(n − 4) + 6 = T3(n − 6) + 9 = · · · · · ·

=

{

T3(2) + 3m = 1 + 3
2(n − 2) = 3

2 .n − 2, if n is even
T3(1) + 3m = 0 + 3

2 (n − 1) = 3
2 .n − 3

2 , if n is odd
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Example-3: Search an Element within n Elements

Strategy-3.1: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two equal parts
3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part
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Example-3: Search an Element within n Elements

Strategy-3.1: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two equal parts
3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T1(n) =

{

2.T1(
n
2 ), if n > 1
1, if n = 1
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Example-3: Search an Element within n Elements

Strategy-3.1: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two equal parts
3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T1(n) =

{

2.T1(
n
2 ), if n > 1
1, if n = 1

Solution: Assume the existence of k , such that n = 2k

T1(n) = 2.T1

(n

2

)

= 22.T1

( n

22

)

= · · · · · ·

= 2k .T1

( n

2k

)

= 2k = n
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Example-3: Search an Element within n Elements
Strategy-3.2: 1 Base Case. If n = 1, Compare and Return found / not-found

2 Decomposition. Split the set of elements into two unequal
(fractional) parts (say, 1

3
elements in left and 2

3
elements in right)

3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part
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Example-3: Search an Element within n Elements
Strategy-3.2: 1 Base Case. If n = 1, Compare and Return found / not-found

2 Decomposition. Split the set of elements into two unequal
(fractional) parts (say, 1

3
elements in left and 2

3
elements in right)

3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T3(n) =

{

T3(
n
3
) + T3(

2n
3
), if n > 1
1, if n = 1
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Example-3: Search an Element within n Elements
Strategy-3.2: 1 Base Case. If n = 1, Compare and Return found / not-found

2 Decomposition. Split the set of elements into two unequal
(fractional) parts (say, 1

3
elements in left and 2

3
elements in right)

3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T3(n) =

{

T3(
n
3
) + T3(

2n
3
), if n > 1
1, if n = 1

Solution: Using strong mathematical induction, we can prove that (assume
T3(k) = ak + b as induction hypothesis for all k < n), T3(1) = 1 (Base

Case satisfied for all a = 1− b) and T3(n) =
an+b
3

+ 2(an+b)
3

= an + b.
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Example-3: Search an Element within n Elements
Strategy-3.2: 1 Base Case. If n = 1, Compare and Return found / not-found

2 Decomposition. Split the set of elements into two unequal
(fractional) parts (say, 1

3
elements in left and 2

3
elements in right)

3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T3(n) =

{

T3(
n
3
) + T3(

2n
3
), if n > 1
1, if n = 1

Solution: Using strong mathematical induction, we can prove that (assume
T3(k) = ak + b as induction hypothesis for all k < n), T3(1) = 1 (Base

Case satisfied for all a = 1− b) and T3(n) =
an+b
3

+ 2(an+b)
3

= an + b.
It may be noted that,

T3(n) = T3

(n

3

)

+ T3

(2n

3

)

= T3

( n

32

)

+ T3

(2n

32

)

+ T3

(2n

32

)

+ T3

(4n

32

)

= T3

( n

32

)

+ 2T3

(2n

32

)

+ T3

(4n

32

)

=
(3

0

)

.T3

( n

33

)

+
(3

1

)

.T3

(2n

33

)

+
(3

2

)

.T3

(4n

33

)

+
(3

3

)

.T3

(8n

33

)

= · · · · · · =
k

∑

i=0

(k

i

)

.T
(2i .n

3k

)
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Example-3: Search an Element within n Elements

Strategy-3.3: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two parts

having 1 element and (n − 1) elements in respective parts
3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part
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Example-3: Search an Element within n Elements

Strategy-3.3: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two parts

having 1 element and (n − 1) elements in respective parts
3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T2(n) =

{

T2(1) + T2(n − 1), if n > 1
1, if n = 1
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Example-3: Search an Element within n Elements

Strategy-3.3: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two parts

having 1 element and (n − 1) elements in respective parts
3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T2(n) =

{

T2(1) + T2(n − 1), if n > 1
1, if n = 1

Solution: [ known as Linear Search ]

T2(n) = T2(1) + T2(n − 1) = T2(n − 1) + 1

= T2(n − 2) + 2 = T2(n − 3) + 3 = · · · · · ·
= T2(1) + (n − 1) = n
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Example-3: Search an Element within n Elements

Strategy-3.4: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two unequal

(constant-depth) parts (say, c elements in left and (n − c)
elements in right), for an arbitrary constant (c)

3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part
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Example-3: Search an Element within n Elements

Strategy-3.4: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two unequal

(constant-depth) parts (say, c elements in left and (n − c)
elements in right), for an arbitrary constant (c)

3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T4(n) =

{

T4(c) + T4(n − c), if n > 1
1, if n = 1
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Example-3: Search an Element within n Elements

Strategy-3.4: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two unequal

(constant-depth) parts (say, c elements in left and (n − c)
elements in right), for an arbitrary constant (c)

3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T4(n) =

{

T4(c) + T4(n − c), if n > 1
1, if n = 1

Solution: Assuming the choice of constant c (1 ≤ c ≤ n − 1) is equally likely, the

average number of probes, T4(n) =
(

1
n−1

)

.
n−1
∑

i=1
[T4(i) + T4(n − i)]

implies, (n − 1).T4(n) = 2.
∑n−1

i=1 T4(i)
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Example-3: Search an Element within n Elements

Strategy-3.4: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two unequal

(constant-depth) parts (say, c elements in left and (n − c)
elements in right), for an arbitrary constant (c)

3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T4(n) =

{

T4(c) + T4(n − c), if n > 1
1, if n = 1

Solution: Assuming the choice of constant c (1 ≤ c ≤ n − 1) is equally likely, the

average number of probes, T4(n) =
(

1
n−1

)

.
n−1
∑

i=1
[T4(i) + T4(n − i)]

implies, (n − 1).T4(n) = 2.
∑n−1

i=1 T4(i)

Similarly, (n − 2).T4(n − 1) = 2.
∑n−2

i=1 T4(i) [ Putting, n← n − 1 ]
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Example-3: Search an Element within n Elements

Strategy-3.4: 1 Base Case. If n = 1, Compare and Return found / not-found
2 Decomposition. Split the set of elements into two unequal

(constant-depth) parts (say, c elements in left and (n − c)
elements in right), for an arbitrary constant (c)

3 Recursion. Search the element from both parts
4 Recomposition. Return found if element found in any part

Recurrence: Number of comparison required to search/find an element,

T4(n) =

{

T4(c) + T4(n − c), if n > 1
1, if n = 1

Solution: Assuming the choice of constant c (1 ≤ c ≤ n − 1) is equally likely, the

average number of probes, T4(n) =
(

1
n−1

)

.
n−1
∑

i=1
[T4(i) + T4(n − i)]

implies, (n − 1).T4(n) = 2.
∑n−1

i=1 T4(i)

Similarly, (n − 2).T4(n − 1) = 2.
∑n−2

i=1 T4(i) [ Putting, n← n − 1 ]

Subtracting, we get, (n − 1).T4(n) − (n − 2).T4(n − 1) = 2.T4(n − 1)

⇒ T4(n) =
(

n
n−1

)

.T4(n − 1) =
(

n
n−1

)

.
(

n−1
n−2

)

.T4(n − 2) = · · · = n.T (1) = n
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Example-4: Binary Search from n (Sorted) Elements

Strategy-4.1: 1 Base Case. If n = 1, Probe and Return found / not-found
2 Decomposition. Probe at middle and Return found if matches

Otherwise, Split the set of elements into two equal parts
3 Recursion. If query-element is lesser (or greater) than the middle

element, Search the elements from left (or right) part
4 Recomposition. Return found if query-element found in any part
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Strategy-4.1: 1 Base Case. If n = 1, Probe and Return found / not-found
2 Decomposition. Probe at middle and Return found if matches

Otherwise, Split the set of elements into two equal parts
3 Recursion. If query-element is lesser (or greater) than the middle

element, Search the elements from left (or right) part
4 Recomposition. Return found if query-element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element,

T1(n) =

{

T1(
n
2
) + 1, if n > 1

1, if n = 1
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Example-4: Binary Search from n (Sorted) Elements

Strategy-4.1: 1 Base Case. If n = 1, Probe and Return found / not-found
2 Decomposition. Probe at middle and Return found if matches

Otherwise, Split the set of elements into two equal parts
3 Recursion. If query-element is lesser (or greater) than the middle

element, Search the elements from left (or right) part
4 Recomposition. Return found if query-element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element,

T1(n) =

{

T1(
n
2
) + 1, if n > 1

1, if n = 1

Solution: Assume the existence of k , such that n = 2k

T1(n) = T1

(n

2

)

+ 1 = T1

( n

22

)

+ 2 = T1

( n

23

)

+ 3

= · · · · · · = T1

( n

2k

)

+ k = 1 + k = 1 + log2 n
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Example-4: Binary Search from n (Sorted) Elements

Strategy-4.2: 1 Base Case. If n = 1, Probe and Return found / not-found
2 Decomposition. Probe at arbitrary (fractional) position (say, 1

3
rd)

and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e., 1

3

elements in left part and 2
3
elements in right part)

3 Recursion. If query-element is lesser (or greater) than the 1
3
rd

element, Search the elements from left (or right) part
4 Recomposition. Return found if query-element found in any part
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Example-4: Binary Search from n (Sorted) Elements

Strategy-4.2: 1 Base Case. If n = 1, Probe and Return found / not-found
2 Decomposition. Probe at arbitrary (fractional) position (say, 1

3
rd)

and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e., 1

3

elements in left part and 2
3
elements in right part)

3 Recursion. If query-element is lesser (or greater) than the 1
3
rd

element, Search the elements from left (or right) part
4 Recomposition. Return found if query-element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element,

T2(n) =

{

T2(
2n
3
) + 1, if n > 1

1, if n = 1
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Example-4: Binary Search from n (Sorted) Elements

Strategy-4.2: 1 Base Case. If n = 1, Probe and Return found / not-found
2 Decomposition. Probe at arbitrary (fractional) position (say, 1

3
rd)

and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e., 1

3

elements in left part and 2
3
elements in right part)

3 Recursion. If query-element is lesser (or greater) than the 1
3
rd

element, Search the elements from left (or right) part
4 Recomposition. Return found if query-element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element,

T2(n) =

{

T2(
2n
3
) + 1, if n > 1

1, if n = 1

Solution: Assume the existence of k , such that n =
(

3
2

)k

T2(n) = T2

(2n

3

)

+ 1 = T2

( n

( 3
2
)2

)

+ 2 = T2

( n

( 3
2
)3

)

+ 3

= · · · · · · = T2

( n

( 3
2
)k

)

+ k = 1 + k = 1 + log 3
2
n
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Example-4: Binary Search from n (Sorted) Elements

Strategy-4.2: 1 Base Case. If n = 1, Probe and Return found / not-found
2 Decomposition. Probe at arbitrary (fractional) position (say, 1

3
rd)

and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e., 1

3

elements in left part and 2
3
elements in right part)

3 Recursion. If query-element is lesser (or greater) than the 1
3
rd

element, Search the elements from left (or right) part
4 Recomposition. Return found if query-element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element,

T2(n) =

{

T2(
2n
3
) + 1, if n > 1

1, if n = 1

Solution: Assume the existence of k , such that n =
(

3
2

)k

T2(n) = T2

(2n

3

)

+ 1 = T2

( n

( 3
2
)2

)

+ 2 = T2

( n

( 3
2
)3

)

+ 3

= · · · · · · = T2

( n

( 3
2
)k

)

+ k = 1 + k = 1 + log 3
2
n

Generalized Form: For αn and (1− α)n splits ( 1
2
< α < 1), T2(n) = 1 + log 1

α
n
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Example-4: Binary Search from n (Sorted) Elements
Strategy-4.3: 1 Base Case. If n = 1, Probe and Return found / not-found

2 Decomposition. Probe at two arbitrary (fractional) positions (say,
1
3
rd and 2

3
rd) and Return found if matches

Otherwise, Split the set of elements into three equal parts (i.e., 1
3

elements in each of left, middle and right parts)
3 Recursion. If query-element is lesser than 1

3
rd (or greater than

2
3
rd) element, Search the element from left (or right) part.

Otherwise, search the element from middle part.
4 Recomposition. Return found if element found in any part
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Example-4: Binary Search from n (Sorted) Elements
Strategy-4.3: 1 Base Case. If n = 1, Probe and Return found / not-found

2 Decomposition. Probe at two arbitrary (fractional) positions (say,
1
3
rd and 2

3
rd) and Return found if matches

Otherwise, Split the set of elements into three equal parts (i.e., 1
3

elements in each of left, middle and right parts)
3 Recursion. If query-element is lesser than 1

3
rd (or greater than

2
3
rd) element, Search the element from left (or right) part.

Otherwise, search the element from middle part.
4 Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element,

T3(n) =

{

T3(
n
3
) + 2, if n > 1

1, if n = 1
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Example-4: Binary Search from n (Sorted) Elements
Strategy-4.3: 1 Base Case. If n = 1, Probe and Return found / not-found

2 Decomposition. Probe at two arbitrary (fractional) positions (say,
1
3
rd and 2

3
rd) and Return found if matches

Otherwise, Split the set of elements into three equal parts (i.e., 1
3

elements in each of left, middle and right parts)
3 Recursion. If query-element is lesser than 1

3
rd (or greater than

2
3
rd) element, Search the element from left (or right) part.

Otherwise, search the element from middle part.
4 Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element,

T3(n) =

{

T3(
n
3
) + 2, if n > 1

1, if n = 1

Solution: Assume the existence of k , such that n = 3k

T3(n) = T3

(n

3

)

+ 2 = T3

( n

32

)

+ 4 = T3

( n

33

)

+ 6

= · · · · · · = T3

( n

3k

)

+ 2.k = 1 + 2.k = 1 + 2 log3 n
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Example-4: Binary Search from n (Sorted) Elements
Strategy-4.3: 1 Base Case. If n = 1, Probe and Return found / not-found

2 Decomposition. Probe at two arbitrary (fractional) positions (say,
1
3
rd and 2

3
rd) and Return found if matches

Otherwise, Split the set of elements into three equal parts (i.e., 1
3

elements in each of left, middle and right parts)
3 Recursion. If query-element is lesser than 1

3
rd (or greater than

2
3
rd) element, Search the element from left (or right) part.

Otherwise, search the element from middle part.
4 Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element,

T3(n) =

{

T3(
n
3
) + 2, if n > 1

1, if n = 1

Solution: Assume the existence of k , such that n = 3k

T3(n) = T3

(n

3

)

+ 2 = T3

( n

32

)

+ 4 = T3

( n

33

)

+ 6

= · · · · · · = T3

( n

3k

)

+ 2.k = 1 + 2.k = 1 + 2 log3 n

Generalized Form: For β equal-sized splits (2 ≤ β ≤ n), T2(n) = 1+ (β− 1) logβ n
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Example-4: Binary Search from n (Sorted) Elements
Strategy-4.4: 1 Base Case. If n = 1, Probe and Return found / not-found

2 Decomposition. Probe at arbitrary (constant-depth) positions (say,
a constant c th element) and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e.,
(c − 1) elements in left part and (n − c) elements in right part)

3 Recursion. If query-element is lesser (or greater) than the c th

element, Search the element from left (or right) part
4 Recomposition. Return found if element found in any part
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Strategy-4.4: 1 Base Case. If n = 1, Probe and Return found / not-found

2 Decomposition. Probe at arbitrary (constant-depth) positions (say,
a constant c th element) and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e.,
(c − 1) elements in left part and (n − c) elements in right part)

3 Recursion. If query-element is lesser (or greater) than the c th

element, Search the element from left (or right) part
4 Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element (let c < n

2
),

T4(n) =

{

T4(n − c) + 1, if n > c
n, if 1 ≤ n ≤ c
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3 Recursion. If query-element is lesser (or greater) than the c th

element, Search the element from left (or right) part
4 Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element (let c < n

2
),

T4(n) =

{

T4(n − c) + 1, if n > c
n, if 1 ≤ n ≤ c

Solution: T4(n) = T4(n−c)+1 = T4(n−2c)+2 = · · · ≤ T4(c)+
n−c
c

=
(

1
c

)

.n + (c − 1)

T4(n) = T4(n− c)+1 = T4(n−2c)+2 = · · · ≥ T4(1)+
n−1
c

=
(

1
c

)

.n + c−1
c
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a constant c th element) and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e.,
(c − 1) elements in left part and (n − c) elements in right part)

3 Recursion. If query-element is lesser (or greater) than the c th

element, Search the element from left (or right) part
4 Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element (let c < n

2
),

T4(n) =

{

T4(n − c) + 1, if n > c
n, if 1 ≤ n ≤ c

Solution: T4(n) = T4(n−c)+1 = T4(n−2c)+2 = · · · ≤ T4(c)+
n−c
c

=
(

1
c

)

.n + (c − 1)

T4(n) = T4(n− c)+1 = T4(n−2c)+2 = · · · ≥ T4(1)+
n−1
c

=
(

1
c

)

.n + c−1
c

[Caution] It can be as bad as linear search (if c = 1 is chosen)
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Strategy-4.4: 1 Base Case. If n = 1, Probe and Return found / not-found

2 Decomposition. Probe at arbitrary (constant-depth) positions (say,
a constant c th element) and Return found if matches
Otherwise, Split the set of elements into two unequal parts (i.e.,
(c − 1) elements in left part and (n − c) elements in right part)

3 Recursion. If query-element is lesser (or greater) than the c th

element, Search the element from left (or right) part
4 Recomposition. Return found if element found in any part

Recurrence: Number of probes (assume each probe can decide whether <,=, >)
required to search/find an element (let c < n

2
),

T4(n) =

{

T4(n − c) + 1, if n > c
n, if 1 ≤ n ≤ c

Solution: T4(n) = T4(n−c)+1 = T4(n−2c)+2 = · · · ≤ T4(c)+
n−c
c

=
(

1
c

)

.n + (c − 1)

T4(n) = T4(n− c)+1 = T4(n−2c)+2 = · · · ≥ T4(1)+
n−1
c

=
(

1
c

)

.n + c−1
c

[Caution] It can be as bad as linear search (if c = 1 is chosen)

Insights from Recurrence Relations: Why Binary Search needs to Split at Middle?

Since, log2 n ≤ log 3
2
n [ i .e. log 1

α
n ] and log2 n ≤ 2. log3 n [ i .e. (β − 1) logβ n ],

Therefore, T1(n) ≤ T2(n) and T1(n) ≤ T3(n). Also, T1(n) ≤ T4(n)
(implying lowest number of probes when splitting at middle position)
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Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.1A: 1 Base Case. If n = 1, Return element
2 Decomposition. Find max element and S ′ ← S − {max}
3 Recursion. Sort S ′ with (n − 1) elements
4 Recomposition. Return max followed by sorted elements of S ′
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Strategy-5.1A: 1 Base Case. If n = 1, Return element
2 Decomposition. Find max element and S ′ ← S − {max}
3 Recursion. Sort S ′ with (n − 1) elements
4 Recomposition. Return max followed by sorted elements of S ′

Recurrence: Number of element comparisons done for sorting, [ Selection Sort ]

T (n) =

{

T (n − 1) + (n − 1), if n > 1
0, n = 1
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3 Recursion. Sort S ′ with (n − 1) elements
4 Recomposition. Return max followed by sorted elements of S ′

Recurrence: Number of element comparisons done for sorting, [ Selection Sort ]

T (n) =

{

T (n − 1) + (n − 1), if n > 1
0, n = 1

Solution: T (n) = T (n − 1) + (n − 1) = T (n − 2) + (n − 2) + (n − 1)

= · · · = T (1) + 1 + 2 + · · ·+ (n − 1) = 1
2
.n2 − 1

2
.n
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Solution: T (n) = T (n − 1) + (n − 1) = T (n − 2) + (n − 2) + (n − 1)

= · · · = T (1) + 1 + 2 + · · ·+ (n − 1) = 1
2
.n2 − 1

2
.n

Strategy-5.1B: 1 Base Case. If n = 2 Return max followed by min elements
2 Decomposition. Find 〈max, min〉 elements and S′ ← S − {max, min}
3 Recursion. Sort S ′ with (n − 2) elements
4 Recomposition. Return 〈max, sorted elements of S ′, min〉 in order
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Strategy-5.1B: 1 Base Case. If n = 2 Return max followed by min elements
2 Decomposition. Find 〈max, min〉 elements and S′ ← S − {max, min}
3 Recursion. Sort S ′ with (n − 2) elements
4 Recomposition. Return 〈max, sorted elements of S ′, min〉 in order

Recurrence: Number of element comparisons done for sorting (assuming n as even),

T (n) =

{

T (n − 2) + ( 3
2
.n − 1), if n > 2

1, n = 2
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= · · · = T (1) + 1 + 2 + · · ·+ (n − 1) = 1
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Strategy-5.1B: 1 Base Case. If n = 2 Return max followed by min elements
2 Decomposition. Find 〈max, min〉 elements and S′ ← S − {max, min}
3 Recursion. Sort S ′ with (n − 2) elements
4 Recomposition. Return 〈max, sorted elements of S ′, min〉 in order

Recurrence: Number of element comparisons done for sorting (assuming n as even),

T (n) =

{

T (n − 2) + ( 3
2
.n − 1), if n > 2

1, n = 2

Solution: T (n) = T (n − 2) + ( 3
2
.n − 1) = T (n − 4) + 3

2
.[(n − 2) + n]− 2 = · · ·

= T (2) + 3
2
.[4 + 6 + · · ·+ (n − 1)] − n−2

2
= 3

8
.n2 − 1

2
.n − 11

8
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Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.2: 1 Base Case. If n = 1, Return element
2 Decomposition. Split S into two non-empty sets, S1 and S2
3 Recursion. Sort S1 and S2 set elements
4 Recomposition. Combine sorted elements of S1 with S2
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Strategy-5.2: 1 Base Case. If n = 1, Return element
2 Decomposition. Split S into two non-empty sets, S1 and S2
3 Recursion. Sort S1 and S2 set elements
4 Recomposition. Combine sorted elements of S1 with S2

Combine-Step: 1 If S1 (or S2) is empty, Return elements of S2 (or S1)
2 Compare first elements, a1 ∈ S1 with b1 ∈ S2
3 If a1 ≥ b1, Return a1 followed by combined sorted elements of
S1 − {a1} with S2. Otherwise, Return b1 followed by combined
sorted elements of S1 with S2 − {b1}.
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3 Recursion. Sort S1 and S2 set elements
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Combine-Step: 1 If S1 (or S2) is empty, Return elements of S2 (or S1)
2 Compare first elements, a1 ∈ S1 with b1 ∈ S2
3 If a1 ≥ b1, Return a1 followed by combined sorted elements of
S1 − {a1} with S2. Otherwise, Return b1 followed by combined
sorted elements of S1 with S2 − {b1}.

Recurrence: Number of comparisons done for combining, [ Merge ]

TC (j , n − j) =

{

MAX[TC (j − 1, n − j),TC (j , n − j − 1)] + 1, if 1 ≤ j < n

0, otherwise
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Strategy-5.2: 1 Base Case. If n = 1, Return element
2 Decomposition. Split S into two non-empty sets, S1 and S2
3 Recursion. Sort S1 and S2 set elements
4 Recomposition. Combine sorted elements of S1 with S2

Combine-Step: 1 If S1 (or S2) is empty, Return elements of S2 (or S1)
2 Compare first elements, a1 ∈ S1 with b1 ∈ S2
3 If a1 ≥ b1, Return a1 followed by combined sorted elements of
S1 − {a1} with S2. Otherwise, Return b1 followed by combined
sorted elements of S1 with S2 − {b1}.

Recurrence: Number of comparisons done for combining, [ Merge ]

TC (j , n − j) =

{

MAX[TC (j − 1, n − j),TC (j , n − j − 1)] + 1, if 1 ≤ j < n

0, otherwise

Number of comparisons done for overall sorting, [ Merge-Sort ]

[ Arbitrary Split ] T (n) =

{

T (i) + T (n − i) + TC (i , n − i), if n > 1
0, if n = 1

[ Middle Split ] T (n) =

{

T
(

n
2

)

+ T
(

n
2

)

+ TC

(

n
2
, n
2

)

, if n > 1
0, if n = 1
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Example-5: Sort n-element Set S (in Descending Order)

Strategy-5.3: 1 Base Case. If n = 1, Return element
2 Decomposition. Choose a pivot element p ∈ S . Partition S into

two non-empty sets, S1 = {a | a ≥ p} and S2 = {a | a < p}
3 Recursion. Sort S1 and S2 set elements
4 Recomposition. Return sorted elements of S1 followed by S2
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Strategy-5.3: 1 Base Case. If n = 1, Return element
2 Decomposition. Choose a pivot element p ∈ S . Partition S into

two non-empty sets, S1 = {a | a ≥ p} and S2 = {a | a < p}
3 Recursion. Sort S1 and S2 set elements
4 Recomposition. Return sorted elements of S1 followed by S2

Partition-Step: Linear scan elements of S and put into S1 and S2 sets.
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Strategy-5.3: 1 Base Case. If n = 1, Return element
2 Decomposition. Choose a pivot element p ∈ S . Partition S into

two non-empty sets, S1 = {a | a ≥ p} and S2 = {a | a < p}
3 Recursion. Sort S1 and S2 set elements
4 Recomposition. Return sorted elements of S1 followed by S2

Partition-Step: Linear scan elements of S and put into S1 and S2 sets.

Recurrence: Number of comparisons done for partitioning, [ Partition ]

TP (n) =

{

TP (1) + TP(n − 1), if n > 1
1, if n = 1

⇒ TP (n) = n
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Strategy-5.3: 1 Base Case. If n = 1, Return element
2 Decomposition. Choose a pivot element p ∈ S . Partition S into

two non-empty sets, S1 = {a | a ≥ p} and S2 = {a | a < p}
3 Recursion. Sort S1 and S2 set elements
4 Recomposition. Return sorted elements of S1 followed by S2

Partition-Step: Linear scan elements of S and put into S1 and S2 sets.

Recurrence: Number of comparisons done for partitioning, [ Partition ]

TP (n) =

{

TP (1) + TP(n − 1), if n > 1
1, if n = 1

⇒ TP (n) = n

Number of comparisons done for overall sorting, [ Quick-Sort ]

[ Arbitrary Split ] T (n) =

{

T (i) + T (n − i) + TP(n), if n > 1
0, if n = 1

[ Middle Split ] T (n) =

{

T
(

n
2

)

+ T
(

n
2

)

+ TP(n), if n > 1
0, if n = 1
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General Form of (Equal) Divide and Conquer Recerrence
Recurrence Relation: Let a ≥ 1, b > 1 and c be constants, and f (n) be a function,

T (n) =

{

a.T
(

n
b

)

+ f (n) n = bi > 1
c, n = 1
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General Form of (Equal) Divide and Conquer Recerrence
Recurrence Relation: Let a ≥ 1, b > 1 and c be constants, and f (n) be a function,

T (n) =

{

a.T
(

n
b

)

+ f (n) n = bi > 1
c, n = 1

Recursion Tree: Step-wise unfolded form of computations from T (n) = a.T
(

n
b

)

+ f (n)
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General Form of (Equal) Divide and Conquer Recerrence

Solution: Unfolding the computation steps as shown in the recursion tree, we get,

T (n) = a.T
(n

b

)

+ f (n) = a2.T
( n

b2

)

+ a.f
(n

b

)

+ f (n) = · · · · · ·

= ai .T
( n

bi

)

+

i−1
∑

j=0

aj .f
( n

bj

)

= c.nlogb a +

logb n−1
∑

j=0

aj .f
( n

bj

)

[as n = bi ]
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General Form of (Equal) Divide and Conquer Recerrence

Solution: Unfolding the computation steps as shown in the recursion tree, we get,

T (n) = a.T
(n

b

)

+ f (n) = a2.T
( n

b2

)

+ a.f
(n

b

)

+ f (n) = · · · · · ·

= ai .T
( n

bi

)

+

i−1
∑

j=0

aj .f
( n

bj

)

= c.nlogb a +

logb n−1
∑

j=0

aj .f
( n

bj

)

[as n = bi ]

Case-1: If f (n) ≤ d .nlogb a−ǫ for some constant d , ǫ > 0, then

g(n) =

logb n−1
∑

j=0

aj .f
( n

bj

)

≤ d.

logb n−1
∑

j=0

aj .
( n

bj

)logb a−ǫ

= d.nlogb a−ǫ.

logb n−1
∑

j=0

( a.bǫ

blogb a

)j
= d.nlogb a−ǫ.

logb n−1
∑

j=0

(bǫ)j

= d.nlogb a−ǫ.
(bǫ. logb n − 1

bǫ − 1

)

= d.nlogb a−ǫ.
(nǫ − 1

bǫ − 1

)

≤ D.nlogb a [for some constant D > 0]
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General Form of (Equal) Divide and Conquer Recerrence

Solution: Unfolding the computation steps as shown in the recursion tree, we get,

T (n) = a.T
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b

)

+ f (n) = a2.T
( n

b2

)

+ a.f
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b
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+ f (n) = · · · · · ·

= ai .T
( n
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+

i−1
∑

j=0

aj .f
( n

bj

)

= c.nlogb a +

logb n−1
∑

j=0

aj .f
( n

bj

)

[as n = bi ]

Case-1: If f (n) ≤ d .nlogb a−ǫ for some constant d , ǫ > 0, then

g(n) =

logb n−1
∑

j=0

aj .f
( n

bj

)

≤ d.

logb n−1
∑

j=0

aj .
( n

bj

)logb a−ǫ

= d.nlogb a−ǫ.

logb n−1
∑

j=0

( a.bǫ

blogb a

)j
= d.nlogb a−ǫ.

logb n−1
∑

j=0

(bǫ)j

= d.nlogb a−ǫ.
(bǫ. logb n − 1

bǫ − 1

)

= d.nlogb a−ǫ.
(nǫ − 1

bǫ − 1

)

≤ D.nlogb a [for some constant D > 0]

So, T (n) ≤ c.nlogb a +D .nlogb a ≤ C .nlogb a [for some constant C > 0]
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General Form of (Equal) Divide and Conquer Recerrence

Case-2: We had, T (n) = c.nlogb a +
logb n−1
∑

j=0

aj .f
(

n

bj

)

= c.nlogb a + g(n)

If d1.n
logb a ≤ f (n) ≤ d2.n

logb a for some constant d1, d2 > 0, then
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Case-2: We had, T (n) = c.nlogb a +
logb n−1
∑

j=0

aj .f
(

n

bj

)

= c.nlogb a + g(n)

If d1.n
logb a ≤ f (n) ≤ d2.n

logb a for some constant d1, d2 > 0, then

g(n) =

logb n−1
∑

j=0

aj .f
( n

bj

)

≤ d2.

logb n−1
∑

j=0

aj .
( n

bj

)logb a

= d2.n
logb a.

logb n−1
∑

j=0

( a

blogb a

)j
= d2.n

logb a.

logb n−1
∑

j=0

1

= d2.n
logb a. logb n ≤ D2.n

logb a. log2 n [for some constant D2 > 0]
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General Form of (Equal) Divide and Conquer Recerrence

Case-2: We had, T (n) = c.nlogb a +
logb n−1
∑

j=0

aj .f
(

n

bj

)

= c.nlogb a + g(n)

If d1.n
logb a ≤ f (n) ≤ d2.n

logb a for some constant d1, d2 > 0, then

g(n) =

logb n−1
∑

j=0

aj .f
( n

bj

)

≤ d2.

logb n−1
∑

j=0

aj .
( n

bj

)logb a

= d2.n
logb a.

logb n−1
∑

j=0

( a

blogb a

)j
= d2.n

logb a.

logb n−1
∑

j=0

1

= d2.n
logb a. logb n ≤ D2.n

logb a. log2 n [for some constant D2 > 0]

Similarly, g(n) ≥ D1.n
logb a. log2 n [for some constant D1 > 0]
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General Form of (Equal) Divide and Conquer Recerrence

Case-2: We had, T (n) = c.nlogb a +
logb n−1
∑

j=0

aj .f
(

n

bj

)

= c.nlogb a + g(n)

If d1.n
logb a ≤ f (n) ≤ d2.n

logb a for some constant d1, d2 > 0, then

g(n) =

logb n−1
∑

j=0

aj .f
( n

bj

)

≤ d2.

logb n−1
∑

j=0

aj .
( n

bj

)logb a

= d2.n
logb a.

logb n−1
∑

j=0

( a

blogb a

)j
= d2.n

logb a.

logb n−1
∑

j=0

1

= d2.n
logb a. logb n ≤ D2.n

logb a. log2 n [for some constant D2 > 0]

Similarly, g(n) ≥ D1.n
logb a. log2 n [for some constant D1 > 0]

Therefore,

c.nlogb a + D1.n
logb a

. log2 n ≤ T (n) ≤ c.nlogb a + D2.n
logb a

. log2 n

⇒ C1.n
logb a

. log2 n ≤ T (n) ≤ C2.n
logb a

. log2 n

[for some constants C1,C2 > 0]
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General Form of (Equal) Divide and Conquer Recerrence

Case-3: We had, T (n) = c.nlogb a +
logb n−1
∑

j=0

aj .f
(

n

bj

)

= c.nlogb a + g(n)

If f (n) ≥ d .nlogb a+ǫ for some constant d , ǫ > 0, and a.f ( n
b
) ≤ k .f (n) for

some constant k < 1 and for all sufficiently large n ≥ b, then

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 24 / 34



General Form of (Equal) Divide and Conquer Recerrence

Case-3: We had, T (n) = c.nlogb a +
logb n−1
∑

j=0

aj .f
(

n

bj

)

= c.nlogb a + g(n)

If f (n) ≥ d .nlogb a+ǫ for some constant d , ǫ > 0, and a.f ( n
b
) ≤ k .f (n) for

some constant k < 1 and for all sufficiently large n ≥ b, then

a.f
(n

b

)

≤ k.f (n)⇒ f
(n

b

)

≤
k

a
.f (n)⇒ f

( n

b2

)

≤
k

a
.f
(n

b

)

≤
(k

a

)2
.f (n)

Iterating in this manner, we get, f ( n

bj
) ≤ ( k

a
)j .f (n). Hence,
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Iterating in this manner, we get, f ( n
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) ≤ ( k

a
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g(n) =
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∑

j=0

aj .f
( n
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)

≤

logb n−1
∑

j=0

aj .(
k

a
)j .f (n) =

logb n−1
∑

j=0

k j .f (n)

≤ f (n).
∞
∑

j=0

k j =
( 1

1− k

)

.f (n)
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logb n−1
∑
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aj .(
k

a
)j .f (n) =

logb n−1
∑

j=0

k j .f (n)

≤ f (n).
∞
∑

j=0

k j =
( 1

1− k

)

.f (n)

Since k < 1 is a constant, for exact powers of b we can conclude that,

D1.f (n) ≤ g(n) ≤ D2.f (n) [for some constants D1,D2 > 0]
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≤ f (n).
∞
∑

j=0

k j =
( 1

1− k

)

.f (n)

Since k < 1 is a constant, for exact powers of b we can conclude that,

D1.f (n) ≤ g(n) ≤ D2.f (n) [for some constants D1,D2 > 0]

Therefore, [for some constants C1,C2 > 0]

c.nlogb a + D1.f (n) ≤ T (n) ≤ c.nlogb a + D2.f (n)

⇒ C1.f (n) ≤ T (n) ≤ C2.f (n) [with f (n) ≥ d .nlogb a+ǫ]
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Master Theorem

Let a ≥ 1, b > 1 and c be constants, and f (n) be a non-negative function defined on
exact powers of b. We define T (n) on exact powers of b by the following recurrence,

T (n) =

{

a.T
(

n
b

)

+ f (n) n = bi > 1
c, n = 1

[ where i ∈ Z
+ ]

Then, T (n) follows the following inequalities:
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Master Theorem

Let a ≥ 1, b > 1 and c be constants, and f (n) be a non-negative function defined on
exact powers of b. We define T (n) on exact powers of b by the following recurrence,

T (n) =

{

a.T
(

n
b

)

+ f (n) n = bi > 1
c, n = 1

[ where i ∈ Z
+ ]

Then, T (n) follows the following inequalities:

1 If f (n) ≤ d .nlogb a−ǫ for some constant d , ǫ > 0, then T (n) ≤ C .nlogb a, for some
constant C > 0.
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[ where i ∈ Z
+ ]

Then, T (n) follows the following inequalities:

1 If f (n) ≤ d .nlogb a−ǫ for some constant d , ǫ > 0, then T (n) ≤ C .nlogb a, for some
constant C > 0.

If f (n) = O(nlogb a−ǫ) for some constant ǫ > 0, then T (n) = O(nlogb a)
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logb a ≤ f (n) ≤ d2.n

logb a for some constant d1, d2, ǫ > 0, then
C1.n

logb a. log2 n ≤ T (n) ≤ C2.n
logb a. log2 n, for some constant C1,C2 > 0.
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logb a ≤ f (n) ≤ d2.n

logb a for some constant d1, d2, ǫ > 0, then
C1.n

logb a. log2 n ≤ T (n) ≤ C2.n
logb a. log2 n, for some constant C1,C2 > 0.

If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a. log2 n)
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logb a. log2 n, for some constant C1,C2 > 0.

If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a. log2 n)

3 If f (n) ≥ d .nlogb a+ǫ for some constant d , ǫ > 0, and a.f ( n
b
) ≤ k .f (n) for some

constant k < 1 and for all sufficiently large n ≥ b, then
C1.f (n) ≤ T (n) ≤ C2.f (n), for some constant C1,C2 > 0.
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3 If f (n) ≥ d .nlogb a+ǫ for some constant d , ǫ > 0, and a.f ( n
b
) ≤ k .f (n) for some

constant k < 1 and for all sufficiently large n ≥ b, then
C1.f (n) ≤ T (n) ≤ C2.f (n), for some constant C1,C2 > 0.

If f (n) = Ω(nlogb a+ǫ) for some constant ǫ > 0, and a.f ( n
b
) ≤ k .f (n) for some

constant k < 1 and for all sufficiently large n ≥ b, then T (n) = Θ(f (n))
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Example Applications of Master Theorem

1 In the recurrence relation, T (n) =

{

9T ( n2 ) + 2n3, n > 1
1, n = 1

,
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Example Applications of Master Theorem

1 In the recurrence relation, T (n) =

{

9T ( n2 ) + 2n3, n > 1
1, n = 1

,

we find that a = 9, b = 2, f (n) = 2n3. Now, f (n) = 2n3 ≤ d .nlog2 9−ǫ for
some d = 3, ǫ > 0. [Case-1]

Hence, T (n) ≤ C .nlog2 9 ⇒ T (n) = O(nlog2 9)
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Hence, T (n) ≤ C .nlog2 9 ⇒ T (n) = O(nlog2 9)

2 In the recurrence relation, T (n) =

{

8T ( n2 ) + 2n3, n > 1
1, n = 1

,

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 26 / 34



Example Applications of Master Theorem

1 In the recurrence relation, T (n) =

{

9T ( n2 ) + 2n3, n > 1
1, n = 1

,

we find that a = 9, b = 2, f (n) = 2n3. Now, f (n) = 2n3 ≤ d .nlog2 9−ǫ for
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Hence, T (n) ≤ C .nlog2 9 ⇒ T (n) = O(nlog2 9)

2 In the recurrence relation, T (n) =

{

8T ( n2 ) + 2n3, n > 1
1, n = 1

,

we find that a = 8, b = 2, f (n) = 2n3. Now, d1.n
log2 8 ≤ 2.n3 = f (n) and

f (n) = 2n3 ≤ d2.n
log2 8 for some d1 = 1, d2 = 3, ǫ > 0. [Case-2]

Hence, C1.n
3. log2 n ≤ T (n) ≤ C2.n

3. log2 n ⇒ T (n) = Θ(n3. log2 n)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 26 / 34



Example Applications of Master Theorem

1 In the recurrence relation, T (n) =

{

9T ( n2 ) + 2n3, n > 1
1, n = 1

,

we find that a = 9, b = 2, f (n) = 2n3. Now, f (n) = 2n3 ≤ d .nlog2 9−ǫ for
some d = 3, ǫ > 0. [Case-1]

Hence, T (n) ≤ C .nlog2 9 ⇒ T (n) = O(nlog2 9)

2 In the recurrence relation, T (n) =

{

8T ( n2 ) + 2n3, n > 1
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,
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log2 8 ≤ 2.n3 = f (n) and

f (n) = 2n3 ≤ d2.n
log2 8 for some d1 = 1, d2 = 3, ǫ > 0. [Case-2]

Hence, C1.n
3. log2 n ≤ T (n) ≤ C2.n

3. log2 n ⇒ T (n) = Θ(n3. log2 n)

3 In the recurrence relation, T (n) =

{

7T ( n2 ) + 2n3, n > 1
1, n = 1

,
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Hence, C1.n
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3. log2 n ⇒ T (n) = Θ(n3. log2 n)

3 In the recurrence relation, T (n) =

{

7T ( n2 ) + 2n3, n > 1
1, n = 1

,

we find that a = 7, b = 2, f (n) = 2n3. Now, f (n) = 2.n3 ≥ d .nlog2 7+ǫ for
any d , ǫ > 0, and 7.f ( n2 ) =

7
4 .n

3 ≤ k .2n3 for k < 1. [Case-3]

Hence, C1.2n
3 ≤ T (n) ≤ C2.2n

3 ⇒ T (n) = Θ(n3)

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 26 / 34



General Form of (Unequal) Divide and Conquer Recurrence

Recurrence Relation: For all i (i ∈ Z
+), let ai , αi , k , c be constants where ai , k ∈ Z

+

and 0 < αi < 1; and f (n) be a function.

We define T (n) by the following recurrence,

T (n) =

{

a1.T (α1.n) + a2.T (α2.n) + · · ·+ ak .T (αk .n) + f (n) n > 1
c, n = 1
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+), let ai , αi , k , c be constants where ai , k ∈ Z

+

and 0 < αi < 1; and f (n) be a function.

We define T (n) by the following recurrence,

T (n) =

{

a1.T (α1.n) + a2.T (α2.n) + · · ·+ ak .T (αk .n) + f (n) n > 1
c, n = 1

Let us solve for a simpler variant of this recurrence defined as,

T (n) =

{

a.T (α.n) + b.T (β.n) + f (n) n > 1
c, n = 1

[ a,b, c are constants ]
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+), let ai , αi , k , c be constants where ai , k ∈ Z

+

and 0 < αi < 1; and f (n) be a function.
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{

a1.T (α1.n) + a2.T (α2.n) + · · ·+ ak .T (αk .n) + f (n) n > 1
c, n = 1

Let us solve for a simpler variant of this recurrence defined as,

T (n) =

{

a.T (α.n) + b.T (β.n) + f (n) n > 1
c, n = 1

[ a,b, c are constants ]

Solution: By expansion we get,

T (n) = a.T (α.n) + b.T (β.n) + f (n)

= a
2
.T (α

2
.n) + 2.a.b.T (α.β.n) + b

2
.T (β

2
.n) + f (n) +

[

a.f (α.n) + b.f (β.n)
]
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3

1
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.a
2
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2
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3

2
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2
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2
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3
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3
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General Form of (Unequal) Divide and Conquer Recurrence

Recurrence Relation: For all i (i ∈ Z
+), let ai , αi , k , c be constants where ai , k ∈ Z

+

and 0 < αi < 1; and f (n) be a function.

We define T (n) by the following recurrence,

T (n) =

{

a1.T (α1.n) + a2.T (α2.n) + · · ·+ ak .T (αk .n) + f (n) n > 1
c, n = 1

Let us solve for a simpler variant of this recurrence defined as,

T (n) =

{

a.T (α.n) + b.T (β.n) + f (n) n > 1
c, n = 1

[ a,b, c are constants ]

Solution: By expansion we get,

T (n) = a.T (α.n) + b.T (β.n) + f (n)

= a
2
.T (α

2
.n) + 2.a.b.T (α.β.n) + b

2
.T (β

2
.n) + f (n) +

[

a.f (α.n) + b.f (β.n)
]

=

(

3

0

)

.a
3
.T (α

3
.n) +

(

3

1

)

.a
2
.b.T (α

2
.β.n) +

(

3

2

)

.a.b
2
T (α.β

2
.n) +

(

3

3

)

.b
3
.T (β

3
.n) +

[

(

0

0

)

.f (n)
]

+
[

(

1

0

)

.a.f (α.n) +

(

1

1

)

.b.f (β.n)
]

+
[

(

2

0

)

.a
2
.f (α

2
.n) +

(

2

1

)

.a.b.f (α.β.n) +

(

2

2

)

.a.b
2
f (β

2
.n)

]

= · · · · · · =

L−1
∑

i=0

[

(

L + 1

i

)

.a
L+1−i

.b
i
T
(

α
L+1−i

.β
i
.n
)

+
i

∑

j=0

(

i

j

)

.a
i−j

.b
j
f (α

i−j
.β

j
.n)

]
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General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T (n) =
L−1
∑

i=0

[ (

L+1
i

)

.aL+1−i .biT
(

αL+1−i .β i .n
)

+
i
∑

j=0

(

i
j

)

.ai−j .bj f (αi−j .βj .n)
]
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General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T (n) =
L−1
∑

i=0

[ (

L+1
i

)

.aL+1−i .biT
(

αL+1−i .β i .n
)

+
i
∑

j=0

(

i
j

)

.ai−j .bj f (αi−j .βj .n)
]

Without loss of generality, let us assume that, 0 < β ≤ α < 1 and
αm1 .n = 1, βm2 .n = 1 (Obviously, m1 ≥ m2). Note that,
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General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T (n) =
L−1
∑

i=0

[ (

L+1
i

)

.aL+1−i .biT
(

αL+1−i .β i .n
)

+
i
∑

j=0

(

i
j

)

.ai−j .bj f (αi−j .βj .n)
]

Without loss of generality, let us assume that, 0 < β ≤ α < 1 and
αm1 .n = 1, βm2 .n = 1 (Obviously, m1 ≥ m2). Note that,

T (n) ≤ T (αm1 .n).

m1
∑

i=0

[(m1

i

)

.am1−i .bi
]

+

m1−1
∑

i=0

[

i
∑

j=0

(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

= c.(a + b)
log 1

α

n
+

(

log 1
α

n
)

−1
∑

i=0

i
∑

j=0

[(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

[as m1 = log 1
α
n]
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General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T (n) =
L−1
∑

i=0

[ (

L+1
i

)

.aL+1−i .biT
(

αL+1−i .β i .n
)

+
i
∑

j=0

(

i
j

)

.ai−j .bj f (αi−j .βj .n)
]

Without loss of generality, let us assume that, 0 < β ≤ α < 1 and
αm1 .n = 1, βm2 .n = 1 (Obviously, m1 ≥ m2). Note that,

T (n) ≤ T (αm1 .n).

m1
∑

i=0

[(m1

i

)

.am1−i .bi
]

+

m1−1
∑

i=0

[

i
∑

j=0

(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

= c.(a + b)
log 1

α

n
+

(

log 1
α

n
)

−1
∑

i=0

i
∑

j=0

[(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

[as m1 = log 1
α
n]

T (n) ≥ T (βm2 .n).

m2
∑

i=0

[(m2

i

)

.am2−i .bi
]

+

m2−1
∑

i=0

[

i
∑

j=0

(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

= c.(a + b)
log 1

β

n

+

(

log 1
β

n
)

−1

∑

i=0

i
∑

j=0

[(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

[as m2 = log 1
β
n]

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures Autumn 2020 28 / 34



General Form of (Unequal) Divide and Conquer Recurrence

Solution (cont.): So, T (n) =
L−1
∑

i=0

[ (

L+1
i

)

.aL+1−i .biT
(

αL+1−i .β i .n
)

+
i
∑

j=0

(

i
j

)

.ai−j .bj f (αi−j .βj .n)
]

Without loss of generality, let us assume that, 0 < β ≤ α < 1 and
αm1 .n = 1, βm2 .n = 1 (Obviously, m1 ≥ m2). Note that,

T (n) ≤ T (αm1 .n).

m1
∑

i=0

[(m1

i

)

.am1−i .bi
]

+

m1−1
∑

i=0

[

i
∑

j=0

(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

= c.(a + b)
log 1

α

n
+

(

log 1
α

n
)

−1
∑

i=0

i
∑

j=0

[(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

[as m1 = log 1
α
n]

T (n) ≥ T (βm2 .n).

m2
∑

i=0

[(m2

i

)

.am2−i .bi
]

+

m2−1
∑

i=0

[

i
∑

j=0

(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

= c.(a + b)
log 1

β

n

+

(

log 1
β

n
)

−1

∑

i=0

i
∑

j=0

[(i

j

)

.ai−j .bj .f (αi−j .βj .n)
]

[as m2 = log 1
β
n]

Finding Closed-form Expressions under different Cases (like Master Theorem):

Left for You to Explore!
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Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T (n) =

{

T ( n
3
) + T ( 2n

3
), n > 1
1, n = 1
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Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T (n) =

{

T ( n
3
) + T ( 2n

3
), n > 1
1, n = 1

Here, f (n) = 0 and a = b = 1, α = 2
3
,

β = 1
3
, so unfolding the recurrence (or

draw the recursion tree) reveals the
following equation:

T (n) =

k
∑

i=0

(

k

i

)

.T
(2i .n

3k

)
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Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T (n) =

{

T ( n
3
) + T ( 2n

3
), n > 1
1, n = 1

Here, f (n) = 0 and a = b = 1, α = 2
3
,

β = 1
3
, so unfolding the recurrence (or

draw the recursion tree) reveals the
following equation:

T (n) =

k
∑

i=0

(

k

i

)

.T
(2i .n

3k

)

T(2n/27)T(n/27) T(2n/27) T(4n/27) T(2n/27) T(4n/27) T(4n/27) T(8n/27)

T(n/9) T(2n/9) T(2n/9) T(4n/9)

T(n)

T(n/3) T(2n/3)

Recursion Tree for T(n) = T(n/3) + T(2n/3)
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Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T (n) =

{

T ( n
3
) + T ( 2n

3
), n > 1
1, n = 1

Here, f (n) = 0 and a = b = 1, α = 2
3
,

β = 1
3
, so unfolding the recurrence (or

draw the recursion tree) reveals the
following equation:

T (n) =

k
∑

i=0

(

k

i

)

.T
(2i .n

3k

)

T(2n/27)T(n/27) T(2n/27) T(4n/27) T(2n/27) T(4n/27) T(4n/27) T(8n/27)

T(n/9) T(2n/9) T(2n/9) T(4n/9)

T(n)

T(n/3) T(2n/3)

Recursion Tree for T(n) = T(n/3) + T(2n/3)

Since in this case m1 = log 3
2
n ≥ log3 n = m2, hence we can find the inequalities (in

similar way as derived in the earlier slides),

T (n) ≤ 2
log 3

2
n
= n

log 3
2
2

and T (n) ≥ 2log3 n = nlog3 2 ⇒ nlog3 2 ≤ T (n) ≤ n
log 3

2
2
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Example Application of (Unequal) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Fractional Split in Divide
and Conquer Search Strategy (in Linear-Search):

T (n) =

{

T ( n
3
) + T ( 2n

3
), n > 1
1, n = 1

Here, f (n) = 0 and a = b = 1, α = 2
3
,

β = 1
3
, so unfolding the recurrence (or

draw the recursion tree) reveals the
following equation:

T (n) =

k
∑

i=0

(

k

i

)

.T
(2i .n

3k

)

T(2n/27)T(n/27) T(2n/27) T(4n/27) T(2n/27) T(4n/27) T(4n/27) T(8n/27)

T(n/9) T(2n/9) T(2n/9) T(4n/9)

T(n)

T(n/3) T(2n/3)

Recursion Tree for T(n) = T(n/3) + T(2n/3)

Since in this case m1 = log 3
2
n ≥ log3 n = m2, hence we can find the inequalities (in

similar way as derived in the earlier slides),

T (n) ≤ 2
log 3

2
n
= n

log 3
2
2

and T (n) ≥ 2log3 n = nlog3 2 ⇒ nlog3 2 ≤ T (n) ≤ n
log 3

2
2

Exercise: T (n) =

{

T ( n
3
) + T ( 2n

3
) + log2 n, n > 1

1, n = 1
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General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and c be constants, and f (n) be a function.
We define T (n) by the following recurrence,

T (n) =

{

T (a) + T (n − a) + f (n) n > 1
c, n = 1
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General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and c be constants, and f (n) be a function.
We define T (n) by the following recurrence,

T (n) =

{

T (a) + T (n − a) + f (n) n > 1
c, n = 1

Solution: Since the choice of constant a is equally likely (within [1, n − 1]),
therefore,

T (n) =
(

1
n−1

)

.
n−1
∑

i=1
[T (i) + T (n − i) + f (n)] =

(

2
n−1

)

.
n−1
∑

i=1
T (i) + f (n)

⇒ (n − 1).T (n) = 2.
n−1
∑

i=1
T (i) + (n − 1)f (n)
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General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and c be constants, and f (n) be a function.
We define T (n) by the following recurrence,

T (n) =

{

T (a) + T (n − a) + f (n) n > 1
c, n = 1

Solution: Since the choice of constant a is equally likely (within [1, n − 1]),
therefore,

T (n) =
(

1
n−1

)

.
n−1
∑

i=1
[T (i) + T (n − i) + f (n)] =

(

2
n−1

)

.
n−1
∑

i=1
T (i) + f (n)

⇒ (n − 1).T (n) = 2.
n−1
∑

i=1
T (i) + (n − 1)f (n)

Similarly , (n − 2).T (n − 1) = 2.
n−2
∑

i=1
T (i) + (n − 2).f (n − 1)
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General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and c be constants, and f (n) be a function.
We define T (n) by the following recurrence,

T (n) =

{

T (a) + T (n − a) + f (n) n > 1
c, n = 1

Solution: Since the choice of constant a is equally likely (within [1, n − 1]),
therefore,

T (n) =
(

1
n−1

)

.
n−1
∑

i=1
[T (i) + T (n − i) + f (n)] =

(

2
n−1

)

.
n−1
∑

i=1
T (i) + f (n)

⇒ (n − 1).T (n) = 2.
n−1
∑

i=1
T (i) + (n − 1)f (n)

Similarly , (n − 2).T (n − 1) = 2.
n−2
∑

i=1
T (i) + (n − 2).f (n − 1)

Subtracting , (n − 1).T (n) − n.T (n − 1) = (n − 1).f (n) − (n − 2).f (n − 1)

⇒
T (n)
n
−

T (n−1)
n−1

=
(

1
n

)

.f (n) −
(

n−2
n.(n−1)

)

.f (n − 1)
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General Form of (Constant) Divide & Conquer Recurrence

Recurrence Relation: Let a (0 < a < n) and c be constants, and f (n) be a function.
We define T (n) by the following recurrence,

T (n) =

{

T (a) + T (n − a) + f (n) n > 1
c, n = 1

Solution: Since the choice of constant a is equally likely (within [1, n − 1]),
therefore,

T (n) =
(

1
n−1

)

.
n−1
∑

i=1
[T (i) + T (n − i) + f (n)] =

(

2
n−1

)

.
n−1
∑

i=1
T (i) + f (n)

⇒ (n − 1).T (n) = 2.
n−1
∑

i=1
T (i) + (n − 1)f (n)

Similarly , (n − 2).T (n − 1) = 2.
n−2
∑

i=1
T (i) + (n − 2).f (n − 1)

Subtracting , (n − 1).T (n) − n.T (n − 1) = (n − 1).f (n) − (n − 2).f (n − 1)

⇒
T (n)
n
−

T (n−1)
n−1

=
(

1
n

)

.f (n) −
(

n−2
n.(n−1)

)

.f (n − 1)

⇒ T (n)
n
− T (n−1)

n−1
=

(

1
n

)

.f (n) +
(

1
n−1
− 2

n

)

.f (n − 1)
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General Form of (Constant) Divide & Conquer Recurrence

Solution (cont.):

T (n)

n
−

T (n − 1)

n − 1
=

( 1

n

)

.f (n) +
( 1

n − 1
−

2

n

)

.f (n − 1)

T (n − 1)

n − 1
−

T (n − 2)

n − 2
=

( 1

n − 1

)

.f (n − 1) +
( 1

n − 2
−

2

n − 1

)

.f (n − 2)

T (n − 2)

n − 2
−

T (n − 3)

n − 3
=

( 1

n − 2

)

.f (n − 2) +
( 1

n − 3
−

2

n − 2

)

.f (n − 3)

· · · · · · · · · · · ·
T (3)

3
−

T (2)

2
=

(1

3

)

.f (3) −
(1

2
−

2

3

)

.f (2)

T (2)

2
−

T (1)

1
=

(1

2

)

.f (2) −
(1

1
−

2

2

)

.f (1)
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General Form of (Constant) Divide & Conquer Recurrence

Solution (cont.):

T (n)

n
−

T (n − 1)

n − 1
=

( 1

n

)

.f (n) +
( 1

n − 1
−

2

n

)

.f (n − 1)

T (n − 1)

n − 1
−

T (n − 2)

n − 2
=

( 1

n − 1

)

.f (n − 1) +
( 1

n − 2
−

2

n − 1

)

.f (n − 2)

T (n − 2)

n − 2
−

T (n − 3)

n − 3
=

( 1

n − 2

)

.f (n − 2) +
( 1

n − 3
−

2

n − 2

)

.f (n − 3)

· · · · · · · · · · · ·
T (3)

3
−

T (2)

2
=

(1

3

)

.f (3) −
(1

2
−

2

3

)

.f (2)

T (2)

2
−

T (1)

1
=

(1

2

)

.f (2) −
(1

1
−

2

2

)

.f (1)

Adding all the above equations, we get,

T (n)

n
−

T (1)

1
=

( 1

n

)

.f (n) + 2.

n−1
∑

i=2

[{ 1

i .(i + 1)

}

.f (i)
]
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General Form of (Constant) Divide & Conquer Recurrence

Solution (cont.):

T (n)

n
−

T (n − 1)

n − 1
=

( 1

n

)

.f (n) +
( 1

n − 1
−

2

n

)

.f (n − 1)

T (n − 1)

n − 1
−

T (n − 2)

n − 2
=

( 1

n − 1

)

.f (n − 1) +
( 1

n − 2
−

2

n − 1

)

.f (n − 2)

T (n − 2)

n − 2
−

T (n − 3)

n − 3
=

( 1

n − 2

)

.f (n − 2) +
( 1

n − 3
−

2

n − 2

)

.f (n − 3)

· · · · · · · · · · · ·
T (3)

3
−

T (2)

2
=

(1

3

)

.f (3) −
(1

2
−

2

3

)

.f (2)

T (2)

2
−

T (1)

1
=

(1

2

)

.f (2) −
(1

1
−

2

2

)

.f (1)

Adding all the above equations, we get,

T (n)

n
−

T (1)

1
=

( 1

n

)

.f (n) + 2.

n−1
∑

i=2

[{ 1

i .(i + 1)

}

.f (i)
]

⇒ T (n) = c + f (n) + 2n.

n−1
∑

i=2

[{ 1

i .(i + 1)

}

.f (i)
]
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Example Application of (Constant) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Arbitrary Split in
Divide and Conquer Sorting Strategy (in Quick-Sort):

T (n) =

{

T (a) + T (n − a) + n, n > 1
0, n = 1
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Example Application of (Constant) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Arbitrary Split in
Divide and Conquer Sorting Strategy (in Quick-Sort):

T (n) =

{

T (a) + T (n − a) + n, n > 1
0, n = 1

If we follow the derivation procedure in earlier slides, we get,

T (n) = 0 + n + 2.n.

n−1
∑

i=2

[{ 1

i .(i + 1)

}

.i
]

= n + 2.n
[1

3
+

1

4
+ · · · 1

n

]

= 2.n
[

(

1 +
1

2
+

1

3
+ · · ·+ 1

n

)

− 1
]

= 2.n.
(

ln n + γ +
1

2n
− 1

)

≈ C .n log2 n

[ γ = 0.5772156649.. is the Euler-Mascheroni Constant and C > 0 is some constant ]
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Example Application of (Constant) Divide & Conquer Recurrence

Revisit the recurrence capturing number of comparisons for Arbitrary Split in
Divide and Conquer Sorting Strategy (in Quick-Sort):

T (n) =

{

T (a) + T (n − a) + n, n > 1
0, n = 1

If we follow the derivation procedure in earlier slides, we get,

T (n) = 0 + n + 2.n.

n−1
∑

i=2

[{ 1

i .(i + 1)

}

.i
]

= n + 2.n
[1

3
+

1

4
+ · · · 1

n

]

= 2.n
[

(

1 +
1

2
+

1

3
+ · · ·+ 1

n

)

− 1
]

= 2.n.
(

ln n + γ +
1

2n
− 1

)

≈ C .n log2 n

[ γ = 0.5772156649.. is the Euler-Mascheroni Constant and C > 0 is some constant ]

Exercise: T (n) =

{

T (a) + T (n − a) + k .n. log2 n, n > 1
1, n = 1
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Some Variants of Divide and Conquer Recurrence: Changing Variables

Recurrence Relation: T (n) =

{

2.T (
√
n) + log2 n, n > 2

1, n = 2
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Some Variants of Divide and Conquer Recurrence: Changing Variables

Recurrence Relation: T (n) =

{

2.T (
√
n) + log2 n, n > 2

1, n = 2

Solution: Let n = 22
m

, implies log2 n = 2m. So, we have

T (22
m

) = 2.T (22
m−1

) + 2m
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Some Variants of Divide and Conquer Recurrence: Changing Variables

Recurrence Relation: T (n) =

{

2.T (
√
n) + log2 n, n > 2

1, n = 2

Solution: Let n = 22
m

, implies log2 n = 2m. So, we have

T (22
m

) = 2.T (22
m−1

) + 2m

⇒ S(m) = 2.S(m− 1) + 2m and S(0) = 1
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Some Variants of Divide and Conquer Recurrence: Changing Variables

Recurrence Relation: T (n) =

{

2.T (
√
n) + log2 n, n > 2

1, n = 2

Solution: Let n = 22
m

, implies log2 n = 2m. So, we have

T (22
m

) = 2.T (22
m−1

) + 2m

⇒ S(m) = 2.S(m− 1) + 2m and S(0) = 1

= 2S(m− 2) + 2.2m−1 + 2m = 2S(m − 2) + 2.2m

= 2S(m− 3) + 3.2m = · · · · · ·
= S(0) +m.2m = 1 +m.2m
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Some Variants of Divide and Conquer Recurrence: Changing Variables

Recurrence Relation: T (n) =

{

2.T (
√
n) + log2 n, n > 2

1, n = 2

Solution: Let n = 22
m

, implies log2 n = 2m. So, we have

T (22
m

) = 2.T (22
m−1

) + 2m

⇒ S(m) = 2.S(m− 1) + 2m and S(0) = 1

= 2S(m− 2) + 2.2m−1 + 2m = 2S(m − 2) + 2.2m

= 2S(m− 3) + 3.2m = · · · · · ·
= S(0) +m.2m = 1 +m.2m

Therefore,

T (n) = T (22
m

) = S(m) = 1 +m.2m

= 1 + log2 n.(log2 log2 n)
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Some Variants of Divide and Conquer Recurrence: Changing Variables

Recurrence Relation: T (n) =

{

2.T (
√
n) + log2 n, n > 2

1, n = 2

Solution: Let n = 22
m

, implies log2 n = 2m. So, we have

T (22
m

) = 2.T (22
m−1

) + 2m

⇒ S(m) = 2.S(m− 1) + 2m and S(0) = 1

= 2S(m− 2) + 2.2m−1 + 2m = 2S(m − 2) + 2.2m

= 2S(m− 3) + 3.2m = · · · · · ·
= S(0) +m.2m = 1 +m.2m

Therefore,

T (n) = T (22
m

) = S(m) = 1 +m.2m

= 1 + log2 n.(log2 log2 n)

Exercise: T (n) =

{ √
n.T (

√
n) + n n > 2

1, n = 2
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Thank You!
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