17-November-2020

- **1.** Consider the set \mathbb{Z} of all integers with the following operations, where *s* and *t* are constant integers.
 - $a \oplus b = a+b+s,$ $a \odot b = a+b+tab.$

Which of the following is a necessary and sufficient condition for $(\mathbb{Z}, \oplus, \odot)$ to be a ring?

- (A) s = t = -1.
- $(\mathbf{B}) \quad st = 1.$
- (\mathbf{C}) s and t can have any values.
- **(D)** *s* and *t* can have any values with $t \neq 0$.
- Solution Closure and associativity of \oplus and \odot , and the existence of additive identity and additive inverse follow for any *s*,*t*. Associativity holds if and only if *st* = 1.
- **2.** Consider the integral domain $\mathbb{Z}[\sqrt{7}] = \{a + b\sqrt{7} \mid a, b \in \mathbb{Z}\}$. Which of the following is **not** a unit in $\mathbb{Z}[\sqrt{7}]$?

(A)
$$-1$$
 (B) $-8-3\sqrt{7}$ (C) $37-14\sqrt{7}$ (D) $-127+48\sqrt{7}$

- **3.** Let *R* be a ring with identity (or unity). An element $a \in R$ is called *idempotent* if $a^2 = a$. Which of the following statements is true? (Here $M_2(\mathbb{Z})$ denotes the set of all 2×2 matrices with integer entries.)
 - (A) *R* may contain a non-zero element which is both idempotent and nilpotent.
 - (B) If $R = M_2(\mathbb{Z})$, then the only idempotent elements of *R* are the zero matrix and the identity matrix.
 - (C) If *R* is not an integral domain, then *R* must contain an idempotent element other than 0 and 1.
 - (D) If R is not an integral domain, then R may contain an idempotent element other than 0 and 1.
- **4.** Which of the following functions $f : \mathbb{Z} \to \mathbb{Z}$ is a homomorphism of the ring $(\mathbb{Z}, +, \cdot)$ to itself?

(A)
$$f(a) = 1$$
 (B) $f(a) = a$ (C) $f(a) = 2a$ (D) $f(a) = a^2$

- 5. If $f: K \to L$ is a homomorphism of fields with $f(1_K) = 1_L$, which of the following statements is false?
 - (A) f must be surjective.
 - (**B**) f must be injective.
 - (C) $f(a^{-1}) = f(a)^{-1}$ for all $a \in K$, $a \neq 0_K$.
 - **(D)** $f(a) = 0_L$ if and only if $a = 0_K$.
- 6. What is the inverse of an element *a* in the group $G = \{a \in \mathbb{R} \mid a > 0\}$ under the operation \odot defined by $a \odot b = a^{\ln b}$?
 - (A) $1/e^a$ (B) 1/a (C) $1/\ln a$ (D) $e^{1/\ln a}$

Solution The identity element x is computed from: $a^{\ln x} = a \Rightarrow x = e$. Inverse of a is computed as: $a^{\ln a^{-1}} = e \Rightarrow \ln a^{-1} \ln a = \ln e = 1 \Rightarrow a^{-1} = e^{1/\ln a}$.

- 7. Let *p* be an odd prime. How many $x \in \mathbb{Z}_p^*$ satisfy $x \equiv x^{-1} \pmod{p}$?
 - (A) 1 (B) 2 (C) (p-1)/2 (D) p-1

- Solution Since p is a prime, \mathbb{Z}_p is a field, and so a non-trivial polynomial congruence $f(x) \equiv 0 \pmod{p}$ can have at most $\deg(f)$ roots. Now, $x \equiv x^{-1} \pmod{p}$ is equivalent to $x^2 1 \equiv 0 \pmod{p}$, that is, $(x-1)(x+1) \equiv 0 \pmod{p}$, that is, $x \equiv \pm 1 \pmod{p}$. Since p is odd, $1 \not\equiv -1 \pmod{p}$.
- 8. Let G be a cyclic group with 135 elements. What is the size/order of the largest proper cyclic subgroup of G?

Solution 45 (Let g be a generator of G. Then, the order of g^3 is $\frac{135}{\gcd(3,135)} = \frac{135}{3} = 45$.)

9. If *G* is a cyclic group of order 72, how many distinct generators does *G* have?

Solution 24 (Euler totient function: $\phi(72) = 72 \times (1 - \frac{1}{2}) \times (1 - \frac{1}{3}) = 24.$)

10. Let $G = S_4$ (the symmetry group on four symbols), and let *H* be the subgroup

$$H = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \right\}.$$

How many left cosets of *H* are there in *G*?

Solution 6 (Since |G| = 4! = 24 and |H| = 4, there are 24/4 = 6 left cosets of H in G.)