CS21001: Discrete Structures (Autumn 2020) Coding Assignment 1: Propositional Logic – Representation and Deduction Due Date: 01-November-2020, 11:59PM (IST) Total Marks: 30 #### **Notations:** **Propositions.** Boolean variables with True (\top) and False (\bot) values **Literals.** Propositions (p) or negated propositions $(\neg p)$ **Connectives.** Binary operators (\bowtie) such as, AND (\land), OR (\lor), IMPLY (\rightarrow) and IFF (\leftrightarrow) **Propositional Formula.** Recursively defined as, $\varphi = p \mid (\varphi) \mid \neg \varphi \mid \varphi \bowtie \varphi$, where $\bowtie \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ #### **Problem Statement:** **Input.** Propositional Formula (φ) as strings with propositions, negations, connectives and brackets, '(' and ')' **Postfix Formula Representation.** Propositional Formula (φ) as strings with propositions, negations, connectives in Postfix format (this will made available to you in code as a string for ready-made processing!) Output. You will be asked to write separate functions for the following parts (in the already supplied code): - 1. Represent the postfix propositional formula (φ) as a binary tree (τ) data structure, known as *expression tree*, which contains propositions as leaf nodes and operators $\{\land, \lor, \neg, \rightarrow, \leftrightarrow\}$ as internal nodes (refer to the left expression tree in Figure 1) (Marks: 5) - 2. Print the expression tree (using in-order traversal of τ) and generate the formula (φ) (Marks: 2) - 3. Given \top/\bot values for all the propositions, find the outcome of the overall Formula (φ) from its expression tree (τ) (Marks : 4) - 4. Transformation of the formula step-wise $(\varphi \leadsto \varphi_I \leadsto \varphi_N \leadsto \varphi_C/\varphi_D)$ using the expression tree data structure $(\tau \leadsto \tau_I \leadsto \tau_N \leadsto \tau_C/\tau_D)$ as follows: - (a) Implication-Free Form (IFF): Formula (φ_I) after elimination of \to and \leftrightarrow Procedure: Transform τ to τ_I and then print φ_I from τ_I (Marks : 4) - (b) Negation Normal Form (NNF): Formula (φ_N) where \neg appears only before propositions Procedure: Transform τ_I to τ_N and then print φ_N from τ_N (Marks : 4) - (c) Conjunctive Normal Form (CNF): Formula (φ_C) with conjunction of disjunctive-clauses where each disjunctive-clause is a disjunction of literals Procedure: Transform τ_N to τ_C and then print φ_C from τ_C (Marks: 3) - (d) Disjunctive Normal Form (DNF): Formula (φ_D) with disjunction of *conjunctive-clauses* where each conjunctive-clause is a conjunction of literals - Procedure: Transform τ_N to τ_D and then print φ_D from τ_D (Marks : 3) - 5. Given the expression tree (τ) , using exhaustive search, check for the following (Marks : 5) - (a) the validity (\top) or the invalidity of the formula (whether it is a tautology or not), or - (b) the satisfiability or the unsatisfiability (\bot) of the formula (whether it is a contradiction or not) ### Algorithms: **Expression Tree Formation.** Let the generated postfix string from the propositional formula (φ) be PS[1..n]. The recursive function ETF, i.e. $\tau \leftarrow \text{ETF}(PS[1..n])$, is as follows: - If n=1 (i.e. PS[1] is a proposition), then $\tau=\mathtt{CREATENODE}(\varphi)$; - If n > 1 and $PS[n] = \neg$, then $\tau = CREATENODE(\neg); \tau \mapsto rightChild = ETF(PS[1..(n-1)]);$ - If n > 2 and $PS[n] = \bowtie$, then $\tau = CREATENODE(\bowtie); \tau \mapsto leftChild = ETF(PS[1..(k-1)]); \tau \mapsto rightChild = ETF(PS[k..(n-1)]); rightCh$ - return τ ; Here, the primary question is – how to find k for the last step? (this will be explained to you!) **Printing Expression Tree.** The recursive function $ETP(\tau)$ is as follows: • If $\tau \mapsto \text{element}$ is not NULL, then PRINT((); ETP($\tau \mapsto \text{leftChild}$); PRINT($\tau \mapsto \text{element}$); ETP($\tau \mapsto \text{rightChild}$); PRINT()); Here, the PRINT subroutine displays the respective charater as output. Formula Evaluation. The recursive function EVAL, i.e. $\{\top, \bot\} \leftarrow \text{EVAL}(\tau, v_1, v_2, ..., v_n)$ (assuming n propositions where each proposition p_i $(1 \le i \le n)$ is assigned a value $v_i \in \{\top, \bot\}$), is as follows: - If $\tau \mapsto$ element is proposition p_i , then return $(\mathbf{v_i} = \top)$? $\top : \bot$; - If $\tau \mapsto \text{element}$ is \neg , then return (EVAL($\tau \mapsto \text{rightChild}$) = \top)? $\bot : \top$; - If $\tau \mapsto$ element is \wedge , then return EVAL($\tau \mapsto$ leftChild) \wedge EVAL($\tau \mapsto$ rightChild); - If $\tau \mapsto \text{element}$ is \vee , then return $\text{EVAL}(\tau \mapsto \text{leftChild}) \vee \text{EVAL}(\tau \mapsto \text{rightChild})$; - If $\tau \mapsto \text{element is} \rightarrow$, then return $((\text{EVAL}(\tau \mapsto \text{leftChild}) = \top) \text{ and } (\text{EVAL}(\tau \mapsto \text{rightChild}) = \bot))? \bot : \top;$ - If $\tau \mapsto \text{element}$ is \leftrightarrow , then return $\big(((\text{EVAL}(\tau \mapsto \text{leftChild}) = \top) \text{ and } (\text{EVAL}(\tau \mapsto \text{rightChild}) = \top) \big)$ or $\big((\text{EVAL}(\tau \mapsto \text{leftChild}) = \bot) \text{ and } (\text{EVAL}(\tau \mapsto \text{rightChild}) = \bot) \big) \big) ? \top : \bot;$ IFF Transformation. The recursive function IFF, i.e. $\tau_{\rm I} \leftarrow {\rm IFF}(\tau)$, is as follows: ``` • If \tau \mapsto element is \neg, then / * IFF(\neg \varphi) = \negIFF(\varphi) */ • If \tau \mapsto element is \{\land, \lor\}, then / * IFF(\varphi_1 \land \varphi_2) = IFF(\varphi_1) \land IFF(\varphi_2) IFF(\varphi_1 \lor \varphi_2) = IFF(\varphi_1) \lor IFF(\varphi_2) */ • If \tau \mapsto element is \rightarrow, then / * IFF(\varphi_1 \to \varphi_2) = \negIFF(\varphi_1) \lor IFF(\varphi_2) */ • If \tau \mapsto element is \leftrightarrow, then / * IFF(\varphi_1 \leftrightarrow \varphi_2) = IFF(\varphi_1 \to \varphi_2) \land IFF(\varphi_2 \to \varphi_1) */ • return \tau; ``` Here, φ_I can be obtained (as a string expression) by calling ETP(τ_I). **NNF** Transformation. The recursive function NNF, i.e. $\tau_{\mathbb{N}} \leftarrow \text{NNF}(\tau_{\mathbb{I}})$, is as follows: ``` • If \tau_{\mathbf{I}} \mapsto \mathtt{element} is \neg, then -\mathrm{if} \ (\tau_{\mathbf{I}} \mapsto \mathtt{rightChild}) \mapsto \mathtt{element} \ \mathrm{is} \ \neg, \ \mathrm{then} /* \ \mathtt{NNF}(\neg \neg \varphi) = \mathtt{NNF}(\varphi) \ * / -\mathrm{if} \ (\tau_{\mathbf{I}} \mapsto \mathtt{rightChild}) \mapsto \mathtt{element} \ \mathrm{is} \ \wedge, \ \mathrm{then} /* \ \mathtt{NNF}(\neg(\varphi_1 \land \varphi_2)) = \neg \mathtt{NNF}(\varphi_1) \lor \neg \mathtt{NNF}(\varphi_2) \ * / -\mathrm{if} \ (\tau_{\mathbf{I}} \mapsto \mathtt{rightChild}) \mapsto \mathtt{element} \ \mathrm{is} \ \lor, \ \mathrm{then} /* \ \mathtt{NNF}(\neg(\varphi_1 \lor \varphi_2)) = \neg \mathtt{NNF}(\varphi_1) \land \neg \mathtt{NNF}(\varphi_2) \ * / \bullet \ \mathtt{If} \ \tau_{\mathbf{I}} \mapsto \mathtt{element} \ \mathrm{is} \ \{\wedge, \lor\}, \ \mathrm{then} /* \ \mathtt{NNF}(\varphi_1 \land \varphi_2) = \mathtt{NNF}(\varphi_1) \land \mathtt{NNF}(\varphi_2) \ \mathtt{NNF}(\varphi_1 \lor \varphi_2) = \mathtt{NNF}(\varphi_1) \lor \mathtt{NNF}(\varphi_2) \ * / \bullet \ \mathtt{return} \ \tau_{\mathbf{I}}; ``` Here, φ_N can be obtained (as a string expression) by calling ETP (τ_N) . **CNF** Transformation. The recursive function CNF, i.e. $\tau_{C} \leftarrow \text{CNF}(\tau_{N})$, is as follows: ``` • If \tau_{\mathbb{N}} \mapsto \text{element} is \wedge, then /* \quad \text{CNF}(\varphi_1 \wedge \varphi_2) = \text{CNF}(\varphi_1) \wedge \text{CNF}(\varphi_2) \quad */ • If \tau_{\mathbb{N}} \mapsto \text{element} is \vee, then /* \quad \text{Distribution Law enforcement} \quad */ - \quad \text{if } (\tau_{\mathbb{N}} \mapsto \text{leftChild}) \mapsto \text{element} \text{ is } \wedge, \text{ then} /* \quad \text{CNF}((\varphi_{11} \wedge \varphi_{1r}) \vee \varphi_2) = \text{CNF}(\varphi_{11} \vee \varphi_2) \wedge \text{CNF}(\varphi_{1r} \vee \varphi_2) \quad */ - \quad \text{if } (\tau_{\mathbb{N}} \mapsto \text{rightChild}) \mapsto \text{element} \text{ is } \wedge, \text{ then} /* \quad \text{CNF}(\varphi_1 \vee (\varphi_{21} \wedge \varphi_{2r})) = \text{CNF}(\varphi_1 \vee \varphi_{21}) \wedge \text{CNF}(\varphi_1 \vee \varphi_{2r}) \quad */ • return \tau_{\mathbb{N}}; ``` Here, φ_C can be obtained (as a string expression) by calling ETP(τ_c). **DNF** Transformation. The recursive function DNF, i.e. $\tau_{\rm D} \leftarrow {\rm DNF}(\tau_{\rm N})$, is as follows: • If $\tau_{\mathbb{N}} \mapsto \text{element}$ is \vee , then $/* \quad \text{DNF}(\varphi_1 \vee \varphi_2) = \text{DNF}(\varphi_1) \vee \text{DNF}(\varphi_2) \quad */$ • If $\tau_{\mathbb{N}} \mapsto \text{element}$ is \wedge , then $/* \quad \text{Distribution Law enforcement} \quad */$ $- \quad \text{if } (\tau_{\mathbb{N}} \mapsto \text{leftChild}) \mapsto \text{element} \text{ is } \vee, \text{ then}$ $/* \quad \text{DNF}((\varphi_{11} \vee \varphi_{1r}) \wedge \varphi_2) = \text{DNF}(\varphi_{11} \wedge \varphi_2) \vee \text{DNF}(\varphi_{1r} \wedge \varphi_2) \quad */$ $- \quad \text{if } (\tau_{\mathbb{N}} \mapsto \text{rightChild}) \mapsto \text{element} \text{ is } \vee, \text{ the}$ $/* \quad \text{DNF}(\varphi_1 \wedge (\varphi_{21} \vee \varphi_{2r})) = \text{DNF}(\varphi_1 \wedge \varphi_{21}) \vee \text{DNF}(\varphi_1 \wedge \varphi_{2r}) \quad */$ • return $\tau_{\mathbb{N}}$; Here, φ_D can be obtained (as a string expression) by calling ETP(τ_D). Exhaustive Search for Validity/Satisfibility. The function $CHECK(\tau)$ is as follows: - For every value tuple $\{v_1, v_2, \dots, v_n\}$ corresponding to n propositions $\{p_1, p_2, \dots, p_n\}$, if $EVAL(\tau, v_1, v_2, \dots, v_n) = \top$, then print " $\langle VALID + SATISFIABLE \rangle$ " - For every value tuple $\{v'_1, v'_2, \dots, v'_n\}$ corresponding to n propositions $\{p_1, p_2, \dots, p_n\}$, if $EVAL(\tau, v'_1, v'_2, \dots, v'_n) = \bot$, then print " $\langle INVALID + UNSATISFIABLE \rangle$ " - Otherwise, for any pair of value tuples $\{v_1, v_2, \dots, v_n\}$ and $\{v'_1, v'_2, \dots, v'_n\}$ corresponding to n propositions $\{p_1, p_2, \dots, p_n\}$ such that, $\text{EVAL}(\tau, v_1, v_2, \dots, v_n) = \top$ and $\text{EVAL}(\tau, v'_1, v'_2, \dots, v'_n) = \bot$, then print " $\langle \text{SATISFIABLE} + \text{INVALID} \rangle$ ", for $\{v_1, v_2, \dots, v_n\}$ and $\{v'_1, v'_2, \dots, v'_n\}$, respectively # Example: Input Propositional Formula. $\varphi = (\neg p \land q) \rightarrow (p \land (r \rightarrow q))$ **Postfix Formula Representation.** $p \neg q \land p \ r \ q \rightarrow \land \rightarrow$ (YOUR INPUT STRING) **Expression Tree Formation.** Depending on the recursive call, two types of parse tree (τ) can be formed. Figure 1 shows the representation of such expression trees. Figure 1: Expression Tree Structure for Original Formula and the Corresponding CNF Formula Evaluation. $\{p = \bot, q = \top, r = \top\} \Rightarrow \varphi = \bot$; $\{p = \bot, q = \bot, r = \bot\} \Rightarrow \varphi = \top$ Formula Transformations. The path through which you shall be doing this is as follows: $$\varphi \quad \rightsquigarrow \quad \mathsf{PostFix} \quad \rightsquigarrow \quad \tau \; (\mathsf{Print} \; \varphi) \quad \rightsquigarrow \quad \tau_{\mathsf{I}} \; (\mathsf{Print} \; \varphi_{\mathsf{I}}) \quad \rightsquigarrow \quad \tau_{\mathsf{N}} \; (\mathsf{Print} \; \varphi_{\mathsf{N}}) \quad \rightsquigarrow \quad \tau_{\mathsf{C}}/\tau_{\mathsf{D}} \; (\mathsf{Print} \; \varphi_{\mathsf{C}}/\varphi_{\mathsf{D}})$$ $$IFF \; : \; \varphi_{I} \; = \; \mathsf{IFF}(\varphi) \; = \; \mathsf{IFF}((\neg p \land q) \rightarrow (p \land (r \rightarrow q))) = \cdots = \neg(\neg p \land q) \lor (p \land (\neg r \lor q))$$ $$NNF \; : \; \varphi_{N} \; = \; \mathsf{NNF}(\varphi_{I}) \; = \; \mathsf{NNF}(\neg(\neg p \land q) \lor (p \land (\neg r \lor q)))) = \cdots = (p \lor \neg q) \lor (p \land (\neg r \lor q))$$ $$CNF \; : \; \varphi_{C} \; = \; \mathsf{CNF}(\varphi_{N}) \; = \; \mathsf{CNF}((p \lor \neg q) \lor (p \land (\neg r \lor q))) = \cdots = (p \lor \neg q \lor p) \land (p \lor \neg r) \lor (p \land q)$$ $$DNF \; : \; \varphi_{D} \; = \; \mathsf{DNF}(\varphi_{N}) \; = \; \mathsf{DNF}((p \lor \neg q) \lor (p \land (\neg r \lor q))) = \cdots = (p) \lor (\neg q) \lor (p \land \neg r) \lor (p \land q)$$ $Check\ for\ Validity/Satisfibility.$ $$\begin{split} & \text{INVALID:} & \quad \{p=\bot, q=\top, r=\times\} \quad (\times \ denotes \ don't \ care \ term) \\ & \text{SATISFIABLE:} & \quad \{p=\top, q=\times, r=\times\} \quad OR \quad \{p=\times, q=\bot, r=\times\} \end{split}$$ ## Sample Execution: ``` (C++ Code) g++ ROLLNO_CT1.cpp -lm (Please follow the filename convention given!) Execution: ./a.out Sample Run: Enter Propositional Logic Formula: (!p & q) -> (p & (r -> q)) Postfix Representation of Formula: p ! q & p r q -> & -> ++++ PostFix Format of the Propositional Formula ++++ ('-' used for '->' and '~' used for '<->') YOUR INPUT STRING: p!q&prq-&- ++++ Expression Tree Generation ++++ Original Formula (from Expression Tree): ((! p & q) -> (p & (r -> q))) ++++ Expression Tree Evaluation ++++ Enter Total Number of Propositions: 3 Enter Proposition [1] (Format: Name <SPACE> Value): p 0 Enter Proposition [2] (Format: Name <SPACE> Value): q 1 Enter Proposition [3] (Format: Name <SPACE> Value): r 1 The Formula is Evaluated as: False ++++ IFF Expression Tree Conversion ++++ Formula in Implication Free Form (IFF from Expression Tree): (!(!p&q)|(p&(!r|q))) ++++ NNF Expression Tree Conversion ++++ Formula in Negation Normal Form (NNF from Expression Tree): ((p|!q)|(p&(!r|q))) ++++ CNF Expression Tree Conversion ++++ Formula in Conjunctive Normal Form (CNF from Expression Tree): (((p|!q)|p)&((p|!q)|(!r|q))) ++++ DNF Expression Tree Conversion ++++ Formula in Disjunctive Normal Form (DNF from Expression Tree): ((p|!q)|((p&!r)|(p&q))) ++++ Exhaustive Search from Expression Tree for Validity / Satisfiability Checking ++++ Enter Number of Propositions: 3 Enter Proposition Names (<SPACE> Separated): p q r Evaluations of the Formula: \{ (p = 0) (q = 0) (r = 0) \} : 1 { (p = 0) (q = 0) (r = 1) } : 1 \{ (p = 0) (q = 1) (r = 0) \} : 0 \{ (p = 0) (q = 1) (r = 1) \} : 0 \{ (p = 1) (q = 0) (r = 0) \} \{ (p = 1) (q = 0) (r = 1) \} \{ (p = 1) (q = 1) (r = 0) \} \{ (p = 1) (q = 1) (r = 1) \} The Given Formula is: < INVALID + SATISFIABLE > ``` Compile: (C Code) gcc ROLLNO CT1.c - lm (Please follow the filename convention given!) Submit a single C/C++ source file following proper naming convention [ROLLNO_CT1.c(.cpp)]. Do not use any global/static variables. Use of STL is allowed.