CS21001 : Discrete Structures (Autumn 2020)

Coding Assignment 1 : Propositional Logic — Representation and Deduction
Due Date: 01-November-2020, 11:59PM (IST) Total Marks : 30

Notations:

Propositions. Boolean variables with True (T) and False (L) values

Literals.

Propositions (p) or negated propositions (—p)

Connectives. Binary operators (x) such as, AND (A), OR (V), IMPLY (—) and IFF (<)

Propositional Formula. Recursively defined as, o =p | (¢) | 7 | ¢ X @, where x€ {A,V, =, <}

Problem Statement:

Input. Propositional Formula (¢) as strings with propositions, negations, connectives and brackets, ‘(’ and ‘)’

Postfix Formula Representation. Propositional Formula (¢) as strings with propositions, negations, con-
nectives in Postfix format (this will made available to you in code as a string for ready-made processing!)

Output. You will be asked to write separate functions for the following parts (in the already supplied code):

1.

Represent the postfix propositional formula (¢) as a binary tree (7) data structure, known as expres-
sion tree, which contains propositions as leaf nodes and operators {A, V, -, —, <>} as internal nodes
(refer to the left expression tree in Figure 1) (Marks : 5)

2. Print the expression tree (using in-order traversal of 7) and generate the formula (¢) (Marks : 2)

Given T /L values for all the propositions, find the outcome of the overall Formula (¢) from its
expression tree (1) (Marks : 4)
Transformation of the formula step-wise (¢ ~ @5 ~ ©n ~ pc/@p) using the expression tree data
structure (7 ~> 77 ~» 7§ ~ T /7p) as follows:
(a) Implication-Free Form (IFF): Formula () after elimination of — and <«
Procedure: Transform 7 to 77 and then print ¢y from 77 (Marks : 4)
(b) Negation Normal Form (NNF): Formula (@) where = appears only before propositions
Procedure: Transform 77 to 7y and then print ¢y from 7y (Marks : 4)
(¢) Conjunctive Normal Form (CNF): Formula (¢¢) with conjuction of disjunctive-clauses where
each disjunctive-clause is a disjunction of literals
Procedure: Transform 7y to 7¢ and then print oo from 7¢ (Marks : 3)
(d) Disjunctive Normal Form (DNF): Formula (¢ p) with disjuction of conjuctive-clauses where each
conjunctive-clause is a conjunction of literals
Procedure: Transform 7n to 7p and then print ¢p from 7p (Marks : 3)
Given the expression tree (1), using exhaustive search, check for the following — (Marks : 5)

(a) the validity (T) or the invalidity of the formula (whether it is a tautology or not), or
(b) the satisfiability or the unsatisfiability (L) of the formula (whether it is a contradiction or not)

Algorithms:

Ezxpression Tree Formation. Let the generated postfix string from the propositional formula (¢) be PS[1..n].
The recursive function ETF, i.e. 7 < ETF(PS|[1..n]), is as follows:

e If n =1 (i.e. PS[1] is a proposition), then 7 = CREATENODE(¢p);
e If n > 1 and PS[n] = —, then 7 = CREATENODE(—); 7 — rightChild = ETF(PS[1..(n — 1)]);
e If n > 2 and PS[n] =, then

7 = CREATENODE(X); 7~ leftChild = ETF(PS[1..(k — 1)]); 7~ rightChild = ETF(PS[k..(n — 1)]);

e return T

Here, the primary question is — how to find k for the last step? (this will be explained to you!)

Printing Exzpression Tree. The recursive function ETP(7) is as follows:

e If 7 +— element is not NULL, then
PRINT((); ETP(7 — leftChild); PRINT(7 — element); ETP(7 — rightChild); PRINT());

Here, the PRINT subroutine displays the respective charater as output.

Formula Evaluation. The recursive function EVAL, i.e. {T, L} « EVAL(7,v4,va,...,V,) (assuming n propo-
sitions where each proposition p; (1 < i < n) is assigned a value v; € {T,L}), is as follows:
e If 7 +— element is proposition p;, then return (v; = T)? T : L;
o If 7 +— element is —, then return (EVAL(7 — rightChild)=T)? L: T;
e If 7 — element is A, then return EVAL(7 +— leftChild) A EVAL(7 + rightChild);
o If 7 — element is V, then return EVAL(7 +— leftChild)V EVAL(7 + rightChild);
e If 7 — element is —, then return ((EVAL(7 — leftChild) = T) and (EVAL(7 > rightChild) = 1))? L: T;

e If 7 — element is <>, then
return (((EVAL(7 +— leftChild) = T) and (EVAL(— rightChild) = T))
or ((EVAL(T — leftChild) = 1) and (EVAL(7 — rightChild) = 1)))? T: 1;

IFF Transformation. The recursive function IFF, i.e. 71 + IFF(7), is as follows:

e If 7 +— element is -, then
/5 TFF(p) = ~IFF(p))
o If 7 — element is {A, V}, then
/% TFF(gy A o) = TFF(1) A TFF ()
TFF (g1 V ¢2) = IFF(p1) V IFF() %/
e If 7 +— element is —, then
/ * TIFF(p1 — p2) = —IFF(p1) V IFF(pa) */
e If 7 +— element is <>, then
/* IFF(p1 <> pa) = IFF(p1 — pa) AIFF(pa — 1) x/

e return T;
Here, 7 can be obtained (as a string expression) by calling ETP(77).
NNF Transformation. The recursive function NNF, i.e. 7y < NNF(71), is as follows:

e If 71 — element is —, then
— if (71 — rightChild) — element is —, then
[NNE(-g) = WNF(p)
— if (71 ~— rightChild) — element is A, then
[* NNF(=(p1 A o)) = ~NNF(p) V -NNF(p5) x /
— if (71 ~— rightChild) — element is V, then
/% NNE((p1 V 2)) = ~NNF(1) A -NNF(ps) +/
o If 71 — element is {A, V}, then
/% NNE(A po) = NNF(py) A NNF(i)
NNF (g1 V 2) = NNF(p) V NNF(g5) %/

e return 7r;
Here, ¢ can be obtained (as a string expression) by calling ETP(7y).
CNF Transformation. The recursive function CNF, i.e. 7¢ < CNF(7y), is as follows:

o If 7y — element is A, then
/ * CNF(1 A pa) = CNF(p1) A CNF(2) * /
o If 7y — element is V, then /* Distribution Law enforcement */
— if (7y +> leftChild) — element is A, then
/% CNF((¢11 A p1r) V ¢2) = CNF(p11 V 02) ACNF (1 V p2) %/
— if (7w +> rightChild) — element is A, then
/* CNF(p1V (p21 A por)) = CNF(p1 V 921) ACNF(p1 V 2r) x/

e return 7y;
Here, ¢c can be obtained (as a string expression) by calling ETP(7¢).

DNF Transformation. The recursive function DNF, i.e. 1 <— DNF(7y), is as follows:

o If 7y — element is V, then

e If 7y — element is A, then '* Distribution Law enforcement *

— if (7w +> leftChild) — element is V, then

/ * DNF((¢11 V ¢1r) A p2) = DNF (11 A 02) VDNF(p1r A 3) * /
— if (7w > rightChild) — element is V, the

/ * DNF(p1 A (021 V p2r)) = DNF(p1 A 1) VDNF(p1 A or) %/

e return 7y;
Here, ¢p can be obtained (as a string expression) by calling ETP(7p).

Ezxhaustive Search for Validity/Satisfibility. The function CHECK(7) is as follows:

e For every value tuple {vq,vs,..., vy} corresponding to n propositions {p1,p2,...,Pn},
if EVAL(7, V1, Vs, ...,va) = T, then print “(VALID + SATISFIABLE)”

e For every value tuple {v}, v}, ..., vl} corresponding to n propositions {p1,p2,...,Pn},
if EVAL(7, v/}, v}, ...,v.) = L, then print “(INVALID + UNSATISFIABLE)”

e Otherwise, for any pair of value tuples {v1,va,..., vy} and {v}, v}, ..., vl } corresponding to n propo-
sitions {p1,p2,...,Pn} such that, EVAL(7,vq,va,...,vy) = T and EVAL(7,vi,v5,...,v)) = 1, then

print “(SATISFIABLE 4 INVALID)”, for {vi,va,...,vn} and {v},v5,...,v,}, respectively

Example:
Input Propositional Formula. ¢ = (-pAq) = (pA (r — q))
Postfix Formula Representation. p —q N prq — AN — (YOUR INPUT STRING)

Ezxpression Tree Formation. Depending on the recursive call, two types of parse tree (7) can be formed.
Figure 1 shows the representation of such expression trees.

£, BB,

Figure 1: Expression Tree Structure for Original Formula and the Corresponding CNF

Formula Evaluation. {p=1l,q=T,r=T} = =1 ; {p=Llg=Lr=1} = =T
Formula Transformations. The path through which you shall be doing this is as follows:

¢ ~ PostFix ~» 7 (Print¢) ~» 71 (Print ¢1) ~ 7y (Print ¢y) ~ 7¢/m (Print oc/¢p)

IFF : ¢ = TIFF(p) = TIFF((-pAq) = (pA(r—q))) == ﬂ(ﬁpAQ)V (pA (- Va))
NNF : ¢on = NNF(pr) = NNF(=(=pAq)V(pA (ﬁr\/q)))) =@EV-og)V(ArVae)
CNF : ¢c = CNF(py) = CNF((pV—q)V(pA(-rVg))=-=(V-gVp)A(pV-gV-rVq)
DNF : ¢p = DNF(pn) = DNF((pV—g)V(pPA(rVg))=-=(@)V(q)VEA-T)V(PAq)

Check for Validity/Satisfibility.

INVALID: {p=1L,q=T,r=x} (x denotes don't care term)
SATISFIABLE: {p=T,q=x,r=x} OR {p=x,q=L,r=x}

Sample Execution:

Compile: (C Code) gcc ROLLNO CTi.c —1m (Please follow the filename convention given!)
(C++ Code) g++ ROLLNO CTil.cpp — 1lm (Please follow the filename convention given!)

Execution: ./a.out

Sample Run:

Enter Propositional Logic Formula: (!p & q) -> (p & (r -> q))
Postfix Representation of Formula: p ! q & pr q -> & ->

++++ PostFix Format of the Propositional Formula ++++
(>-? used for ’->’ and ’7’ used for ’<->’)
YOUR INPUT STRING: p'!q&prq-&-

++++ Expression Tree Generation ++++
Original Formula (from Expression Tree): ((! p& q) -> (p& (r ->q)))

++++ Expression Tree Evaluation ++++
Enter Total Number of Propositions: 3
Enter Proposition [1] (Format: Name <SPACE> Value):
Enter Proposition [2] (Format: Name <SPACE> Value):
Enter Proposition [3] (Format: Name <SPACE> Value):

B QO o
)

The Formula is Evaluated as: False

++++ IFF Expression Tree Conversion ++++
Formula in Implication Free Form (IFF from Expression Tree):

(' ('p&qg)l (p&Ctxrlg)))

++++ NNF Expression Tree Conversion ++++
Formula in Negation Normal Form (NNF from Expression Tree):
(Cplrg) Il Cp&Crrlqg)d))))

++++ CNF Expression Tree Conversion ++++
Formula in Conjunctive Normal Form (CNF from Expression Tree):

CCCpltq)lpd& CCpltg) Il Ctrlqg)d))d))

++++ DNF Expression Tree Conversion ++++
Formula in Disjunctive Normal Form (DNF from Expression Tree):
(Cplrtg) !l (Cp&tr) |l (Cp&qg)))

++++ Exhaustive Search from Expression Tree for Validity / Satisfiability Checking ++++

Enter Number of Propositions: 3

Enter Proposition Names (<SPACE> Separated): p q r

Evaluations of the Formula:
(p=0) (q=0) (r=0
(p=0) (q=0) (r=1
(p=0) (gq=1) (r =0

0) (q=1) (r =1)

(p=1) (q=0) (xr=0)

(p=1) (q=0) (r=1)

p=1) (q=1) (r =0

p=1) (q=1) (r =1

N e e e e N

N

o]

1
I R i a
T e B e RS

The Given Formula is: < INVALID + SATISFIABLE >

Submit a single C/C++ source file following proper naming convention [ROLLNO CT1i.c(.cpp) |.
Do not use any global/static variables. Use of STL is allowed.

