## Long Test 3

Date: 17-Nov-2020

## Instructions

- Answer all the questions. Be brief and precise.
- If you use any theorem/result/formula covered in lectures/tutorials, just mention, do not elaborate.

1. Let $a_{n}=\sum_{i=n}^{\infty} \frac{2^{i}}{i!}$ for all integers $n \geqslant 0$.
(a) Find a closed-form expression for the (ordinary) generating function $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+$ $\cdots+a_{n} x^{n}+\cdots$ of the sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$.
Solution We have

$$
\begin{aligned}
A(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots \\
& =\left(\sum_{i=0}^{\infty} \frac{2^{i}}{i!}\right)+\left(\sum_{i=1}^{\infty} \frac{2^{i}}{i!}\right) x+\left(\sum_{i=2}^{\infty} \frac{2^{i}}{i!}\right) x^{2}+\cdots+\left(\sum_{i=n}^{\infty} \frac{2^{i}}{i!}\right) x^{n}+\cdots \\
& =\sum_{n=0}^{\infty}\left(\sum_{i=n}^{\infty} \frac{2^{i}}{i!}\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left[\left(1+x+x^{2}+x^{3}+\cdots+x^{n}\right) \frac{2^{n}}{n!}\right] \\
& =\sum_{n=0}^{\infty}\left[\left(\frac{1-x^{n+1}}{1-x}\right) \frac{2^{n}}{n!}\right] \\
& =\frac{1}{1-x}\left[\sum_{n=0}^{\infty}\left(\frac{2^{n}}{n!}\right)-x\left(\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}\right)\right] \\
& =\frac{e^{2}-x e^{2 x}}{1-x} .
\end{aligned}
$$

(b) Use the expression for $A(x)$ in Part (a) to prove that $\sum_{n=0}^{\infty} a_{n}=3 e^{2}$. No credit if you do not use the closed-form expression for $A(x)$ derived in Part (a).

Solution The desired sum is $A(1)$. But $A(1)$ is of the form $0 / 0$, so the desired sum is $\lim _{x \rightarrow 1} A(x)$, provided that the limit exists. By using l'Hôspital's rule, we get

$$
\sum_{n=0}^{\infty} a_{n}=\lim _{x \rightarrow 1} A(x)=\lim _{x \rightarrow 1} \frac{e^{2}-x e^{2 x}}{1-x}=\lim _{x \rightarrow 1} \frac{-\left(e^{2 x}+2 x e^{2 x}\right)}{-1}=3 e^{2}
$$

2. Let $m \geqslant 1$ be an integer constant. Let $b_{n}^{(m)}$ denote the number of ordered partitions (that is, compositions) of the integer $n \geqslant 0$ such that no summand is larger than $m$.
(a) Prove that the (ordinary) generating function of $b_{n}^{(m)}$ is

$$
\begin{equation*}
B^{(m)}(x)=\frac{1-x}{1-2 x+x^{m+1}} \tag{7}
\end{equation*}
$$

Solution Write $n$ as a sum of $i$ summands for some $i \geqslant 0$. Each summand is in the range $1,2,3, \ldots, m$, so the generating function for writing $n$ as a sum of $i$ summands in the given range is $\left(x+x^{2}+x^{3}+\cdots+x^{m}\right)^{i}$. Now, we vary $i$ from 0 to $\infty$ to get

$$
B^{(m)}(x)=\sum_{i=0}^{\infty}\left(x+x^{2}+x^{3}+\cdots+x^{m}\right)^{i}=\frac{1}{1-\left(x+x^{2}+x^{3}+\cdots+x^{m}\right)}=\frac{1}{1-x\left(\frac{1-x^{m}}{1-x}\right)}=\frac{1-x}{1-2 x+x^{m+1}}
$$

(b) From the formula of Part (a), deduce that $b_{n}^{(2)}=F_{n+1}$, where $F_{0}, F_{1}, F_{2}, \ldots$ is the sequence of Fibonacci numbers. No credit for using any argument other than using the formula of Part (a).

Solution Let $F(x)$ denote the generating function of the Fibonacci sequence. Putting $m=2$ and $F_{0}=0$ gives

$$
\begin{aligned}
B^{(2)}(x) & =\frac{1-x}{1-2 x+x^{3}}=\frac{1}{1-x-x^{2}}=\frac{1}{x}\left(\frac{x}{1-x-x^{2}}\right)=\frac{1}{x} F(x) \\
& =\frac{1}{x}\left[F_{0}+F_{1} x+F_{2} x^{2}+F_{3} x^{3}+\cdots+F_{n+1} x^{n+1}+\cdots\right] \\
& =F_{1}+F_{2} x+F_{3} x^{2}+\cdots+F_{n+1} x^{n}+\cdots
\end{aligned}
$$

From this expression, the result follows immediately.
3. Solve the following recurrence relation, and deduce the closed-form expression for $T(n)$.

$$
T(n)=\left\{\begin{array}{ll}
\sqrt{n} T(\sqrt{n})+n\left(\log _{2} n\right)^{d}, & \text { if } n>2 \\
2, & \text { if } n=2
\end{array}(d \geqslant 0)\right.
$$

Note: Use of generating functions is not allowed to solve this problem.
Solution Given that $T(n)=\sqrt{n} T(\sqrt{n})+n \log _{2}^{d} n \quad$ (where $d \geqslant 0$ ) and $T(2)=2$, we have:

$$
\begin{aligned}
& \frac{T(n)}{n}=\frac{T(\sqrt{n})}{\sqrt{n}}+\log _{2}^{d} n \\
& \Rightarrow \quad S(n)=S(\sqrt{n})+\log _{2}^{d} n \\
& \Rightarrow \quad S\left(2^{2^{k}}\right)=S\left(2^{2^{(k-1)}}\right)+\left(2^{k}\right)^{d} \\
& \Rightarrow \quad R(k)=\quad R(k-1)+\left(2^{k}\right)^{d} \\
& \Rightarrow \quad R(k)=R(0)+\left(2^{d}\right)^{1}+\left(2^{d}\right)^{2}+\cdots+\left(2^{d}\right)^{k-1}+\left(2^{d}\right)^{k} \quad \cdots\left[\text { because }\left(2^{k}\right)^{d}=2^{k d}=\left(2^{d}\right)^{k}\right] \\
& \Rightarrow \quad R(k)=1+\sum_{i=1}^{k}\left(2^{d}\right)^{i} \quad \ldots\left[S(2)=\frac{T(2)}{2}=1 \text {, implying } R(0)=S\left(2^{2^{0}}\right)=1\right] \\
& \Rightarrow \quad R(k)=\left\{\begin{aligned}
\frac{\left(2^{d}\right)^{(k+1)}-1}{2^{d}-1}, & \text { if } d>0 \\
1+k, & \text { if } d=0
\end{aligned}\right.
\end{aligned}
$$

Hence, $R(k)=S\left(2^{2^{k}}\right)=\left\{\begin{aligned} \frac{\left(2^{d}\right)^{(k+1)}-1}{2^{d}-1}, & \text { if } d>0 \\ 1+k, & \text { if } d=0\end{aligned} \quad\right.$ where $n=2^{2^{k}}$ and $S(n)=\frac{T(n)}{n}$, which means $S(n)=\left\{\begin{aligned} \frac{2^{d} \log _{2}^{d} n-1}{2^{d}-1}, & \text { if } d>0 \\ 1+\log _{2} \log _{2} n, & \text { if } d=0\end{aligned} \quad\right.$ implying $\quad T(n)=\left\{\begin{aligned} \frac{2^{d} n \log _{2}^{d} n-n}{2^{d}-1}, & \text { if } d>0 \\ n+n \log _{2} \log _{2} n, & \text { if } d=0\end{aligned}\right.$

## Marking Scheme

- Substitutions and Simplifications: 4 marks
- Complete Deduction Steps: 4 marks
- Final closed-form: 2 marks
- Deduct 2 marks if $d=0$ case not considered overall

4. Solve the following recurrence relation, and deduce the closed-form expression for $a_{n}$.

$$
\begin{equation*}
a_{n}=a_{n-1}+8 a_{n-2}-12 a_{n-3}+2^{n}(\text { for } n \geqslant 3), \quad \text { with } a_{0}=1, a_{1}=1, a_{2}=\frac{83}{5} . \tag{10}
\end{equation*}
$$

Note: Use of generating functions is not allowed to solve this problem.

Solution Given the recurrence $a_{n}=a_{n-1}+8 a_{n-2}-12 a_{n-3}+2^{n}$ (for $n \geqslant 2$ ), we find that the homogeneous part is

$$
a_{n}=a_{n-1}+8 a_{n-2}-12 a_{n-3} .
$$

So, the characteristic equation that results from the homogeneous part will be $x^{3}-x^{2}-8 x+12=0$.
Solving for $x$, we get

$$
x^{3}-x^{2}-8 x+12=0 \quad \Rightarrow \quad(x-2)^{2}(x+3)=0 \quad \Rightarrow \quad x=2 \text { (double root), } x=-3 .
$$

Therefore, the homogeneous solution is $a_{n}^{(h)}=(A+B n) 2^{n}+C(-3)^{n}$.
Now, the particular solution (with respect to $2^{n}$ ) will be $a_{n}^{(p)}=D n^{2} 2^{n}$ (due to conflict term $(A+B n) 2^{n}$ in $a_{n}^{(h)}$ ).
Solving for constant $D$ with the help of the given recurrence, we get

$$
\begin{aligned}
D n^{2} 2^{n} & =D(n-1)^{2} 2^{n-1}+8 D(n-2)^{2} 2^{n-2}-12 D(n-3)^{2} 2^{n-3}+2^{n} \\
\Rightarrow \quad D n^{2} & =\frac{D}{2}(n-1)^{2}+2 D(n-2)^{2}-\frac{3}{2} D(n-3)^{2}+1
\end{aligned}
$$

Comparing the constant terms (coefficients of $n^{0}$ ) in above equation, we find

$$
0=\frac{D}{2}+8 D-\frac{27}{2}+1 \quad \Rightarrow \quad D=\frac{1}{5}
$$

So, the final (parameterized) solution is

$$
a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=(A+B n) 2^{n}+C(-3)^{n}+\frac{1}{5} n^{2} 2^{n}
$$

Solving for the constants $A, B, C$, we get

$$
\begin{aligned}
a_{0}=1=A+C & \Rightarrow C=1-A, \\
a_{1}=1=2(A+B)-3 C+\frac{2}{5} & \Rightarrow 5 A+2 B=\frac{18}{5}, \\
a_{2}=\frac{83}{5}=4(A+2 B)+9 C+\frac{16}{5} & \Rightarrow-5 A+8 B=\frac{22}{5} .
\end{aligned}
$$

The above three equations produce $A=\frac{2}{5}, B=\frac{4}{5}, C=\frac{3}{5}$.
Hence, the final solution is

$$
a_{n}=\left(\frac{2}{5}+\frac{4}{5} n\right) 2^{n}+\frac{3}{5}(-3)^{n}+\frac{1}{5} n^{2} 2^{n}=\frac{1}{5}\left[(1+2 n) 2^{n+1}+(-1)^{n} 3^{n+1}+n^{2} 2^{n}\right] .
$$

## Marking Scheme

- Characteristic equation formation and roots determination: 2 marks
- Homogeneous solution formation: 1 mark
- Particular solution formation: 1 mark
- Constant Solve for particular part: 2 marks
- Constant Solve for homogeneous part: 3 marks
- Final solution: 1 mark

