
CS21001 Discrete Structures, Autumn 2020–2021

Long Test 3

Date: 17-Nov-2020 Maximum marks: 40

Instructions

• Answer all the questions. Be brief and precise.

• If you use any theorem/result/formula covered in lectures/tutorials, just mention, do not elaborate.

1. Let an =
∞

∑
i=n

2i

i!
for all integers n > 0.

(a) Find a closed-form expression for the (ordinary) generating function A(x) = a0 +a1x+a2x2 +a3x3 +
· · ·+anxn + · · · of the sequence a0,a1,a2,a3, . . . ,an, . . . . (7)

Solution We have

A(x) = a0 +a1x+a2x2 +a3x3 + · · ·+anxn + · · ·

=

(

∞

∑
i=0

2i

i!

)

+

(

∞

∑
i=1

2i

i!

)

x+

(

∞

∑
i=2

2i

i!

)

x2 + · · ·+

(

∞

∑
i=n

2i

i!

)

xn + · · ·

=
∞

∑
n=0

(

∞

∑
i=n

2i

i!

)

xn

=
∞

∑
n=0

[

(

1+ x+ x2 + x3 + · · ·+ xn
)2n

n!

]

=
∞

∑
n=0

[(

1− xn+1

1− x

)

2n

n!

]

=
1

1− x

[

∞

∑
n=0

(

2n

n!

)

− x

(

∞

∑
n=0

(2x)n

n!

)]

=
e2 − xe2x

1− x
.

(b) Use the expression for A(x) in Part (a) to prove that
∞

∑
n=0

an = 3e2. No credit if you do not use the

closed-form expression for A(x) derived in Part (a). (3)

Solution The desired sum is A(1). But A(1) is of the form 0/0, so the desired sum is lim
x→1

A(x), provided that the limit

exists. By using l’Hôspital’s rule, we get

∞

∑
n=0

an = lim
x→1

A(x) = lim
x→1

e2 − xe2x

1− x
= lim

x→1

−(e2x +2xe2x)

−1
= 3e2.

2. Let m > 1 be an integer constant. Let b
(m)
n denote the number of ordered partitions (that is, compositions) of

the integer n > 0 such that no summand is larger than m.

(a) Prove that the (ordinary) generating function of b
(m)
n is (7)

B(m)(x) =
1− x

1−2x+ xm+1
.

Solution Write n as a sum of i summands for some i > 0. Each summand is in the range 1,2,3, . . . ,m, so the generating

function for writing n as a sum of i summands in the given range is (x+ x2 + x3 + · · ·+ xm)i. Now, we vary i

from 0 to ∞ to get

B(m)(x) =
∞

∑
i=0

(x+ x2 + x3 + · · ·+ xm)i =
1

1− (x+ x2 + x3 + · · ·+ xm)
=

1

1− x

(

1− xm

1− x

) =
1− x

1−2x+ xm+1
.
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(b) From the formula of Part (a), deduce that b
(2)
n = Fn+1, where F0,F1,F2, . . . is the sequence of Fibonacci

numbers. No credit for using any argument other than using the formula of Part (a). (3)

Solution Let F(x) denote the generating function of the Fibonacci sequence. Putting m = 2 and F0 = 0 gives

B(2)(x) =
1− x

1−2x+ x3
=

1

1− x− x2
=

1

x

(

x

1− x− x2

)

=
1

x
F(x)

=
1

x

[

F0 +F1x+F2x2 +F3x3 + · · ·+Fn+1xn+1 + · · ·
]

= F1 +F2x+F3x2 + · · ·+Fn+1xn + · · · .

From this expression, the result follows immediately.

3. Solve the following recurrence relation, and deduce the closed-form expression for T (n).

T (n) =

{ √
nT (

√
n)+n(log2 n)d , if n > 2

2 , if n = 2
(d > 0).

Note: Use of generating functions is not allowed to solve this problem. (10)

Solution Given that T (n) =
√

nT (
√

n)+n logd
2 n (where d > 0) and T (2) = 2, we have:

T (n)

n
=

T (
√

n)
√

n
+ logd

2 n . . .
[

dividing both sides by n
]

⇒ S(n) = S(
√

n)+ logd
2 n . . .

[

assuming S(n) =
T (n)

n

]

⇒ S(22k
) = S(22(k−1)

)+(2k)
d

. . .
[

substituting n = 22k
]

⇒ R(k) = R(k−1)+(2k)
d

. . .
[

let R(k) = S(22k

)
]

⇒ R(k) = R(0)+(2d)
1
+(2d)

2
+ · · ·+(2d)

k−1
+(2d)

k
. . .
[

because (2k)
d
= 2kd = (2d)

k
]

⇒ R(k) = 1+
k

∑
i=1

(2d)
i

. . .

[

S(2) =
T (2)

2
= 1, implying R(0) = S(220

) = 1

]

⇒ R(k) =

{

(2d)
(k+1)

−1

2d−1
, if d > 0

1+ k, if d = 0

Hence, R(k) = S(22k
) =

{

(2d)
(k+1)

−1

2d−1
, if d > 0

1+ k, if d = 0
where n = 22k

and S(n) =
T (n)

n
,

which means S(n) =

{

2d logd
2 n−1

2d−1
, if d > 0

1+ log2 log2 n, if d = 0
implying T (n) =

{

2dn logd
2 n−n

2d−1
, if d > 0

n+n log2 log2 n, if d = 0

Marking Scheme

– Substitutions and Simplifications: 4 marks

– Complete Deduction Steps: 4 marks

– Final closed-form: 2 marks

– Deduct 2 marks if d = 0 case not considered overall

4. Solve the following recurrence relation, and deduce the closed-form expression for an.

an = an−1 +8an−2 −12an−3 +2n (for n > 3), with a0 = 1, a1 = 1, a2 =
83

5
.

Note: Use of generating functions is not allowed to solve this problem. (10)

— Page 2 of 3 —



Solution Given the recurrence an = an−1 +8an−2 −12an−3 +2n (for n > 2), we find that the homogeneous part is

an = an−1 +8an−2 −12an−3.

So, the characteristic equation that results from the homogeneous part will be x3 − x2 −8x+12 = 0.

Solving for x, we get

x3 − x2 −8x+12 = 0 ⇒ (x−2)2(x+3) = 0 ⇒ x = 2 (double root), x =−3.

Therefore, the homogeneous solution is a
(h)
n = (A+Bn)2n +C(−3)n.

Now, the particular solution (with respect to 2n) will be a
(p)
n = Dn22n

(

due to conflict term (A+Bn)2n in a
(h)
n

)

.

Solving for constant D with the help of the given recurrence, we get

Dn22n = D(n−1)22n−1 +8D(n−2)22n−2 −12D(n−3)22n−3 +2n

⇒ Dn2 =
D

2
(n−1)2 +2D(n−2)2 −

3

2
D(n−3)2 +1.

Comparing the constant terms (coefficients of n0) in above equation, we find

0 =
D

2
+8D−

27

2
+1 ⇒ D =

1

5
.

So, the final (parameterized) solution is

an = a
(h)
n +a

(p)
n = (A+Bn)2n +C(−3)n +

1

5
n22n.

Solving for the constants A,B,C, we get

a0 = 1 = A+C ⇒ C = 1−A,

a1 = 1 = 2(A+B)−3C+
2

5
⇒ 5A+2B =

18

5
,

a2 =
83

5
= 4(A+2B)+9C+

16

5
⇒ −5A+8B =

22

5
.

The above three equations produce A =
2

5
, B =

4

5
, C =

3

5
.

Hence, the final solution is

an =

(

2

5
+

4

5
n

)

2n +
3

5
(−3)n +

1

5
n22n =

1

5

[

(1+2n)2n+1 +(−1)n3n+1 +n22n
]

.

Marking Scheme

– Characteristic equation formation and roots determination: 2 marks

– Homogeneous solution formation: 1 mark

– Particular solution formation: 1 mark

– Constant Solve for particular part: 2 marks

– Constant Solve for homogeneous part: 3 marks

– Final solution: 1 mark
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