Long Test 2

1. Let a be a positive integer which is not a multiple of 3 . You initialize the number $n=a^{2020}$, and enter the following loop. Assume that we use a special-purpose multiple-precision integer library to hold all the digits of large integers exactly.
```
while ( }n\geqslant1\mp@subsup{0}{}{10})
    Set r=n% 10; /* Remainder of Euclidean division by 10 */
    Set n=n/10; /* Quotient of Euclidean division by 10 */
    Set n=n+r;
}
```

The loop terminates when n becomes smaller than 10^{10}. Treat this n as a ten-digit number (insert leading zero digits if necessary). Prove that among these ten digits, at least one digit must be repeated.
Solution Let $\rho=a^{2020}$ rem 3. Since a is not a multiple of 3, we have $\rho \neq 0$. If $n=10 q+r$ at the top of the loop, the loop body changes n to $q+r$. We have $10 q+r-(q+r)=9 q$ which is a multiple of 3 . Thus at all times when the loop condition is checked, we have $n \equiv \rho \not \equiv 0(\bmod 3)$. In particular, when the loop terminates, $n=\left(d_{9} d_{8} \ldots d_{2} d_{1} d_{0}\right)_{10}$ is still ρ modulo 3 . Since $10 \equiv 1(\bmod 3)$, we have $n=10^{9} d_{9}+10^{8} d_{8}+$ $\cdots+10^{2} d_{2}+10 d_{1}+d_{0} \equiv d_{9}+d_{8}+\cdots+d_{2}+d_{1}+d_{0}(\bmod 3)$. If there is no repeated digit in n at this point of time, $d_{9}, d_{8}, \ldots, d_{2}, d_{1}, d_{0}$ must be a permutation of $0,1,2,3 \ldots, 9$, so $d_{9}+d_{8}+\cdots+d_{2}+d_{1}+d_{0} \equiv$ $0+1+2+3+\cdots+9 \equiv 45 \equiv 0(\bmod 3)$. But then $\rho=0$, a contradiction.
2. Show that there exists an integer n such that $0<\sin n<2^{-2020}$.

Solution Let $\varepsilon=\sin ^{-1}\left(2^{-2020}\right)$. Take an integer $n>1 / \varepsilon$. We know that π is an irrational number. Therefore $k \pi$ is never an integer for any integer $k \neq 0$. Break the interval $[0,1)$ into n subintervals $\left[0, \frac{1}{n}\right),\left[\frac{1}{n}, \frac{2}{n}\right),\left[\frac{2}{n}, \frac{3}{n}\right), \ldots$, $\left[1-\frac{1}{n}, 1\right)$. Consider the $n+1$ real numbers $2 \pi, 4 \pi, 6 \pi, \ldots, 2(n+1) \pi$. Let $\{2 i \pi\}$ denote the fractional part of $2 i \pi$. Since there are $n+1$ such proper fractions, two of them must belong to the same subinterval of length $1 / n$. Let these be $\{2 i \pi\}$ and $\{2 j \pi\}$ with $\{2 i \pi\}>\{2 j \pi\}$. Let $\delta=\{2 i \pi\}-\{2 j \pi\}$. Then $0<\delta<1 / n<\varepsilon$. We have $2 i \pi=s+\{2 i \pi\}$ and $2 j \pi=t+\{2 j \pi\}$ for some integers s and t. Take $n=t-s$. We have $n=t-s=2(j-i) \pi+\delta$, so $\sin n=\sin [2(j-i) \pi+\delta]=\sin \delta$. Since sin is a strictly increasing function in the range $[0, \pi / 2)$, and since $0<\delta<\varepsilon$, we have $0=\sin 0<\sin \delta<\sin \varepsilon=2^{-2020}$.
3. Let \mathbb{Z} be the set of all integers. Define a relation R on \mathbb{N} (the the set of positive integers) as follows:
$\forall a, b \in \mathbb{N}, a R b$ if and only if $\exists i \in \mathbb{Z}, \frac{a}{b}=2^{i}$.
(a) Prove that R is an equivalence relation.

Solution [Reflexive] For $a \in \mathbb{N}, \frac{a}{a}=1=2^{0}$, so $a R a$.
[Symmetric] Suppose that $a R b$. Then, we have

$$
\begin{aligned}
a R b & \Rightarrow \exists i \in \mathbb{Z}, \frac{a}{b}=2^{i} \\
& \Rightarrow \exists i \in \mathbb{Z}, \quad \frac{b}{a}=2^{-i} \\
& \Rightarrow b R a, \quad \text { because }-i \in \mathbb{Z}
\end{aligned}
$$

[Transitive] Suppose that $a R b$ and $b R c$. By definition,

$$
\begin{aligned}
a R b & \Rightarrow \exists i \in \mathbb{Z}, \frac{a}{b}=2^{i} \\
b R c & \Rightarrow \exists j \in \mathbb{Z}, \frac{b}{c}=2^{j}
\end{aligned}
$$

But then $\frac{a}{c}=\frac{a}{b} \times \frac{b}{c}=2^{i+j}$. Since $i+j \in \mathbb{Z}$, we have $a R c$.
(b) List the equivalence classes defined by R on \mathbb{N}.

Solution Given any natural number x, there exist $k \in \mathbb{N}$ and $i \in \mathbb{N}_{0}$ such that k is not divisible by 2 , and $x=k \times 2^{i}$. For any natural number $y=k \times 2^{j}$, we have $\frac{x}{y}=2^{i-j}$, where $(i-j)$ is an integer. Thus, $x R y$, implying that x and y belong to the same equivalence class. Conversely, if $x=k \times 2^{i}$ and $y=l \times 2^{j}$ for odd k, l with $k \neq l$, then $\frac{x}{y}$ is not of the form 2^{t} with $t \in \mathbb{Z}$. Therefore the equivalence classes of R are as follows:

$$
\begin{aligned}
& \left\{1 \times 2^{i} \mid i=0,1,2, \ldots\right\} \\
& \left\{3 \times 2^{i} \mid i=0,1,2, \ldots\right\} \\
& \left\{5 \times 2^{i} \mid i=0,1,2, \ldots\right\} \\
& \left\{7 \times 2^{i} \mid i=0,1,2, \ldots\right\}
\end{aligned}
$$

(c) Prove/Disprove: R is a partial order.

Solution R is not a partial order as anti-symmetry does not hold. As a counter-example, $\frac{4}{2}=2^{1}$ and $\frac{2}{4}=2^{-1}$. However, $2 \neq 4$.
4. Let A be an infinite set. Prove that there exists a map $f: A \rightarrow A$ which is surjective (onto) but not injective (one-one).

Solution Since A is infinite, it contains a countably infinite subset $B=\left\{b_{1}, b_{2}, \ldots, b_{n}, \ldots\right\}$. Define the map $f: A \rightarrow A$ as

$$
f(a)= \begin{cases}b_{1} & \text { if } a=b_{1} \\ b_{n-1} & \text { if } a=b_{n} \text { for } n \geqslant 2 \\ a & \text { if } a \notin B\end{cases}
$$

Clearly, f is surjective. But f is not injective, since $f\left(b_{1}\right)=f\left(b_{2}\right)=b_{1}$.

