
CS21001 Discrete Structures

Tutorial 11

[Unless otherwise stated, all groups in the exercise set are multiplicative with identity e.]

1. Let G be a group. Suppose that there exists some n ∈N such that for all a,b ∈ G, we have (ab)n = anbn and

(ab)n+1 = an+1bn+1. Prove that G is abelian.

2. Let G be a finite group of even order. Prove that the number of elements of order two in G is odd.

3. Let p be a prime. Prove that any group of order p2 has a subgroup of order p.

4. Let G be a non-abelian group, and a,b ∈ G. Prove that ord(ab) = ord(ba).

5. Let G be a finite group, and h = ord(a) for some a ∈ G. Prove that ord(ak) =
h

gcd(h,k)
for all k ∈ Z.

6. Let G be a finite group, and H,K subgroups of G with relatively prime orders. Prove that H ∩K = {e}.

7. Prove that any finite group of square-free order is cyclic.

8. Let G be a group, a,b ∈ G, m = ord(a), and n = ord(b). Assume that m,n < ∞.

(a) Prove or disprove: ord(ab) = mn.

(b) Prove or disprove: If gcd(m,n) = 1, then ord(ab) = mn.

(c) Prove or disprove: If G is Abelian and gcd(m,n) = 1, then ord(ab) = mn.

(d) If G is a finite cyclic group, prove that G has exactly φ(r) generators, where r is the order of G and φ

is Euler’s totient function.

9. Let G be a finite cyclic group, and H,K subgroups of G of orders s, t, respectively. What is the order of

H ∩K?

10. Let G be a finite cyclic group of order m, and r a divisor of m. Prove that:

(a) G contains a unique subgroup H of order r.

(b) Let a ∈ G. Prove that a ∈ H if and only if ar = e. Demonstrate by an example that this result need not

hold if G is not cyclic.

11. Let G be an Abelian group. An element a ∈ G is called a torsion element of G if ord(a) is finite. Prove that

the set Tor(G) of all torsion elements of G is a subgroup of G.

12. Let G be as in the last exercise. Prove/Disprove: Tor(G) must be finite.

13. Prove that for any integer n > 3 the multiplicative group Z
∗
2n is not cyclic. (Hint: You may look at the

elements 2n−1 ±1.)

14. Let p be an odd prime, and e ∈ N. Prove that the group Z
∗
pe is cyclic. (Hint: For e = 1, the result follows

from Fermat’s little theorem. So suppose that e > 2. First show that the order of p+1 in Z
∗
pe is pe−1. Then,

take a generator a of Z∗
p. The order of a in Z

∗
pe is k(p−1) for some k ∈ N.)

15. Let G1,G2, . . . ,Gn be groups and G = G1 ×G2 ×·· ·×Gn. Let each Gi be finite of order mi. Establish that

G is cyclic if and only if each Gi is cyclic and gcd(mi,m j) = 1 for i 6= j.

16. Prove that Z∗
n is cyclic if and only if n = 1,2,4, pe,2pe, where p ∈ P and e ∈ N.(Hint: Use the last three

exercises, and the Chinese remainder theorem.)

17. Let G be a finite Abelian group (with identity e) in which the number of elements x satisfying xn = e is at

most n for every n ∈ N. Prove that G is cyclic.

18. Let G be a group, H a subgroup of G, and a,b ∈ G. Prove that the following conditions are equivalent.

(i) Ha = Hb.

(ii) b ∈ Ha.

(iii) ab−1 ∈ H.
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19. Give an example of a group G, a subgroup H, and an element a ∈ G such that aH 6= Ha.

20. Let G be a group, H a subgroup, and a ∈ G. Prove that:

(a) aHa−1 is a subgroup of G, and |aHa−1|= |H|.
(b) Prove/Disprove: If aHa−1 is a normal subgroup of G, then so also is H.

21. Let H be a subgroup of a group G. For every a,b ∈ G, there exists c ∈ G such that (aH)(bH) = cH. Prove

that H is a normal subgroup of H.

22. Prove that the intersection of two normal subgroups of a group G is again normal subgroup of G.

23. Let G be a group, and H a subgroup of index [G : H] = 2. Prove that H is a normal subgroup of G.

24. Let H1 and H2 be two normal subgroups of G with H1 ∩H2 = {e}. Prove that for all a1 ∈ H1 and for all

a2 ∈ H2, we have a1a2 = a2a1.

25. Prove/Disprove: If H is a normal subgroup of G, and K is a normal subgroup of H, then K is a normal

subgroup of G.

26. Let G be a group with identity e and H 6= {e} a normal subgroup of G. Prove or disprove: The only

homomorphism G/H → G is the map aH 7→ e for all a ∈ G.

27. Let G be a finite group. The smallest positive integer n such that an = e for all a ∈ G is called the exponent

of G, denoted exp(G). Prove that:

(a) exp(G) = lcm(ord(a) | a ∈ G).
(b) exp(G)|ord(G).
(c) If G is abelian, then there exists an element of G of order equal to exp(G).
(d) If G is abelian, and exp(G) = ord(G), then G is cyclic.

(e) Parts (c) and (d) do not necessarily hold if G is not abelian.

28. Find the exponents of the symmetry groups S3, S4, and S5.

29. Let I be a non-empty index set (not necessarily finite), and let ai, i ∈ I, be symbols. Define G to be the set

of all symbolic sums of the form ∑
i∈I

niai, where all ni ∈ Z, and only finitely many ni are non-zero. Define

addition on G as ∑
i∈I

miai +∑
i∈I

niai = ∑
i∈I

(mi +ni)ai. Prove that G is an abelian group under this addition. G

is called the free abelian group generated by the symbols ai, i ∈ I.

30. Let G be as in the last exercise. Denote by H the subset of all elements ∑
i∈I

niai of G satisfying ∑
i∈I

ni = 0.

Prove that:

(a) H is a subgroup of G. (H is called the degree-zero part of G.)

(b) G/H ∼= Z.

31. Let G be a multiplicative group (not necessarily abelian), and A ⊆ G. Let 〈A〉 consist of all finite products

of the form b1b2 . . .bt for some t ∈N0 and with each bi ∈ A∪A−1. Prove that 〈A〉 is a subgroup of G (called

the subgroup of G generated by A).

32. If G = 〈A〉 for some finite subset A of G, then G is called finitely generated. Prove that:

(a) Every finitely generated group is countable.

(b) Every countable group need not be finitely generated.

33. Let n= pq, e, d be as in the RSA cryptosystem. Prove that the encryption map m 7→me (mod n) is a bijection

Zn → Zn.

34. Let n ∈ N be a square-free modulus, and let e ∈ N. Prove that the exponentiation map m 7→ me (mod n) is a

bijection Zn → Zn if and only if gcd(e,φ(n)) = 1.

35. If n ∈ N is not square-free, prove that for no e ∈ N, e > 2, the exponentiation map m 7→ me (mod n) is a

bijection Zn → Zn.
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