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(CS21001 Discrete Structures
Tutorial 11

[Unless otherwise stated, all groups in the exercise set are multiplicative with identity e.]

. Let G be a group. Suppose that there exists some n € N such that for all a,b € G, we have (ab)" = a"b" and

(ab)™! = a"*1p"*!. Prove that G is abelian.
Let G be a finite group of even order. Prove that the number of elements of order two in G is odd.
Let p be a prime. Prove that any group of order p? has a subgroup of order p.

Let G be a non-abelian group, and a,b € G. Prove that ord(ab) = ord(ba).

h
Let G be a finite group, and & = ord(a) for some a € G. Prove that ord(a*) = wcd(i k) for all k € Z.
gedln,
Let G be a finite group, and H, K subgroups of G with relatively prime orders. Prove that H N K = {e}.

Prove that any finite group of square-free order is cyclic.

Let G be a group, a,b € G, m = ord(a), and n = ord(b). Assume that m,n < co.

(a) Prove or disprove: ord(ab) = mn.

(b) Prove or disprove: If ged(m,n) = 1, then ord(ab) = mn.

(c) Prove or disprove: If G is Abelian and ged(m,n) = 1, then ord(ab) = mn.

(d) If G is a finite cyclic group, prove that G has exactly ¢(r) generators, where r is the order of G and ¢
is Euler’s totient function.

Let G be a finite cyclic group, and H, K subgroups of G of orders s,¢, respectively. What is the order of
HNK?
Let G be a finite cyclic group of order m, and r a divisor of m. Prove that:

(a) G contains a unique subgroup H of order r.
(b) Leta € G. Prove that a € H if and only if a” = e. Demonstrate by an example that this result need not
hold if G is not cyclic.

Let G be an Abelian group. An element a € G is called a forsion element of G if ord(a) is finite. Prove that
the set Tor(G) of all torsion elements of G is a subgroup of G.

Let G be as in the last exercise. Prove/Disprove: Tor(G) must be finite.

Prove that for any integer n > 3 the multiplicative group Z5, is not cyclic. (Hint: You may look at the
elements 27! +1.)

Let p be an odd prime, and e € N. Prove that the group Zj. is cyclic. (Hint: For e = 1, the result follows
from Fermat’s little theorem. So suppose that e > 2. First show that the order of p+1in Z . is p¢~ L. Then,
take a generator a of Zy. The order of a in Zy. is k(p — 1) for some k € N.)

Let G1,Ga,...,G, be groups and G = G| X G, X --- X G,. Let each G; be finite of order m;. Establish that
G is cyclic if and only if each G; is cyclic and ged(m;,m;) = 1 for i # j.

Prove that Z;, is cyclic if and only if n = 1,2,4, p®,2p°, where p € P and e € N.(Hint: Use the last three
exercises, and the Chinese remainder theorem.)

Let G be a finite Abelian group (with identity e) in which the number of elements x satisfying x" = e is at
most n for every n € N. Prove that G is cyclic.

Let G be a group, H a subgroup of G, and a,b € G. Prove that the following conditions are equivalent.

(i) Ha = Hb.
(ii) b € Ha.
(iii) ab~' € H.
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Give an example of a group G, a subgroup H, and an element a € G such that aH # Ha.

Let G be a group, H a subgroup, and a € G. Prove that:

(a) aHa !'is asubgroup of G, and |aHa™!| = |H|.
(b) Prove/Disprove: If aHa~' is a normal subgroup of G, then so also is H.

Let H be a subgroup of a group G. For every a,b € G, there exists ¢ € G such that (aH)(bH) = cH. Prove
that H is a normal subgroup of H.

Prove that the intersection of two normal subgroups of a group G is again normal subgroup of G.
Let G be a group, and H a subgroup of index [G : H] = 2. Prove that H is a normal subgroup of G.

Let H; and H, be two normal subgroups of G with H; N H, = {e}. Prove that for all a; € H, and for all
a, € Hy, we have aja, = axa;.

Prove/Disprove: If H is a normal subgroup of G, and K is a normal subgroup of H, then K is a normal
subgroup of G.

Let G be a group with identity e and H # {e} a normal subgroup of G. Prove or disprove: The only
homomorphism G/H — G is the map aH — e for all a € G.

Let G be a finite group. The smallest positive integer n such that a" = e for all a € G is called the exponent
of G, denoted exp(G). Prove that:

(@) exp(G)=Ilcm(ord(a)|a € G).

(b) exp(G)|ord(G).

(c¢) If G is abelian, then there exists an element of G of order equal to exp(G).
(d) If G is abelian, and exp(G) = ord(G), then G is cyclic.

(e) Parts (c) and (d) do not necessarily hold if G is not abelian.

Find the exponents of the symmetry groups S3, Sy, and Ss.

Let I be a non-empty index set (not necessarily finite), and let a;, i € I, be symbols. Define G to be the set
of all symbolic sums of the form Zn,-a,-, where all n; € Z, and only finitely many n; are non-zero. Define
icl
addition on G as Zmiai + Zniai = Z(m, + n;)a;. Prove that G is an abelian group under this addition. G
icl icl icl
is called the free abelian group generated by the symbols a;, i € I.

Let G be as in the last exercise. Denote by H the subset of all elements Zn,-a,- of G satisfying Zn,- =0.
icl icl
Prove that:

(a) H is asubgroup of G. (H is called the degree-zero part of G.)
(b) G/H=Z.

Let G be a multiplicative group (not necessarily abelian), and A C G. Let (A) consist of all finite products
of the form b b, ... b, for some t € Ny and with each b; € AUA~!. Prove that (A) is a subgroup of G (called
the subgroup of G generated by A).

If G = (A) for some finite subset A of G, then G is called finitely generated. Prove that:

(a) Every finitely generated group is countable.
(b) Every countable group need not be finitely generated.

Let n = pq, e, d be as in the RSA cryptosystem. Prove that the encryption map m — m® (mod n) is a bijection
Loy — Ly,

Let n € N be a square-free modulus, and let e € N. Prove that the exponentiation map m — m¢ (mod n) is a
bijection Z, — Z, if and only if gcd(e, ¢ (n)) = 1.

If n € N is not square-free, prove that for no e € N, e > 2, the exponentiation map m +— m° (mod n) is a
bijection Z, — Zj,.
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