[Unless otherwise stated, all groups in the exercise set are multiplicative with identity *e*.]

- **1.** Let *G* be a group. Suppose that there exists some $n \in \mathbb{N}$ such that for all $a, b \in G$, we have $(ab)^n = a^n b^n$ and $(ab)^{n+1} = a^{n+1}b^{n+1}$. Prove that *G* is abelian.
- 2. Let *G* be a finite group of even order. Prove that the number of elements of order two in *G* is odd.
- **3.** Let *p* be a prime. Prove that any group of order p^2 has a subgroup of order *p*.
- 4. Let *G* be a non-abelian group, and $a, b \in G$. Prove that ord $(ab) = \text{ord}(ba)$.
- 5. Let *G* be a finite group, and $h = \text{ord}(a)$ for some $a \in G$. Prove that $\text{ord}(a^k) = \frac{h}{\text{gcd}(h, k)}$ for all $k \in \mathbb{Z}$.
- 6. Let *G* be a finite group, and *H*, *K* subgroups of *G* with relatively prime orders. Prove that $H \cap K = \{e\}$.
- 7. Prove that any finite group of square-free order is cyclic.
- 8. Let *G* be a group, $a, b \in G$, $m = \text{ord}(a)$, and $n = \text{ord}(b)$. Assume that $m, n < \infty$.
	- (a) Prove or disprove: $\text{ord}(ab) = mn$.
	- (b) Prove or disprove: If $gcd(m, n) = 1$, then $ord(ab) = mn$.
	- (c) Prove or disprove: If *G* is Abelian and $gcd(m, n) = 1$, then $ord(ab) = mn$.

(d) If *G* is a finite cyclic group, prove that *G* has exactly $\phi(r)$ generators, where *r* is the order of *G* and ϕ is Euler's totient function.

- 9. Let *G* be a finite cyclic group, and *H*,*K* subgroups of *G* of orders *s*,*t*, respectively. What is the order of *H* ∩*K*?
- 10. Let *G* be a finite cyclic group of order *m*, and *r* a divisor of *m*. Prove that:
	- (a) *G* contains a unique subgroup *H* of order *r*.

(b) Let $a \in G$. Prove that $a \in H$ if and only if $a^r = e$. Demonstrate by an example that this result need not hold if *G* is not cyclic.

- 11. Let *G* be an Abelian group. An element $a \in G$ is called a *torsion element* of *G* if ord(*a*) is finite. Prove that the set $Tor(G)$ of all torsion elements of *G* is a subgroup of *G*.
- 12. Let *G* be as in the last exercise. Prove/Disprove: Tor(*G*) must be finite.
- 13. Prove that for any integer $n \geq 3$ the multiplicative group $\mathbb{Z}_{2^n}^*$ is *not* cyclic. (**Hint:** You may look at the elements $2^{n-1} \pm 1$.)
- 14. Let *p* be an odd prime, and $e \in \mathbb{N}$. Prove that the group $\mathbb{Z}_{p^e}^*$ is cyclic. (**Hint:** For $e = 1$, the result follows from Fermat's little theorem. So suppose that $e \ge 2$. First show that the order of $p + 1$ in $\mathbb{Z}_{p^e}^*$ is p^{e-1} . Then, take a generator *a* of \mathbb{Z}_p^* . The order of *a* in $\mathbb{Z}_{p^e}^*$ is $k(p-1)$ for some $k \in \mathbb{N}$.)
- 15. Let G_1, G_2, \ldots, G_n be groups and $G = G_1 \times G_2 \times \cdots \times G_n$. Let each G_i be finite of order m_i . Establish that *G* is cyclic if and only if each G_i is cyclic and $gcd(m_i, m_j) = 1$ for $i \neq j$.
- **16.** Prove that \mathbb{Z}_n^* is cyclic if and only if $n = 1, 2, 4, p^e, 2p^e$, where $p \in \mathbb{P}$ and $e \in \mathbb{N}$. (**Hint:** Use the last three exercises, and the Chinese remainder theorem.)
- 17. Let G be a finite Abelian group (with identity e) in which the number of elements x satisfying $x^n = e$ is at most *n* for every $n \in \mathbb{N}$. Prove that *G* is cyclic.
- **18.** Let *G* be a group, *H* a subgroup of *G*, and $a, b \in G$. Prove that the following conditions are equivalent.
	- (i) *Ha* = *Hb*. (ii) $b \in Ha$. (iii) $ab^{-1} \in H$.
- 19. Give an example of a group *G*, a subgroup *H*, and an element $a \in G$ such that $aH \neq Ha$.
- 20. Let *G* be a group, *H* a subgroup, and $a \in G$. Prove that:
	- (a) aHa^{-1} is a subgroup of *G*, and $|aHa^{-1}| = |H|$.
	- (**b**) Prove/Disprove: If aHa^{-1} is a normal subgroup of *G*, then so also is *H*.
- 21. Let *H* be a subgroup of a group *G*. For every $a, b \in G$, there exists $c \in G$ such that $(aH)(bH) = cH$. Prove that H is a normal subgroup of H .
- 22. Prove that the intersection of two normal subgroups of a group *G* is again normal subgroup of *G*.
- 23. Let *G* be a group, and *H* a subgroup of index $[G:H] = 2$. Prove that *H* is a normal subgroup of *G*.
- 24. Let *H*₁ and *H*₂ be two normal subgroups of *G* with $H_1 \cap H_2 = \{e\}$. Prove that for all $a_1 \in H_1$ and for all $a_2 \in H_2$, we have $a_1 a_2 = a_2 a_1$.
- 25. Prove/Disprove: If *H* is a normal subgroup of *G*, and *K* is a normal subgroup of *H*, then *K* is a normal subgroup of *G*.
- 26. Let *G* be a group with identity *e* and $H \neq \{e\}$ a normal subgroup of *G*. Prove or disprove: The only homomorphism $G/H \to G$ is the map $aH \mapsto e$ for all $a \in G$.
- 27. Let *G* be a finite group. The smallest positive integer *n* such that $a^n = e$ for all $a \in G$ is called the *exponent* of *G*, denoted exp(*G*). Prove that:
	- (a) $\exp(G) = \text{lcm}(\text{ord}(a) \mid a \in G).$
	- (b) $exp(G)|ord(G)$.
	- (c) If *G* is abelian, then there exists an element of *G* of order equal to $exp(G)$.
	- (d) If *G* is abelian, and $exp(G) = ord(G)$, then *G* is cyclic.
	- (e) Parts (c) and (d) do not necessarily hold if *G* is not abelian.
- 28. Find the exponents of the symmetry groups *S*3, *S*4, and *S*5.
- 29. Let *I* be a non-empty index set (not necessarily finite), and let a_i , $i \in I$, be symbols. Define *G* to be the set of all symbolic sums of the form $\sum n_i a_i$, where all $n_i \in \mathbb{Z}$, and only finitely many n_i are non-zero. Define *i*∈*I*

addition on *G* as $\sum_{i \in I} m_i a_i + \sum_{i \in I} n_i a_i = \sum_{i \in I}$ $(m_i + n_i)a_i$. Prove that *G* is an abelian group under this addition. *G* is called the *free abelian group* generated by the symbols a_i , $i \in I$.

30. Let *G* be as in the last exercise. Denote by *H* the subset of all elements $\sum_{i \in I} n_i a_i$ of *G* satisfying $\sum_{i \in I}$ $n_i = 0$.

Prove that:

- (a) *H* is a subgroup of *G*. (*H* is called the *degree-zero part* of *G*.)
- (b) $G/H \cong \mathbb{Z}$.
- 31. Let *G* be a multiplicative group (not necessarily abelian), and $A \subseteq G$. Let $\langle A \rangle$ consist of all finite products of the form $b_1b_2...b_t$ for some $t \in \mathbb{N}_0$ and with each $b_i \in A \cup A^{-1}$. Prove that $\langle A \rangle$ is a subgroup of *G* (called the subgroup of *G* generated by *A*).
- 32. If $G = \langle A \rangle$ for some finite subset *A* of *G*, then *G* is called *finitely generated*. Prove that:
	- (a) Every finitely generated group is countable.
	- (b) Every countable group need not be finitely generated.
- 33. Let $n = pq, e, d$ be as in the RSA cryptosystem. Prove that the encryption map $m \mapsto m^e \pmod{n}$ is a bijection $\mathbb{Z}_n \to \mathbb{Z}_n$.
- **34.** Let $n \in \mathbb{N}$ be a square-free modulus, and let $e \in \mathbb{N}$. Prove that the exponentiation map $m \mapsto m^e \pmod{n}$ is a bijection $\mathbb{Z}_n \to \mathbb{Z}_n$ if and only if $gcd(e, \phi(n)) = 1$.
- **35.** If $n \in \mathbb{N}$ is not square-free, prove that for no $e \in \mathbb{N}$, $e \ge 2$, the exponentiation map $m \mapsto m^e \pmod{n}$ is a bijection $\mathbb{Z}_n \to \mathbb{Z}_n$.