[Unless otherwise stated, all groups in the exercise set are multiplicative with identity *e*.]

- **1.** Let *G* be a group. Suppose that there exists some $n \in \mathbb{N}$ such that for all $a, b \in G$, we have $(ab)^n = a^n b^n$ and $(ab)^{n+1} = a^{n+1}b^{n+1}$. Prove that *G* is abelian.
- 2. Let G be a finite group of even order. Prove that the number of elements of order two in G is odd.
- **3.** Let p be a prime. Prove that any group of order p^2 has a subgroup of order p.
- **4.** Let *G* be a non-abelian group, and $a, b \in G$. Prove that ord(ab) = ord(ba).
- **5.** Let *G* be a finite group, and $h = \operatorname{ord}(a)$ for some $a \in G$. Prove that $\operatorname{ord}(a^k) = \frac{h}{\operatorname{gcd}(h,k)}$ for all $k \in \mathbb{Z}$.
- 6. Let G be a finite group, and H, K subgroups of G with relatively prime orders. Prove that $H \cap K = \{e\}$.
- 7. Prove that any finite group of square-free order is cyclic.
- **8.** Let *G* be a group, $a, b \in G$, m = ord(a), and n = ord(b). Assume that $m, n < \infty$.
 - (a) Prove or disprove: ord(ab) = mn.
 - (b) Prove or disprove: If gcd(m,n) = 1, then ord(ab) = mn.
 - (c) Prove or disprove: If G is Abelian and gcd(m,n) = 1, then ord(ab) = mn.

(d) If G is a finite cyclic group, prove that G has exactly $\phi(r)$ generators, where r is the order of G and ϕ is Euler's totient function.

- **9.** Let G be a finite cyclic group, and H, K subgroups of G of orders s, t, respectively. What is the order of $H \cap K$?
- 10. Let G be a finite cyclic group of order m, and r a divisor of m. Prove that:
 - (a) G contains a unique subgroup H of order r.

(b) Let $a \in G$. Prove that $a \in H$ if and only if $a^r = e$. Demonstrate by an example that this result need not hold if *G* is not cyclic.

- **11.** Let *G* be an Abelian group. An element $a \in G$ is called a *torsion element* of *G* if ord(a) is finite. Prove that the set Tor(G) of all torsion elements of *G* is a subgroup of *G*.
- 12. Let G be as in the last exercise. Prove/Disprove: Tor(G) must be finite.
- **13.** Prove that for any integer $n \ge 3$ the multiplicative group $\mathbb{Z}_{2^n}^*$ is *not* cyclic. (**Hint:** You may look at the elements $2^{n-1} \pm 1$.)
- 14. Let *p* be an odd prime, and $e \in \mathbb{N}$. Prove that the group $\mathbb{Z}_{p^e}^*$ is cyclic. (Hint: For e = 1, the result follows from Fermat's little theorem. So suppose that $e \ge 2$. First show that the order of p + 1 in $\mathbb{Z}_{p^e}^*$ is p^{e-1} . Then, take a generator *a* of \mathbb{Z}_p^* . The order of *a* in $\mathbb{Z}_{p^e}^*$ is k(p-1) for some $k \in \mathbb{N}$.)
- **15.** Let G_1, G_2, \ldots, G_n be groups and $G = G_1 \times G_2 \times \cdots \times G_n$. Let each G_i be finite of order m_i . Establish that G is cyclic if and only if each G_i is cyclic and $gcd(m_i, m_j) = 1$ for $i \neq j$.
- **16.** Prove that \mathbb{Z}_n^* is cyclic if and only if $n = 1, 2, 4, p^e, 2p^e$, where $p \in \mathbb{P}$ and $e \in \mathbb{N}$.(**Hint:** Use the last three exercises, and the Chinese remainder theorem.)
- 17. Let *G* be a finite Abelian group (with identity *e*) in which the number of elements *x* satisfying $x^n = e$ is at most *n* for every $n \in \mathbb{N}$. Prove that *G* is cyclic.
- **18.** Let G be a group, H a subgroup of G, and $a, b \in G$. Prove that the following conditions are equivalent.
 - (i) Ha = Hb. (ii) $b \in Ha$. (iii) $ab^{-1} \in H$.

- **19.** Give an example of a group G, a subgroup H, and an element $a \in G$ such that $aH \neq Ha$.
- **20.** Let *G* be a group, *H* a subgroup, and $a \in G$. Prove that:
 - (a) aHa^{-1} is a subgroup of G, and $|aHa^{-1}| = |H|$.
 - (b) Prove/Disprove: If aHa^{-1} is a normal subgroup of G, then so also is H.
- **21.** Let *H* be a subgroup of a group *G*. For every $a, b \in G$, there exists $c \in G$ such that (aH)(bH) = cH. Prove that H is a normal subgroup of H.
- 22. Prove that the intersection of two normal subgroups of a group G is again normal subgroup of G.
- **23.** Let G be a group, and H a subgroup of index [G:H] = 2. Prove that H is a normal subgroup of G.
- **24.** Let H_1 and H_2 be two normal subgroups of G with $H_1 \cap H_2 = \{e\}$. Prove that for all $a_1 \in H_1$ and for all $a_2 \in H_2$, we have $a_1 a_2 = a_2 a_1$.
- **25.** Prove/Disprove: If H is a normal subgroup of G, and K is a normal subgroup of H, then K is a normal subgroup of G.
- **26.** Let G be a group with identity e and $H \neq \{e\}$ a normal subgroup of G. Prove or disprove: The only homomorphism $G/H \to G$ is the map $aH \mapsto e$ for all $a \in G$.
- 27. Let G be a finite group. The smallest positive integer n such that $a^n = e$ for all $a \in G$ is called the *exponent* of G, denoted $\exp(G)$. Prove that:
 - (a) $\exp(G) = \operatorname{lcm}(\operatorname{ord}(a) \mid a \in G).$
 - (b) $\exp(G) | \operatorname{ord}(G)$.
 - (c) If G is abelian, then there exists an element of G of order equal to $\exp(G)$.
 - (d) If G is abelian, and $\exp(G) = \operatorname{ord}(G)$, then G is cyclic.
 - (e) Parts (c) and (d) do not necessarily hold if G is not abelian.
- **28.** Find the exponents of the symmetry groups S_3 , S_4 , and S_5 .
- **29.** Let *I* be a non-empty index set (not necessarily finite), and let a_i , $i \in I$, be symbols. Define *G* to be the set of all symbolic sums of the form $\sum n_i a_i$, where all $n_i \in \mathbb{Z}$, and only finitely many n_i are non-zero. Define addition on *G* as $\sum_{i \in I} m_i a_i + \sum_{i \in I} n_i a_i = \sum_{i \in I} (m_i + n_i) a_i$. Prove that *G* is an abelian group under this addition. *G*

is called the *free abelian group* generated by the symbols a_i , $i \in I$.

30. Let *G* be as in the last exercise. Denote by *H* the subset of all elements $\sum_{i \in I} n_i a_i$ of *G* satisfying $\sum_{i \in I} n_i = 0$. Prove that:

- (a) *H* is a subgroup of *G*. (*H* is called the *degree-zero part* of *G*.)
- (b) $G/H \cong \mathbb{Z}$.
- **31.** Let G be a multiplicative group (not necessarily abelian), and $A \subseteq G$. Let $\langle A \rangle$ consist of all finite products of the form $b_1b_2...b_t$ for some $t \in \mathbb{N}_0$ and with each $b_i \in A \cup A^{-1}$. Prove that $\langle A \rangle$ is a subgroup of G (called the subgroup of G generated by A).
- **32.** If $G = \langle A \rangle$ for some finite subset A of G, then G is called *finitely generated*. Prove that:
 - (a) Every finitely generated group is countable.
 - (b) Every countable group need not be finitely generated.
- **33.** Let n = pq, e, d be as in the RSA cryptosystem. Prove that the encryption map $m \mapsto m^e \pmod{n}$ is a bijection $\mathbb{Z}_n \to \mathbb{Z}_n$.
- **34.** Let $n \in \mathbb{N}$ be a square-free modulus, and let $e \in \mathbb{N}$. Prove that the exponentiation map $m \mapsto m^e \pmod{n}$ is a bijection $\mathbb{Z}_n \to \mathbb{Z}_n$ if and only if $gcd(e, \phi(n)) = 1$.
- **35.** If $n \in \mathbb{N}$ is not square-free, prove that for no $e \in \mathbb{N}$, $e \ge 2$, the exponentiation map $m \mapsto m^e \pmod{n}$ is a bijection $\mathbb{Z}_n \to \mathbb{Z}_n$.