- 1. Let R be a ring. Prove that the following conditions are equivalent.
 - (1) R is commutative.
 - (2) $(a+b)^2 = a^2 + 2ab + b^2$ for all $a, b \in R$.
 - (3) $(a+b)(a-b) = a^2 b^2$ for all $a, b \in R$.
- 2. Let *R* be a commutative ring with identity.

(a) Prove that the set R[x] of all univariate polynomials with coefficients from R is a commutative ring with identity. Can a non-constant polynomial be a unit of R[x]?

(b) Let $n \in \mathbb{N}$, $n \ge 2$, be a fixed constant. Prove that the set $R[x_1, x_2, ..., x_n]$ of *n*-variate polynomials with coefficients from *R* is a commutative ring with identity.

(c) Prove that the set R[[x]] of all infinite power series expansions with coefficients from R is a commutative ring with identity. What are the units of R[[x]]?

- 3. If *R* is an integral domain, which of the rings of the previous exercise is/are integral domain(s)?
- **4.** Let *R* be a commutative ring. An element $a \in R$ is said to be *nilpotent* if $a^n = 0$ for some $n \in \mathbb{N}$.
 - (a) Given an example of a non-zero nilpotent element in a ring.
 - (b) Prove that if a and b are nilpotent, then so also is a + b.
 - (c) Let R be with identity. Prove that if a is nilpotent and u is a unit, then a + u is a unit.
 - (d) Prove that the set of all nilpotent elements of *R* is an ideal of *R*. This ideal is called the *nilradical* of *R*.
- **5.** Let *R* be a commutative ring with identity, and let $a(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0 \in R[x]$.
 - (a) Prove that a(x) is nilpotent if and only if $a_0, a_1, a_2, \ldots, a_d$ are all nilpotent.
 - (b) Prove that a(x) is a unit in R[x] if and only if a_0 is a unit in R, and a_1, a_2, \ldots, a_d are nilpotent.
- 6. The *characteristic* of a ring *R* is defined to be the smallest $n \in \mathbb{N}$ for which $1 + 1 + \dots + 1$ (*n* times) = 0. In this case, we say char R = n. If no such *n* exists, we say that char R = 0.
 - (a) What are the characteristics of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_n$?
 - (**b**) Prove that $\operatorname{char} R = \operatorname{char} R[x]$.
 - (c) Let R be an integral domain of positive characteristic n. Prove that n is a prime.
- 7. Let *R* be an integral domain of prime characteristic *p*, and let $a, b \in R$. Prove that:
 - (a) The binomial coefficient $\binom{p}{r}$ is divisible by p for $1 \le r \le p-1$.
 - **(b)** $(a+b)^{p^n} = a^{p^n} + b^{p^n}$ for all $n \in \mathbb{N}_0$.
- **8.** Let *R* be a ring, and *S*, T_1 , T_2 subrings of *R*. If $S \subseteq T_1 \cup T_2$, prove that $S \subseteq T_1$ or $S \subseteq T_2$.
- 9. Let I, J be ideals of a ring R. Which of the following sets is/are ideal(s) of R?
 - (a) $I + J = \{a + b \mid a \in I \text{ and } b \in J\}.$
 - (**b**) $IJ = \{ab \mid a \in I \text{ and } b \in J\}.$
 - (c) $I \cup J = \{a \mid a \in I \text{ or } a \in J\}.$
 - (d) $I \cap J = \{a \mid a \in I \text{ and } a \in J\}.$
- 10. Let *R* be a ring with identity, and *I* an ideal of *R*. Prove that I = R if and only if *I* contains a unit.
- 11. Prove that a commutative ring *R* with identity is a field if and only if the only ideals of *R* are $\{0\}$ and *R*.
- **12.** Let *R* be a commutative ring with identity. An ideal *I* of *R* is called *prime* if $ab \in I$ implies either $a \in I$ or $b \in I$. An ideal *I* of *R* is called *maximal* if for any ideal *J* of *R* satisfying $I \subseteq J \subseteq R$, we must have J = I or J = R (that is, there exists no proper ideal of *R* strictly containing *I*).
 - (a) Characterize all prime and all maximal ideals of \mathbb{Z} .
 - (b) Characterize all prime and all maximal ideals of F[x], F a field.
 - (c) Prove that every maximal ideal is prime.
 - (d) Give an example of a prime ideal that is not maximal.

- 13. (a) Prove that any ideal of Z is equal to nZ for some n ∈ N₀.
 (b) Let mZ and nZ be two ideals of Z. Prove that mZ + nZ = dZ, where d = gcd(m,n).
- **14.** Let $f(x), g(x) \in F[x]$ for an infinite field *F*. If f(a) = g(a) for infinitely many $a \in F$, prove that f(x) = g(x).
- **15.** Let *R* be a commutative ring with identity. A subset $S \subseteq R$ is called *multiplicative* if (i) $1 \in S$, and (ii) whenever $s, t \in S$, we also have $st \in S$. Prove that the following sets are multiplicative.
 - (a) The set of all units of *R*.
 - (b) The set $\{1, f, f^2, f^3, ...\}$ for a non-nilpotent element f of R.
 - (c) The set of all elements of R, which are not zero divisors.
 - (d) The set of all non-zero elements of R if R is an integral domain.
 - (e) The set of all non-multiples of a prime p for $R = \mathbb{Z}$.
- **16.** Let *R* be a commutative ring with identity, and *S* a multiplicative subset of *R*. Define a relation ρ on $R \times S$ as $(r_1, s_1) \rho$ (r_2, s_2) if and only if $t(r_1 s_2 r_2 s_1) = 0$ for some $t \in S$.
 - (a) Prove that ρ is an equivalence relation.

(b) Denote the equivalence class of (r,s) by r/s. Define $(r_1/s_1) + (r_2/s_2) = (r_1s_2 + r_2s_1)/(s_1s_2)$, and $(r_1/s_1)(r_2/s_2) = (r_1r_2)/(s_1s_2)$. Show that these operations are well-defined, and the set $Q = R/\rho$ of equivalence classes is a commutative ring with identity under these operations. What are the units of Q?

(c) Prove that the map $\iota : R \to Q$ taking $r \mapsto (r/1)$ is a ring homomorphism.

(d) If *R* is an integral domain and $S = R \setminus \{0\}$, prove that *Q* is a field. This field is called the *field of fractions* or the *total quotient ring* of *R*.

- (e) What are the fields of fractions of \mathbb{Z} and F[x], where F is a field?
- **17.** Let $\mathbb{Z}[i] = \{a+ib \mid a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers. Take $a+ib, c+id \in R$ with $c+id \neq 0$. Prove that there exist $p+iq, r+is \in R$ such that a+ib = (p+iq)(c+id) + (r+is) with $0 \leq |r+is| \leq \frac{1}{\sqrt{2}}|c+id|$. (**Hint:** First express $\frac{a+ib}{c+id} = x+iy$, where x, y are rationals.)
- 18. Prove the following statements about congruences.
 - (a) If $a \equiv b \pmod{n}$, and $f(x) \in \mathbb{Z}[x]$, then $f(a) \equiv f(b) \pmod{n}$.
 - (b) If $a \equiv b \pmod{n}$ and $m \mid n$, then $a \equiv b \pmod{m}$.
 - (c) If $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$, then $a \equiv m \pmod{m, n}$.
 - (d) $ax \equiv ay \pmod{n}$ if and only if $x \equiv y \pmod{n/d}$, where $d = \gcd(a, n)$.
- **19.** Let d = gcd(a, n). Prove that the congruence $ax \equiv b \pmod{n}$ is solvable for x if and only if d|b. How can you compute all the solutions of this congruence modulo n?
- **20.** [*Fermat's little theorem*] Let *p* be a prime. Prove that for all $a \in \mathbb{Z}$, we have $a^p \equiv a \pmod{p}$.
- **21.** (a) Prove that there cannot be any non-zero homomorphism $\mathbb{Z}_n \to \mathbb{Z}$ for any $n \in \mathbb{N}$.
 - (b) Prove that there exists a non-zero homomorphism $\mathbb{Z}_m \to \mathbb{Z}_n$ taking $[1]_m \mapsto [1]_n$ if and only if n|m.
 - (c) Prove that the only non-zero homomorphism of $\mathbb{Z} \to \mathbb{Z}$ is the identity map.
 - (d) Let F, K be fields. Prove that any non-zero homomorphism $F \to K$ is injective.
- **22.** Let $f : R \to S$ be a homomorphism of rings. Prove that f(R) is a subring of *S*. Prove also that the *kernel* of *f* defined as ker $(f) = \{a \in R \mid f(a) = 0_S\} \subseteq R$ is an ideal of *R*.
- **23.** Let $m, n \in \mathbb{N}$ with n|m. Find the kernel of the ring homomorphism $f : \mathbb{Z}_m \to \mathbb{Z}_n$ taking $[a]_m$ to $[a]_n$.
- **24.** Let $f : R \to S$ be a ring homomorphism, and J an ideal of S. Prove that $f^{-1}(J) = \{a \in R \mid f(a) \in J\}$ is an ideal of R. If T is a subring of S, is $f^{-1}(T)$ always a subring of R?

25. Prove that the map $f : \mathbb{R} \times \mathbb{R} \to \operatorname{GL}_2(\mathbb{R})$ taking (a,b) to $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ is a homomorphism of rings.

- 26. (a) Prove that every integral domain of characteristic 0 contains an isomorphic copy of Z.
 (b) Prove that every field of characteristic 0 contains an isomorphic copy of Q.
- **27.** Find all non-zero homomorphisms of $\mathbb{Z}[i] \to \mathbb{Z}[i]$.
- **28.** Prove that there cannot exist a non-zero homomorphism $\mathbb{Z}[i] \to \mathbb{Z}[\sqrt{2}]$.